无数据
Scan for full text
1.State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
2.CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100101, China
3.School of Life Sciences, Hebei University, Baoding 071002, China
4.State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
5.Department of Rehabilitation Medicine, Tianjin Huanhu Hospital, Tianjin 300350, China
6.Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100101, China
7.Department of Gastrointestinal Surgery, the People’s Hospital of Zhaoyuan City, Zhaoyuan 265400, China
8.School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
9.Department of Otolaryngology, Eye, Ear, Nose & Throat Hospital, Fudan University, Shanghai 200031, China
10.Ear, Nose & Throat Institute, Eye, Ear, Nose & Throat Hospital, Fudan University, Shanghai 200031, China
11.Clinical and Research Center for Olfactory Disorders, Eye, Ear, Nose & Throat Hospital, Fudan University, Shanghai 200031, China
网络出版日期: 2024-07-09 ,
收稿日期: 2023-08-07 ,
修回日期: 2023-12-11 ,
李关卿,路蝉伊,尹苗苗等.啮齿动物自我梳理行为调控的神经基质[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),
Guanqing LI, Chanyi LU, Miaomiao YIN, et al. Neural substrates for regulating self-grooming behavior in rodents[J/OL]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2024,1-16.
李关卿,路蝉伊,尹苗苗等.啮齿动物自我梳理行为调控的神经基质[J].浙江大学学报(英文版)(B辑:生物医学和生物技术), DOI:10.1631/jzus.B2300562.
Guanqing LI, Chanyi LU, Miaomiao YIN, et al. Neural substrates for regulating self-grooming behavior in rodents[J/OL]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2024,1-16. DOI: 10.1631/jzus.B2300562.
梳理是一种进化上保守的刻板行为,广泛存在于包括人类在内的各种动物中。梳理行为在动物维持体表清洁、调节体温、去觉醒、减轻压力以及社会行为等方面发挥重要功能。在啮齿类动物中,梳理行为通常可以分为四个连续的阶段,并以从头至尾顺序的方式进行重复刻板动作:从口鼻部到面部,到头部,最后以舔舐躯体结束。梳理行为的发生具有环境依赖性,说明此行为具有适应的重要性。本综述简要总结了啮齿类动物梳理行为涉及的神经基质,并探讨了异常梳理行为表型的存在与神经精神疾病和神经退行性疾病模型的相关性。此外,本文进一步强调指出,在神经精神病学模型中,啮齿类动物的梳理行为可作为测定重复刻板行为的一种可靠测量方法,有望在转化精神病学中应用。本文主要聚焦啮齿动物的自我理毛行为,因受限于篇幅,未对allogrooming(同种动物通过舔舐或以仔细啃咬的方式为另一种动物梳理毛发)与heterogrooming(在特定情况下发生的对另一种动物的梳理行为,如母性行为、性行为、攻击行为或社会行为)展开讨论。
Grooming
as an evolutionarily conserved repetitive behavior
is common in various animals
including humans
and serves essential functions including
but not limited to
hygiene maintenance
thermoregulation
de-arousal
stress reduction
and social behaviors. In rodents
grooming involves a patterned and sequenced structure
known as the syntactic chain with four phases that comprise repeated stereotyped movements happening in a cephalocaudal progression style
beginning from the nose to the face
to the head
and finally ending with body licking. The context-dependent occurrence of grooming behavior indicates its adaptive significance. This review briefly summarizes the neural substrates responsible for rodent grooming behavior and explores its relevance in rodent models of neuropsychiatric disorders and neurodegenerative diseases with aberrant grooming phenotypes. We further emphasize the utility of rodent grooming as a reliable measure of repetitive behavior in neuropsychiatric models
holding promise for translational psychiatry. Herein
we mainly focus on rodent self-grooming. Allogrooming (grooming being applied on one animal by its conspecifics via licking or carefully nibbling) and heterogrooming (a form of grooming behavior directing towards another animal
which occurs in other contexts
such as maternal
sexual
aggressive
or social behaviors) are not covered due to space constraints.
梳理刻板行为句法链从头至尾进行神经精神疾病
GroomingRepetitive behaviorSyntactic chainCephalocaudal progressionNeuropsychiatric disorders
Adell A, Garcia-Marquez C, Armario A, et al., 1988. Chronic stress increases serotonin and noradrenaline in rat brain and sensitizes their responses to a further acute stress. J Neurochem, 50(6):1678-1681. https://doi.org/10.1111/j.1471-4159.1988.tb02462.xhttps://doi.org/10.1111/j.1471-4159.1988.tb02462.x
Aguiar MS, Brandão ML, 1994. Conditioned place aversion produced by microinjections of substance P into the periaqueductal gray of rats. Behav Pharmacol, 5(3):369-373. https://doi.org/10.1097/00008877-199406000-00017https://doi.org/10.1097/00008877-199406000-00017
Ahmari SE, Dougherty DD, 2015. Dissecting OCD circuits: from animal models to targeted treatments. Depress Anxiety, 32(8):550-562. https://doi.org/10.1002/da.22367https://doi.org/10.1002/da.22367
Ahmari SE, Spellman T, Douglass NL, et al., 2013. Repeated cortico-striatal stimulation generates persistent OCD-like behavior. Science, 340(6137):1234-1239. https://doi.org/10.1126/science.1234733https://doi.org/10.1126/science.1234733
Aldridge JW, 2005. Grooming. In: Whishaw IQ, Kolb B (Eds.), The Behaviour of the Laboratory Rat: A Handbook with Tests. MIT Press, Cambridge, p.141-149.
