无数据
Scan for full text
1.Department of Neurosurgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
2.Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310009, China
3.MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou 310058, China
4.Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
5.School of Medicine, Zhejiang University, Hangzhou 310020, China
6.iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
7.College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
张怡,全枝艳,楼飞洋等.一种用于多核磁共振成像及波谱的鸟笼线圈与可更换单环线圈的一体化设计[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2024,25(02):168-180.
Yi ZHANG, Zhiyan QUAN, Feiyang LOU, et al. A proton birdcage coil integrated with interchangeable single loops for multi-nuclear MRI/MRS[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2024,25(2):168-180.
张怡,全枝艳,楼飞洋等.一种用于多核磁共振成像及波谱的鸟笼线圈与可更换单环线圈的一体化设计[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2024,25(02):168-180. DOI: 10.1631/jzus.B2300587.
Yi ZHANG, Zhiyan QUAN, Feiyang LOU, et al. A proton birdcage coil integrated with interchangeable single loops for multi-nuclear MRI/MRS[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2024,25(2):168-180. DOI: 10.1631/jzus.B2300587.
能量代谢对生命活动至关重要,主要包括对碳水化合物、脂肪和蛋白质的利用过程,异常的能量代谢与诸多疾病密切相关。本研究提出了一种用于多核磁共振成像(MRI)与波谱(MRS)的射频线圈设计:通过3D打印线圈外壳和支架,将一个鸟笼,1,H线圈和可更换的单环X核(,2,H、,13,C、,23,Na和,31,P)线圈一体化集成,其中单环线圈通过一个弧形支架安装于鸟笼线圈内壁,使其可沿内壁轴向无阻碍地移动,方便实现成像实验中多核线圈的更换以及线圈相对于不同成像体的摆放。与商用鸟笼,1,H核线圈相比,本设计具有更好的,1,H信号激发均匀性和成像信噪比;小鼠的活体实验验证了线圈设计在成像与波谱研究方面的可行性与有效性,可同时满足结构成像和能量代谢检测的要求。综上所述,该多核线圈通过新型机械与电路设计可以简化多核磁共振成像能量代谢检测的实施过程。
Energy metabolism is fundamental for life. It encompasses the utilization of carbohydrates, lipids, and proteins for internal processes, while aberrant energy metabolism is implicated in many diseases. In the present study, using three-dimensional (3D) printing from polycarbonate via fused deposition modeling, we propose a multi-nuclear radiofrequency (RF) coil design with integrated ,1,H birdcage and interchangeable X-nuclei (,2,H,13,C,23,Na, and ,31,P) single-loop coils for magnetic resonance imaging (MRI)/magnetic resonance spectroscopy (MRS). The single-loop coil for each nucleus attaches to an arc bracket that slides unrestrictedly along the birdcage coil inner surface, enabling convenient switching among various nuclei and animal handling. Compared to a commercial ,1,H birdcage coil, the proposed ,1,H birdcage coil exhibited superior signal-excitation homogeneity and imaging signal-to-noise ratio (SNR). For X-nuclei study, prominent peaks in spectroscopy for phantom solutions showed excellent SNR, and the static and dynamic peaks of in vivo spectroscopy validated the efficacy of the coil design in structural imaging and energy metabolism detection simultaneously.
能量代谢核磁共振成像磁共振波谱多核射频线圈3D打印
Energy metabolismMagnetic resonance imaging (MRI)Magnetic resonance spectroscopy (MRS)Multi-nuclearRadiofrequency coilThree-dimensional (3D) printing
Abdurrachim D, Nabben M, Hoerr V, et al., 2017. Diabetic db/db mice do not develop heart failure upon pressure overload: a longitudinal in vivo PET, MRI, and MRS study on cardiac metabolic, structural, and functional adaptations. Cardiovasc Res, 113(10):1148-1160. https://doi.org/10.1093/cvr/cvx100https://doi.org/10.1093/cvr/cvx100
Alfonsetti M, Sotgiu A, Alecci M, 2010. Design and testing of a 1.5 Tesla double-tuned (1H/31P) RF surface coil with intrinsic geometric isolation. Measurement, 43(9):1266-1276. https://doi.org/10.1016/j.measurement.2010.07.003https://doi.org/10.1016/j.measurement.2010.07.003
Al-Mosalem OA, El-Ansary A, Attas O, et al., 2009. Metabolic biomarkers related to energy metabolism in Saudi autistic children. Clin Biochem, 42(10-11):949-957. https://doi.org/10.1016/j.clinbiochem.2009.04.006https://doi.org/10.1016/j.clinbiochem.2009.04.006