Aldridge JW, Berridge KC, 1998. Coding of serial order by neostriatal neurons: a “natural action” approach to movement sequence. J Neurosci, 18(7):2777-2787. https://doi.org/10.1523/JNEUROSCI.18-07-02777.1998https://doi.org/10.1523/JNEUROSCI.18-07-02777.1998
Aldridge JW, Berridge KC, Herman M, et al., 1993. Neuronal coding of serial order: syntax of grooming in the neostriatum. Psychol Sci, 4(6):391-395. https://doi.org/10.1111/j.1467-9280.1993.tb00587.xhttps://doi.org/10.1111/j.1467-9280.1993.tb00587.x
Aldridge JW, Berridge KC, Rosen AR, 2004. Basal ganglia neural mechanisms of natural movement sequences. Can J Physiol Pharmacol, 82(8-9):732-739. https://doi.org/10.1139/y04-061https://doi.org/10.1139/y04-061
Alò R, Avolio E, Mele M, et al., 2015. Central amygdalar nucleus treated with orexin neuropeptides evoke differing feeding and grooming responses in the hamster. J Neurol Sci, 351(1-2):46-51. https://doi.org/10.1016/j.jns.2015.02.030https://doi.org/10.1016/j.jns.2015.02.030
American Psychiatric Association, 2013. Diagnostic and Statistical Manual of Mental Disorders, 5th Ed. American Psychiatric Publishing, Washington, USA.
Amodeo DA, Yi JL, Sweeney JA, et al., 2014. Oxotremorine treatment reduces repetitive behaviors in BTBR T+ tf/J mice. Front Synaptic Neurosci, 6:17. https://doi.org/10.3389/fnsyn.2014.00017https://doi.org/10.3389/fnsyn.2014.00017
André VM, Cepeda C, Fisher YE, et al., 2011. Differential electrophysiological changes in striatal output neurons in Huntington’s disease. J Neurosci, 31(4):1170-1182. https://doi.org/10.1523/JNEUROSCI.3539-10.2011https://doi.org/10.1523/JNEUROSCI.3539-10.2011
Anggraeni S, Triesayuningtyas DC, Endaryanto A, et al., 2023. Correlation between grooming and scratching behavior in BALB/c mice related to itch sensation caused by house dust mite allergen. J Pakistan Assoc Dermatol, 33(2):579-586.
Bakshi VP, Newman SM, Smith-Roe S, et al., 2007. Stimulation of lateral septum CRF2 receptors promotes anorexia and stress-like behaviors: functional homology to CRF1 receptors in basolateral amygdala. J Neurosci, 27(39):10568-10577. https://doi.org/10.1523/JNEUROSCI.3044-06.2007https://doi.org/10.1523/JNEUROSCI.3044-06.2007
Berntson GG, Jang JF, Ronca AE, 1988. Brainstem systems and grooming behaviors. Ann N Y Acad Sci, 525(1):350-362. https://doi.org/10.1111/j.1749-6632.1988.tb38619.xhttps://doi.org/10.1111/j.1749-6632.1988.tb38619.x
Berridge KC, 1989. Progressive degradation of serial grooming chains by descending decerebration. Behav Brain Res, 33(3):241-253. https://doi.org/10.1016/s0166-4328(89)80119-6https://doi.org/10.1016/s0166-4328(89)80119-6
Berridge KC, Whishaw IQ, 1992. Cortex, striatum and cerebellum: control of serial order in a grooming sequence. Exp Brain Res, 90(2):275-290. https://doi.org/10.1007/BF00227239https://doi.org/10.1007/BF00227239
Berridge KC, Aldridge JW, 2000. Super-stereotypy II: enhancement of a complex movement sequence by intraventricular dopamine D1 agonists. Synapse, 37(3):205-215. https://doi.org/10.1002/1098-2396(20000901)37:3https://doi.org/10.1002/1098-2396(20000901)37:3<205::AID-SYN4>3.0.CO;2-A
Berridge KC, Fentress JC, Parr H, 1987. Natural syntax rules control action sequence of rats. Behav Brain Res, 23(1):59-68. https://doi.org/10.1016/0166-4328(87)90242-7https://doi.org/10.1016/0166-4328(87)90242-7
Berridge KC, Aldridge JW, Houchard KR, et al., 2005. Sequential super-stereotypy of an instinctive fixed action pattern in hyper-dopaminergic mutant mice: a model of obsessive compulsive disorder and Tourette’s. BMC Biol, 3:4. https://doi.org/10.1186/1741-7007-3-4https://doi.org/10.1186/1741-7007-3-4
Bolles RC, 1960. Grooming behavior in the rat. J Comp Physiol Psychol, 53(3):306-310. https://doi.org/10.1037/h0045421https://doi.org/10.1037/h0045421
Brodkin J, Frank D, Grippo R, et al., 2014. Validation and implementation of a novel high-throughput behavioral phenotyping instrument for mice. J Neurosci Methods, 224:48-57. https://doi.org/10.1016/j.jneumeth.2013.12.010https://doi.org/10.1016/j.jneumeth.2013.12.010
Bubeníková-Valesová V, Balcar VJ, Tejkalová H, et al., 2006. Neonatal administration of N-acetyl-L-aspartyl-L-glutamate induces early neurodegeneration in hippocampus and alters behaviour in young adult rats. Neurochem Int, 48(6-7):515-522. https://doi.org/10.1016/j.neuint.2006.01.019https://doi.org/10.1016/j.neuint.2006.01.019