Augath M, Heiler P, Kirsch S, et al., 2009. In vivo 39K, 23Na and 1H MR imaging using a triple resonant RF coil setup. J Magn Reson, 200(1):134-136. https://doi.org/10.1016/j.jmr.2009.05.005https://doi.org/10.1016/j.jmr.2009.05.005
Batsios G, Taglang C, Tran M, et al., 2022. Deuterium metabolic imaging reports on TERT expression and early response to therapy in cancer. Clin Cancer Res, 28(16):3526-3536. https://doi.org/10.1158/1078-0432.CCR-21-4418https://doi.org/10.1158/1078-0432.CCR-21-4418
Beyoğlu D, Imbeaud S, Maurhofer O, et al., 2013. Tissue metabolomics of hepatocellular carcinoma: tumor energy metabolism and the role of transcriptomic classification. Hepatology, 58(1):229-238. https://doi.org/10.1002/hep.26350https://doi.org/10.1002/hep.26350
Cani PD, Delzenne NM, 2009. The role of the gut microbiota in energy metabolism and metabolic disease. Curr Pharm Des, 15(13):1546-1558. https://doi.org/10.2174/138161209788168164https://doi.org/10.2174/138161209788168164
Cherry SR, Jones T, Karp JS, et al., 2018. Total-body PET: maximizing sensitivity to create new opportunities for clinical research and patient care. J Nucl Med, 59(1):3-12. https://doi.org/10.2967/jnumed.116.184028https://doi.org/10.2967/jnumed.116.184028
Choi CH, Ha Y, Veeraiah P, et al., 2016. Design and implementation of a simple multinuclear MRI system for ultra high-field imaging of animals. J Magn Reson, 273:28-32. https://doi.org/10.1016/j.jmr.2016.10.007https://doi.org/10.1016/j.jmr.2016.10.007
Choi CH, Hong SM, Ha Y, et al., 2017. Design and construction of a novel 1H/19F double-tuned coil system using PIN-diode switches at 9.4T. J Magn Reson, 279:11-15. https://doi.org/10.1016/j.jmr.2017.04.005https://doi.org/10.1016/j.jmr.2017.04.005
Choi CH, Hong SM, Felder J, et al., 2020. The state-of-the-art and emerging design approaches of double-tuned RF coils for X-nuclei, brain MR imaging and spectroscopy: a review. Magn Reson Imaging, 72:103-116. https://doi.org/10.1016/j.mri.2020.07.003https://doi.org/10.1016/j.mri.2020.07.003
Deelchand DK, Shestov AA, Koski DM, et al., 2009. Acetate transport and utilization in the rat brain. J Neurochem, 109(Suppl 1):46-54. https://doi.org/10.1111/j.1471-4159.2009.05895.xhttps://doi.org/10.1111/j.1471-4159.2009.05895.x
de Feyter HM, de Graaf RA, 2021. Deuterium metabolic imaging ‒ Back to the future. J Magn Reson, 326:106932. https://doi.org/10.1016/j.jmr.2021.106932https://doi.org/10.1016/j.jmr.2021.106932
de Feyter HM, Behar KL, Corbin ZA, et al., 2018. Deuterium metabolic imaging (DMI) for MRI-based 3D mapping of metabolism in vivo. Sci Adv, 4(8):eaat7314. https://doi.org/10.1126/sciadv.aat7314https://doi.org/10.1126/sciadv.aat7314
Elia M, Cummings JH, 2007. Physiological aspects of energy metabolism and gastrointestinal effects of carbohydrates. Eur J Clin Nutr, 61:S40-S74. https://doi.org/10.1038/sj.ejcn.1602938https://doi.org/10.1038/sj.ejcn.1602938
Ferreira IL, Resende R, Ferreiro E, et al., 2010. Multiple defects in energy metabolism in Alzheimers disease. Curr Drug Targets, 11(10):1193-1206. https://doi.org/10.2174/1389450111007011193https://doi.org/10.2174/1389450111007011193
Gareis D, Neuberger T, Behr VC, et al., 2006. Transmit-receive coil-arrays at 17.6T, configurations for 1H, 23Na, and 31P MRI. Concepts Magn Reson Part B Magn Reson Eng, 29B(1):20-27. https://doi.org/10.1002/cmr.b.20055https://doi.org/10.1002/cmr.b.20055
Gruetter R, Adriany G, Choi IY, et al., 2003. Localized in vivo 13C NMR spectroscopy of the brain. NMR Biomed, 16(6-7):313-338. https://doi.org/10.1002/nbm.841https://doi.org/10.1002/nbm.841
Ha Y, Choi CH, Shah NJ, 2018. Development and implementation of a PIN-diode controlled, quadrature-enhanced, double-tuned RF coil for sodium MRI. IEEE Trans Med Imaging, 37(7):1626-1631. https://doi.org/10.1109/TMI.2017.2786466https://doi.org/10.1109/TMI.2017.2786466