Burguière E, Monteiro P, Feng GP, et al., 2013. Optogenetic stimulation of lateral orbitofronto-striatal pathway suppresses compulsive behaviors. Science, 340(6137):1243-1246. https://doi.org/10.1126/science.1232380https://doi.org/10.1126/science.1232380
Burguière E, Monteiro P, Mallet L, et al., 2015. Striatal circuits, habits, and implications for obsessive-compulsive disorder. Curr Opin Neurobiol, 30:59-65. https://doi.org/10.1016/j.conb.2014.08.008https://doi.org/10.1016/j.conb.2014.08.008
Carobrez AP, Bertoglio LJ, 2005. Ethological and temporal analyses of anxiety-like behavior: the elevated plus-maze model 20 years on. Neurosci Biobehav Rev, 29(8):1193-1205. https://doi.org/10.1016/j.neubiorev.2005.04.017https://doi.org/10.1016/j.neubiorev.2005.04.017
Centonze D, Rossi S, Mercaldo V, et al., 2008. Abnormal striatal GABA transmission in the mouse model for the fragile X syndrome. Biol Psychiatry, 63(10):963-973. https://doi.org/10.1016/j.biopsych.2007.09.008https://doi.org/10.1016/j.biopsych.2007.09.008
Chao HT, Chen HM, Samaco RC, et al., 2010. Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes. Nature, 468(7321):263-269. https://doi.org/10.1038/nature09582https://doi.org/10.1038/nature09582
Cohen-Mansfield J, Jensen B, 2007. Dressing and grooming: preferences of community-dwelling older adults. J Gerontol Nurs, 33(2):31-39. https://doi.org/10.3928/00989134-20070201-07https://doi.org/10.3928/00989134-20070201-07
Cormier HC, Della-Maggiore V, Karatsoreos IN, et al., 2015. Suprachiasmatic vasopressin and the circadian regulation of voluntary locomotor behavior. Eur J Neurosci, 41(1):79-88. https://doi.org/10.1111/ejn.12637https://doi.org/10.1111/ejn.12637
Cromwell HC, Berridge KC, 1996. Implementation of action sequences by a neostriatal site: a lesion mapping study of grooming syntax. J Neurosci, 16(10):3444-3458. https://doi.org/10.1523/JNEUROSCI.16-10-03444.1996https://doi.org/10.1523/JNEUROSCI.16-10-03444.1996
Dunn AJ, 1988. Studies on the neurochemical mechanisms and significance of ACTH-induced grooming. Ann N Y Acad Sci, 525(1):150-168. https://doi.org/10.1111/j.1749-6632.1988.tb38603.xhttps://doi.org/10.1111/j.1749-6632.1988.tb38603.x
Dunn AJ, Green EJ, Isaacson RL, 1979. Intracerebral adrenocorticotropic hormone mediates novelty-induced grooming in the rat. Science, 203(4377):281-283. https://doi.org/10.1126/science.216073https://doi.org/10.1126/science.216073
Dunn AJ, Berridge CW, Lai YI, et al., 1987. CRF-induced excessive grooming behavior in rats and mice. Peptides, 8(5):841-844. https://doi.org/10.1016/0196-9781(87)90069-6https://doi.org/10.1016/0196-9781(87)90069-6
Estanislau C, Díaz-Morán S, Cañete T, et al., 2013. Context-dependent differences in grooming behavior among the NIH heterogeneous stock and the Roman high- and low-avoidance rats. Neurosci Res, 77(4):187-201. https://doi.org/10.1016/j.neures.2013.09.012https://doi.org/10.1016/j.neures.2013.09.012
Fentress JC, 1968a. Interrupted ongoing behaviour in two species of vole (Microtus agrestis and Clethrionomys britannicus). I. Response as a function of preceding activity and the context of an apparently ‘irrelevant’ motor pattern. Anim Behav, 16(1):135-153. https://doi.org/10.1016/0003-3472(68)90124-3https://doi.org/10.1016/0003-3472(68)90124-3
Fentress JC, 1968b. Interrupted ongoing behaviour in two species of vole (Microtus agrestis and Clethrionomys britannicus). II. Extended analysis of motivational variables underlying fleeing and grooming behaviour. Anim Behav, 16(1):154-167. https://doi.org/10.1016/0003-3472(68)90125-5https://doi.org/10.1016/0003-3472(68)90125-5
Ferkin MH, Leonard ST, 2010. Self-grooming as a form of olfactory communication in meadow voles and prairie voles (Microtus spp.). In: Kalueff AV, la Porte JL, Bergner CL (Eds.), Neurobiology of Grooming Behavior. Cambridge University Press, Cambridge, p.19-45. https://doi.org/10.1017/CBO9780511676109.003https://doi.org/10.1017/CBO9780511676109.003
Feusner JD, Hembacher E, Phillips KA, 2009. The mouse who couldn’t stop washing: pathologic grooming in animals and humans. CNS Spectr, 14(9):503-513. https://doi.org/10.1017/s1092852900023567https://doi.org/10.1017/s1092852900023567
File SE, Mabbutt PS, Walker JH, 1988. Comparison of adaptive responses in familiar and novel environments: modulatory factors. Ann N Y Acad Sci, 525(1):69-79. https://doi.org/10.1111/j.1749-6632.1988.tb38596.xhttps://doi.org/10.1111/j.1749-6632.1988.tb38596.x
Gao ZR, Chen WZ, Liu MZ, et al., 2019. Tac1-expressing neurons in the periaqueductal gray facilitate the itch-scratching cycle via descending regulation. Neuron, 101(1):45-59.e9. https://doi.org/10.1016/j.neuron.2018.11.010https://doi.org/10.1016/j.neuron.2018.11.010
Gargiulo PA, Donoso AO, 1989. Luteinizing hormone releasing hormone (LHRH) in the periaqueductal gray substance increases some subcategories of grooming behavior in male rats. Pharmacol Biochem Behav, 32(4):853-856. https://doi.org/10.1016/0091-3057(89)90047-6https://doi.org/10.1016/0091-3057(89)90047-6
Glynn D, Drew CJ, Reim K, et al., 2005. Profound ataxia in complexin I knockout mice masks a complex phenotype that includes exploratory and habituation deficits. Hum Mol Genet, 14(16):2369-2385. https://doi.org/10.1093/hmg/ddi239https://doi.org/10.1093/hmg/ddi239
Golani I, Fentress JC, 1985. Early ontogeny of face grooming in mice. Dev Psychobiol, 18(6):529-544. https://doi.org/10.1002/dev.420180609https://doi.org/10.1002/dev.420180609
Graybiel AM, 2008. Habits, rituals, and the evaluative brain. Annu Rev Neurosci, 31:359-387. https://doi.org/10.1146/annurev.neuro.29.051605.112851https://doi.org/10.1146/annurev.neuro.29.051605.112851
Graybiel AM, Saka E, 2002. A genetic basis for obsessive grooming. Neuron, 33(1):1-2. https://doi.org/10.1016/s0896-6273(01)00575-xhttps://doi.org/10.1016/s0896-6273(01)00575-x
Graybiel AM, Grafton ST, 2015. The striatum: where skills and habits meet. Cold Spring Harb Perspect Biol, 7(8):a021691. https://doi.org/10.1101/cshperspect.a021691https://doi.org/10.1101/cshperspect.a021691
Harriman AE, Thiessen DD, 1985. Harderian letdown in male mongolian gerbils (Meriones unguiculatus) contributes to proceptive behavior. Horm Behav, 19(2):213-219. https://doi.org/10.1016/0018-506x(85)90020-0https://doi.org/10.1016/0018-506x(85)90020-0
Heideman DAM, van Beusechem VW, Bloemena E, et al., 2004. Suppression of tumor growth, invasion and angiogenesis of human gastric cancer by adenovirus-mediated expression of NK4. J Gene Med, 6(3):317-327. https://doi.org/10.1002/jgm.523https://doi.org/10.1002/jgm.523
Hellriegel ET, D'Mello AP, 1997. The effect of acute, chronic and chronic intermittent stress on the central noradrenergic system. Pharmacol Biochem Behav, 57(1-2):207-214. https://doi.org/10.1016/s0091-3057(96)00341-3https://doi.org/10.1016/s0091-3057(96)00341-3
Hickey MA, Reynolds GP, Morton AJ, 2002. The role of dopamine in motor symptoms in the R6/2 transgenic mouse model of Huntington’s disease. J Neurochem, 81(1):46-59. https://doi.org/10.1046/j.1471-4159.2002.00804.xhttps://doi.org/10.1046/j.1471-4159.2002.00804.x
Hill RA, McInnes KJ, Gong ECH, et al., 2007. Estrogen deficient male mice develop compulsive behavior. Biol Psychiat, 61(3):359-366. https://doi.org/10.1016/j.biopsych.2006.01.012https://doi.org/10.1016/j.biopsych.2006.01.012
Hobbs NJ, Finger AA, Ferkin MH, 2012. Effects of food availability on proceptivity: a test of the reproduction at all costs and metabolic fuels hypotheses. Behav Process, 91(2):192-197. https://doi.org/10.1016/j.beproc.2012.07.008https://doi.org/10.1016/j.beproc.2012.07.008
Homberg JR, van den Akker M, Raasø HS, et al., 2002. Enhanced motivation to self-administer cocaine is predicted by self-grooming behaviour and relates to dopamine release in the rat medial prefrontal cortex and amygdala. Eur J Neurosci, 15(9):1542-1550. https://doi.org/10.1046/j.1460-9568.2002.01976.xhttps://doi.org/10.1046/j.1460-9568.2002.01976.x
Hong WZ, Kim DW, Anderson DJ, 2014. Antagonistic control of social versus repetitive self-grooming behaviors by separable amygdala neuronal subsets. Cell, 158(6):1348-1361. https://doi.org/10.1016/j.cell.2014.07.049https://doi.org/10.1016/j.cell.2014.07.049
Iu Makarchuk M, 1999. An electrophysiological evaluation of the role of the olfactory analyzer in brain integrative activity. Fiziol Zh (1994), 45(4):77-83 (in Ukrainian).