Hernandez D, 2021. Design of a coplanar interlayer gapped microstrips arrangement for multi-nuclei (1H, 19F, 31P, and 23Na) applications in 7T MRI. Appl Sci, 11(3):957. https://doi.org/10.3390/app11030957https://doi.org/10.3390/app11030957
Hertz L, Dienel GA, 2002. Energy metabolism in the brain. Int Rev Neurobiol, 51:1-102, IN1-IN4. https://doi.org/10.1016/s0074-7742(02)51003-5https://doi.org/10.1016/s0074-7742(02)51003-5
Horch RA, Wilkens K, Gochberg DF, et al., 2010. RF coil considerations for short-T2 MRI. Magn Reson Med, 64(6):1652-1657. https://doi.org/10.1002/mrm.22558https://doi.org/10.1002/mrm.22558
Imamura H, Nhat KPH, Togawa H, et al., 2009. Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators. Proc Natl Acad Sci USA, 106(37):15651-15656. https://doi.org/10.1073/pnas.0904764106https://doi.org/10.1073/pnas.0904764106
James JR, Gao Y, Soon VC, et al., 2010. Controlled radio-frequency hyperthermia using an MR scanner and simultaneous monitoring of temperature and therapy response by 1H, 23Na and 31P magnetic resonance spectroscopy in subcutaneously implanted 9L-gliosarcoma. Int J Hyperthermia, 26(1):79-90. https://doi.org/10.3109/02656730903373509https://doi.org/10.3109/02656730903373509
Kemp GJ, Meyerspeer M, Moser E, 2007. Absolute quantification of phosphorus metabolite concentrations in human muscle in vivo by 31P MRS: a quantitative review. NMR Biomed, 20(6):555-565. https://doi.org/10.1002/nbm.1192https://doi.org/10.1002/nbm.1192
Long CP, Antoniewicz MR, 2019. High-resolution 13C metabolic flux analysis. Nat Protoc, 14(10):2856-2877. https://doi.org/10.1038/s41596-019-0204-0https://doi.org/10.1038/s41596-019-0204-0
Lopaschuk GD, Karwi QG, Tian R, et al., 2021. Cardiac energy metabolism in heart failure. Circ Res, 128(10):1487-1513. https://doi.org/10.1161/CIRCRESAHA.121.318241https://doi.org/10.1161/CIRCRESAHA.121.318241
Lu M, Zhu XH, Zhang Y, et al., 2017. Quantitative assessment of brain glucose metabolic rates using in vivo deuterium magnetic resonance spectroscopy. J Cereb Blood Flow Metab, 37(11):3518-3530. https://doi.org/10.1177/0271678X17706444https://doi.org/10.1177/0271678X17706444
Magistretti PJ, Allaman I, 2015. A cellular perspective on brain energy metabolism and functional imaging. Neuron, 86(4):883-901. https://doi.org/10.1016/j.neuron.2015.03.035https://doi.org/10.1016/j.neuron.2015.03.035
Medhurst L, Shahnaz F, Ramnarine N, et al., 2016. Measurement of phosphates in soft drinks: a general chemistry experiment using NMR. In: Soulsby D, Anna LJ, Wallner AS (Eds.), NMR Spectroscopy in the Undergraduate Curriculum: First Year and Organic Chemistry Courses Volume 2. ACS Publications, Washington, p.31-37. https://doi.org/10.1021/bk-2016-1221.ch003https://doi.org/10.1021/bk-2016-1221.ch003
Mergenthaler P, Lindauer U, Dienel GA, et al., 2013. Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends Neurosci, 36(10):587-597. https://doi.org/10.1016/j.tins.2013.07.001https://doi.org/10.1016/j.tins.2013.07.001
Milone M, Wong LJ, 2013. Diagnosis of mitochondrial myopathies. Mol Genet Metab, 110(1-2):35-41. https://doi.org/10.1016/j.ymgme.2013.07.007https://doi.org/10.1016/j.ymgme.2013.07.007
Mirkes C, Shajan G, Chadzynski G, et al., 2016. 31P CSI of the human brain in healthy subjects and tumor patients at 9.4 T with a three-layered multi-nuclear coil: initial results. Magn Reson Mater Phys, 29(3):579-589. https://doi.org/10.1007/s10334-016-0524-9https://doi.org/10.1007/s10334-016-0524-9
Moreno-Sánchez R, Rodríguez-Enríquez S, Marín-Hernández A, et al., 2007. Energy metabolism in tumor cells. FEBS J, 274(6):1393-1418. https://doi.org/10.1111/j.1742-4658.2007.05686.xhttps://doi.org/10.1111/j.1742-4658.2007.05686.x