Iu Makarchuk M, Zyma IH, 2002. Effect of anosmia on sex-related differences in conditioned avoidance in rats. Fiziol Zh (1994), 48(3):9-15 (in Ukrainian).
Jaeggi AV, Kramer KL, Hames R, et al., 2017. Human grooming in comparative perspective: people in six small-scale societies groom less but socialize just as much as expected for a typical primate. Am J Phys Anthropol, 162(4):810-816. https://doi.org/10.1002/ajpa.23164https://doi.org/10.1002/ajpa.23164
Jankord R, Herman JP, 2008. Limbic regulation of hypothalamo-pituitary-adrenocortical function during acute and chronic stress. Ann N Y Acad Sci, 1148(1):64-73. https://doi.org/10.1196/annals.1410.012https://doi.org/10.1196/annals.1410.012
Jia T, Chen J, Wang YD, et al., 2023. A subthalamo-parabrachial glutamatergic pathway is involved in stress-induced self-grooming in mice. Acta Pharmacol Sin, 44(11):2169-2183. https://doi.org/10.1038/s41401-023-01114-6https://doi.org/10.1038/s41401-023-01114-6
Johnson CS, Hong WZ, Micevych PE, 2021. Posterodorsal medial amygdala regulation of female social behavior: GABA versus glutamate projections. J Neurosci, 41(42):8790-8800. https://doi.org/10.1523/JNEUROSCI.1103-21.2021https://doi.org/10.1523/JNEUROSCI.1103-21.2021
Kalueff AV, Tuohimaa P, 2004. Grooming analysis algorithm for neurobehavioural stress research. Brain Res Protoc, 13(3):151-158. https://doi.org/10.1016/j.brainresprot.2004.04.002https://doi.org/10.1016/j.brainresprot.2004.04.002
Kalueff AV, Tuohimaa P, 2005a. Contrasting grooming phenotypes in three mouse strains markedly different in anxiety and activity (129S1, BALB/c and NMRI). Behav Brain Res, 160(1):1-10. https://doi.org/10.1016/j.bbr.2004.11.010https://doi.org/10.1016/j.bbr.2004.11.010
Kalueff AV, Tuohimaa P, 2005b. The grooming analysis algorithm discriminates between different levels of anxiety in rats: potential utility for neurobehavioural stress research. J Neurosci Methods, 143(2):169-177. https://doi.org/10.1016/j.jneumeth.2004.10.001https://doi.org/10.1016/j.jneumeth.2004.10.001
Kalueff AV, Tuohimaa P, 2005c. Mouse grooming microstructure is a reliable anxiety marker bidirectionally sensitive to GABAergic drugs. Eur J Pharmacol, 508(1-3):147-153. https://doi.org/10.1016/j.ejphar.2004.11.054https://doi.org/10.1016/j.ejphar.2004.11.054
Kalueff AV, Aldridge JW, LaPorte JL, et al., 2007. Analyzing grooming microstructure in neurobehavioral experiments. Nat Protoc, 2(10):2538-2544. https://doi.org/10.1038/nprot.2007.367https://doi.org/10.1038/nprot.2007.367
Kalueff AV, Stewart AM, Song C, et al., 2016. Neurobiology of rodent self-grooming and its value for translational neuroscience. Nat Rev Neurosci, 17(1):45-59. https://doi.org/10.1038/nrn.2015.8https://doi.org/10.1038/nrn.2015.8
Karigo T, Deutsch D, 2022. Flexibility of neural circuits regulating mating behaviors in mice and flies. Front Neural Circuits, 16:949781. https://doi.org/10.3389/fncir.2022.949781https://doi.org/10.3389/fncir.2022.949781
Kelly E, Meng FT, Fujita H, et al., 2020. Regulation of autism-relevant behaviors by cerebellar-prefrontal cortical circuits. Nat Neurosci, 23(9):1102-1110. https://doi.org/10.1038/s41593-020-0665-zhttps://doi.org/10.1038/s41593-020-0665-z
Kinlein SA, Phillips DJ, Keller CR, et al., 2019. Role of corticosterone in altered neurobehavioral responses to acute stress in a model of compromised hypothalamic-pituitary-adrenal axis function. Psychoneuroendocrinology, 102:248-255. https://doi.org/10.1016/j.psyneuen.2018.12.010https://doi.org/10.1016/j.psyneuen.2018.12.010
Kruk MR, Westphal KGC, van Erp AMM, et al., 1998. The hypothalamus: cross-roads of endocrine and behavioural regulation in grooming and aggression. Neurosci Biobehav Rev, 23(2):163-177. https://doi.org/10.1016/s0149-7634(98)00018-9https://doi.org/10.1016/s0149-7634(98)00018-9
Kyrkouli SE, Stanley BG, Leibowitz SF, 1987. Bombesin-induced anorexia: sites of action in the rat brain. Peptides, 8(2):237-241. https://doi.org/10.1016/0196-9781(87)90096-9https://doi.org/10.1016/0196-9781(87)90096-9