Nehrke K, Börnert P, 2012. DREAM—a novel approach for robust, ultrafast, multislice B1 mapping. Magn Reson Med, 68(5):1517-1526. https://doi.org/10.1002/mrm.24158https://doi.org/10.1002/mrm.24158
O'Donnell ME, Chen YJ, Lam TI, et al., 2013. Intravenous HOE-642 reduces brain edema and Na uptake in the rat permanent middle cerebral artery occlusion model of stroke: evidence for participation of the blood‒brain barrier Na/H exchanger. J Cereb Blood Flow Metab, 33(2):225-234. https://doi.org/10.1038/jcbfm.2012.160https://doi.org/10.1038/jcbfm.2012.160
Ren JM, Sherry AD, Malloy CR, 2015. 31P-MRS of healthy human brain: ATP synthesis, metabolite concentrations, pH, and T1 relaxation times. NMR Biomed, 28(11):1455-1462. https://doi.org/10.1002/nbm.3384https://doi.org/10.1002/nbm.3384
Roach PJ, 2002. Glycogen and its metabolism. Curr Mol Med, 2(2):101-120. https://doi.org/10.2174/1566524024605761https://doi.org/10.2174/1566524024605761
Robbins NM, Swanson RA, 2014. Opposing effects of glucose on stroke and reperfusion injury: acidosis, oxidative stress, and energy metabolism. Stroke, 45(6):1881-1886. https://doi.org/10.1161/STROKEAHA.114.004889https://doi.org/10.1161/STROKEAHA.114.004889
Rothman DL, de Graaf RA, Hyder F, et al., 2019. In vivo 13C and 1H-[13C] MRS studies of neuroenergetics and neurotransmitter cycling, applications to neurological and psychiatric disease and brain cancer. NMR Biomed, 32(10):e4172. https://doi.org/10.1002/nbm.4172https://doi.org/10.1002/nbm.4172
Scheuermann-Freestone M, Madsen PL, Manners D, et al., 2003. Abnormal cardiac and skeletal muscle energy metabolism in patients with type 2 diabetes. Circulation, 107(24):3040-3046. https://doi.org/10.1161/01.CIR.0000072789.89096.10https://doi.org/10.1161/01.CIR.0000072789.89096.10
Shapiro EM, Borthakur A, Dandora R, et al., 2000. Sodium visibility and quantitation in intact bovine articular cartilage using high field 23Na MRI and MRS. J Magn Reson, 142(1):24-31. https://doi.org/10.1006/jmre.1999.1932https://doi.org/10.1006/jmre.1999.1932
Taglang C, Batsios G, Mukherjee J, et al., 2022. Deuterium magnetic resonance spectroscopy enables noninvasive metabolic imaging of tumor burden and response to therapy in low-grade gliomas. Neuro Oncol, 24(7):1101-1112. https://doi.org/10.1093/neuonc/noac022https://doi.org/10.1093/neuonc/noac022
Valkovič L, Chmelík M, Krššák M, 2017. In-vivo 31P-MRS of skeletal muscle and liver: a way for non-invasive assessment of their metabolism. Anal Biochem, 529:193-215. https://doi.org/10.1016/j.ab.2017.01.018https://doi.org/10.1016/j.ab.2017.01.018
von Morze C, Engelbach JA, Blazey T, et al., 2021. Comparison of hyperpolarized 13C and non-hyperpolarized deuterium MRI approaches for imaging cerebral glucose metabolism at 4.7 T. Magn Reson Med, 85(4):1795-1804. https://doi.org/10.1002/mrm.28612https://doi.org/10.1002/mrm.28612
Warburg O, 1956. On respiratory impairment in cancer cells. Science, 124(3215):269-270. https://doi.org/10.1126/science.124.3215.269https://doi.org/10.1126/science.124.3215.269
Weiss N, Hilaire PBS, Colsch B, et al., 2016. Cerebrospinal fluid metabolomics highlights dysregulation of energy metabolism in overt hepatic encephalopathy. J Hepatol, 65(6):1120-1130. https://doi.org/10.1016/j.jhep.2016.07.046https://doi.org/10.1016/j.jhep.2016.07.046
Zhang XT, Zhang Y, Roe AW, 2021. Ultra-high-field MRI studies of brain structure and function in humans and nonhuman primates: a collaborative approach to precision medicine. Curr Opin Biomed Eng, 20:100320. https://doi.org/10.1016/j.cobme.2021.100320https://doi.org/10.1016/j.cobme.2021.100320
Zhang Y, Gao Y, Fang K, et al., 2022. Proton/deuterium magnetic resonance imaging of rodents at 9.4T using birdcage coils. Bioelectromagnetics, 43(1):40-46. https://doi.org/10.1002/bem.22382https://doi.org/10.1002/bem.22382
0
浏览量
2
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构