Leonard ST, Alizadeh-Naderi R, Stokes K, et al., 2005. The role of prolactin and testosterone in mediating seasonal differences in the self-grooming behavior of male meadow voles, Microtus pennsylvanicus. Physiol Behav, 85(4):461-468. https://doi.org/10.1016/j.physbeh.2005.05.011https://doi.org/10.1016/j.physbeh.2005.05.011
Liu SF, Crawford J, Tao F, 2023. Assessing orofacial pain behaviors in animal models: a review. Brain Sci, 13(3):390. https://doi.org/10.3390/brainsci13030390https://doi.org/10.3390/brainsci13030390
Mangieri LR, Lu YG, Xu YZ, et al., 2018. A neural basis for antagonistic control of feeding and compulsive behaviors. Nat Commun, 9:52. https://doi.org/10.1038/s41467-017-02534-9https://doi.org/10.1038/s41467-017-02534-9
McGlone F, Walker S, Ackerley R, 2016. Affective touch and human grooming behaviours: feeling good and looking good. In: Olausson H, Wessberg J, Morrison I, et al. (Eds.), Affective Touch and the Neurophysiology of CT Afferents. Springer, New York, USA, p.265-282. https://doi.org/10.1007/978-1-4939-6418-5_16https://doi.org/10.1007/978-1-4939-6418-5_16
Mehta MV, Gandal MJ, Siegel SJ, 2011. mGluR5-antagonist mediated reversal of elevated stereotyped, repetitive behaviors in the VPA model of autism. PLoS ONE, 6(10):e26077. https://doi.org/10.1371/journal.pone.0026077https://doi.org/10.1371/journal.pone.0026077
Meixiong J, Dong XZ, 2017. Mas-related G protein-coupled receptors and the biology of itch sensation. Annu Rev Genet, 51:103-121. https://doi.org/10.1146/annurev-genet-120116-024723https://doi.org/10.1146/annurev-genet-120116-024723
Mejias R, Chiu SL, Han M, et al., 2019. Purkinje cell-specific Grip1/2 knockout mice show increased repetitive self-grooming and enhanced mGluR5 signaling in cerebellum. Neurobiol Dis, 132:104602. https://doi.org/10.1016/j.nbd.2019.104602https://doi.org/10.1016/j.nbd.2019.104602
Meyer-Luehmann M, Thompson JF, Berridge KC, et al., 2002. Substantia nigra pars reticulata neurons code initiation of a serial pattern: implications for natural action sequences and sequential disorders. Eur J Neurosci, 16(8):1599-1608. https://doi.org/10.1046/j.1460-9568.2002.02210.xhttps://doi.org/10.1046/j.1460-9568.2002.02210.x
Monteiro P, Feng GP, 2016. Learning from animal models of obsessive-compulsive disorder. Biol Psychiatry, 79(1):7-16. https://doi.org/10.1016/j.biopsych.2015.04.020https://doi.org/10.1016/j.biopsych.2015.04.020
Moore CL, 1986. A hormonal basis for sex differences in the self-grooming of rats. Horm Behav, 20(2):155-165. https://doi.org/10.1016/0018-506X(86)90014-0https://doi.org/10.1016/0018-506X(86)90014-0
Mu MD, Geng HY, Rong KL, et al., 2020. A limbic circuitry involved in emotional stress-induced grooming. Nat Commun, 11:2261. https://doi.org/10.1038/s41467-020-16203-xhttps://doi.org/10.1038/s41467-020-16203-x
Mul JD, Spruijt BM, Brakkee JH, et al., 2013. Melanocortin MC4 receptor-mediated feeding and grooming in rodents. Eur J Pharmacol, 719(1-3):192-201. https://doi.org/10.1016/j.ejphar.2013.04.060https://doi.org/10.1016/j.ejphar.2013.04.060
Parolari L, Schneeberger M, Heintz N, et al., 2021. Functional analysis of distinct populations of subthalamic nucleus neurons on Parkinson’s disease and OCD-like behaviors in mice. Mol Psychiatry, 26(11):7029-7046. https://doi.org/10.1038/s41380-021-01162-6https://doi.org/10.1038/s41380-021-01162-6
Paumier KL, Sukoff Rizzo SJ, Berger Z, et al., 2013. Behavioral characterization of A53T mice reveals early and late stage deficits related to Parkinson’s disease. PLoS ONE, 8(8):e70274. https://doi.org/10.1371/journal.pone.0070274https://doi.org/10.1371/journal.pone.0070274
Peça J, Feliciano C, Ting JT, et al., 2011. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature, 472(7344):437-442. https://doi.org/10.1038/nature09965https://doi.org/10.1038/nature09965
Petrelli F, Zehnder T, Laugeray A, et al., 2023. Disruption of astrocyte-dependent dopamine control in the developing medial prefrontal cortex leads to excessive grooming in mice. Biol Psychiatry, 93(11):966-975. https://doi.org/10.1016/j.biopsych.2022.11.018https://doi.org/10.1016/j.biopsych.2022.11.018
Piato ÂL, Detanico BC, Jesus JF, et al., 2008. Effects of Marapuama in the chronic mild stress model: further indication of antidepressant properties. J Ethnopharmacol, 118(2):300-304. https://doi.org/10.1016/j.jep.2008.04.018https://doi.org/10.1016/j.jep.2008.04.018
Pinhal CM, van den Boom BJG, Santana-Kragelund F, et al., 2018. Differential effects of deep brain stimulation of the internal capsule and the striatum on excessive grooming in Sapap3 mutant mice. Biol Psychiatry, 84(12):917-925. https://doi.org/10.1016/j.biopsych.2018.05.011https://doi.org/10.1016/j.biopsych.2018.05.011
Prokop P, Fančovičová J, Fedor P, 2014. Parasites enhance self-grooming behaviour and information retention in humans. Behav Processes, 107:42-46. https://doi.org/10.1016/j.beproc.2014.07.017https://doi.org/10.1016/j.beproc.2014.07.017
Rapanelli M, Frick L, Bito H, et al., 2017. Histamine modulation of the basal ganglia circuitry in the development of pathological grooming. Proc Natl Acad Sci USA, 114(25):6599-6604. https://doi.org/10.1073/pnas.1704547114https://doi.org/10.1073/pnas.1704547114
Reis-Silva TM, Sandini TM, Calefi AS, et al., 2019. Stress resilience evidenced by grooming behaviour and dopamine levels in male mice selected for high and low immobility using the tail suspension test. Eur J Neurosci, 50(6):2942-2954. https://doi.org/10.1111/ejn.14409https://doi.org/10.1111/ejn.14409
Rodgers RJ, Cao BJ, Dalvi A, et al., 1997. Animal models of anxiety: an ethological perspective. Braz J Med Biol Res, 30(3):289-304. https://doi.org/10.1590/s0100-879x1997000300002https://doi.org/10.1590/s0100-879x1997000300002
Rodríguez Echandía EL, Broitman ST, Fóscolo MR, 1987. Effect of the chronic ingestion of chlorimipramine and desipramine on the hole board response to acute stresses in male rats. Pharmacol Biochem Behav, 26(2):207-210. https://doi.org/10.1016/0091-3057(87)90106-7https://doi.org/10.1016/0091-3057(87)90106-7
Roeling TAP, Veening JG, Peters JPW, et al., 1993. Efferent connections of the hypothalamic “grooming area” in the rat. Neuroscience, 56(1):199-225. https://doi.org/10.1016/0306-4522(93)90574-yhttps://doi.org/10.1016/0306-4522(93)90574-y
Rojas-Carvajal M, Brenes JC, 2020. Acute stress differentially affects grooming subtypes and ultrasonic vocalisations in the open-field and home-cage test in rats. Behav Processes, 176:104140. https://doi.org/10.1016/j.beproc.2020.104140https://doi.org/10.1016/j.beproc.2020.104140
Rojas-Carvajal M, Leandro R, Brenes JC, 2023. Distinct acute stressors exert an antagonistic effect on complex grooming during novelty habituation in rats. Behav Process, 212:104931. https://doi.org/10.1016/j.beproc.2023.104931https://doi.org/10.1016/j.beproc.2023.104931
Roth A, Kyzar EJ, Cachat J, et al., 2013. Potential translational targets revealed by linking mouse grooming behavioral phenotypes to gene expression using public databases. Prog Neuropsychopharmacol Biol Psychiatry, 40:312-325. https://doi.org/10.1016/j.pnpbp.2012.10.015https://doi.org/10.1016/j.pnpbp.2012.10.015
Ruder L, Schina R, Kanodia H, et al., 2021. A functional map for diverse forelimb actions within brainstem circuitry. Nature, 590(7846):445-450. https://doi.org/10.1038/s41586-020-03080-zhttps://doi.org/10.1038/s41586-020-03080-z
Santarelli L, Saxe M, Gross C, et al., 2003. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science, 301(5634):805-809. https://doi.org/10.1126/science.1083328https://doi.org/10.1126/science.1083328
Scattoni ML, Valanzano A, Popoli P, et al., 2004. Progressive behavioural changes in the spatial open-field in the quinolinic acid rat model of Huntington’s disease. Behav Brain Res, 152(2):375-383. https://doi.org/10.1016/j.bbr.2003.10.021https://doi.org/10.1016/j.bbr.2003.10.021
Schmeisser MJ, 2015. Translational neurobiology in Shank mutant mice-model systems for neuropsychiatric disorders. Ann Anat, 200:115-117. https://doi.org/10.1016/j.aanat.2015.03.006https://doi.org/10.1016/j.aanat.2015.03.006
Schmeisser MJ, Ey E, Wegener S, et al., 2012. Autistic-like behaviours and hyperactivity in mice lacking ProSAP1/Shank2. Nature, 486(7402):256-260. https://doi.org/10.1038/nature11015https://doi.org/10.1038/nature11015
Scruggs BA, Bowles AC, Zhang XJ, et al., 2013. High-throughput screening of stem cell therapy for globoid cell leukodystrophy using automated neurophenotyping of twitcher mice. Behav Brain Res, 236:35-47. https://doi.org/10.1016/j.bbr.2012.08.020https://doi.org/10.1016/j.bbr.2012.08.020
Silverman JL, Tolu SS, Barkan CL, et al., 2010. Repetitive self-grooming behavior in the BTBR mouse model of autism is blocked by the mGluR5 antagonist MPEP. Neuropsychopharmacology, 35(4):976-989. https://doi.org/10.1038/npp.2009.201https://doi.org/10.1038/npp.2009.201
Silverman JL, Smith DG, Sukoff Rizzo SJ, et al., 2012. Negative allosteric modulation of the mGluR5 receptor reduces repetitive behaviors and rescues social deficits in mouse models of autism. Sci Transl Med, 4(131):131ra51. https://doi.org/10.1126/scitranslmed.3003501https://doi.org/10.1126/scitranslmed.3003501
Smolinsky AN, Bergner CL, LaPorte JL, et al., 2009. Analysis of grooming behavior and its utility in studying animal stress, anxiety, and depression. In: Gould TD (Ed.), Mood and Anxiety Related Phenotypes in Mice: Characterization Using Behavioral Tests. Humana Press, Totowa, USA, p.21-36. https://doi.org/10.1007/978-1-60761-303-9_2https://doi.org/10.1007/978-1-60761-303-9_2
Song KY, Wong J, Gonzalez L, et al., 2010. Antitumor efficacy of viral therapy using genetically engineered newcastle disease virus [NDV(F3aa)-GFP] for peritoneally disseminated gastric cancer. J Mol Med (Berl), 88(6):589-596. https://doi.org/10.1007/s00109-010-0605-6https://doi.org/10.1007/s00109-010-0605-6
Spruijt BM, Cools AR, Gispen WH, 1986. The periaqueductal gray: a prerequisite for ACTH-induced excessive grooming. Behav Brain Res, 20(1):19-25. https://doi.org/10.1016/0166-4328(86)90097-5https://doi.org/10.1016/0166-4328(86)90097-5
Spruijt BM, Welbergen P, Brakkee J, et al., 1987. Behavioral changes in ACTH-(1-24)-induced excessive grooming in aging rats. Neurobiol Aging, 8(3):265-270. https://doi.org/10.1016/0197-4580(87)90011-xhttps://doi.org/10.1016/0197-4580(87)90011-x
Spruijt BM, Welbergen P, Brakkee J, et al., 1988. An ethological analysis of excessive grooming in young and aged rats. Ann N Y Acad Sci, 525(1):89-100. https://doi.org/10.1111/j.1749-6632.1988.tb38598.xhttps://doi.org/10.1111/j.1749-6632.1988.tb38598.x
Spruijt BM, van Hooff JA, Gispen WH, 1992. Ethology and neurobiology of grooming behavior. Physiol Rev, 72(3):825-852. https://doi.org/10.1152/physrev.1992.72.3.825https://doi.org/10.1152/physrev.1992.72.3.825
Steele AD, Jackson WS, King OD, et al., 2007. The power of automated high-resolution behavior analysis revealed by its application to mouse models of Huntington’s and prion diseases. Proc Natl Acad Sci USA, 104(6):1983-1988. https://doi.org/10.1073/pnas.0610779104https://doi.org/10.1073/pnas.0610779104
Sun JJ, Yuan Y, Wu XH, et al., 2022. Excitatory SST neurons in the medial paralemniscal nucleus control repetitive self-grooming and encode reward. Neuron, 110(20):3356-3373.e8. https://doi.org/10.1016/j.neuron.2022.08.010https://doi.org/10.1016/j.neuron.2022.08.010
Sungur AÖ, Vörckel KJ, Schwarting RKW, et al., 2014. Repetitive behaviors in the Shank1 knockout mouse model for autism spectrum disorder: developmental aspects and effects of social context. J Neurosci Methods, 234:92-100. https://doi.org/10.1016/j.jneumeth.2014.05.003https://doi.org/10.1016/j.jneumeth.2014.05.003
Taylor JL, Rajbhandari AK, Berridge KC, et al., 2010. Dopamine receptor modulation of repetitive grooming actions in the rat: potential relevance for Tourette syndrome. Brain Res, 1322:92-101. https://doi.org/10.1016/j.brainres.2010.01.052https://doi.org/10.1016/j.brainres.2010.01.052
Thor DH, Harrison RJ, Schneider SR, et al., 1988. Sex differences in investigatory and grooming behaviors of laboratory rats (Rattus norvegicus) following exposure to novelty. J Comp Psychol, 102(2):188-192. https://doi.org/10.1037/0735-7036.102.2.188https://doi.org/10.1037/0735-7036.102.2.188
Turner PV, Pang DSJ, Lofgren JLS, 2019. A review of pain assessment methods in laboratory rodents. Comp Med, 69(6):451-467. https://doi.org/10.30802/AALAS-CM-19-000042https://doi.org/10.30802/AALAS-CM-19-000042
van Erp AMM, Kruk MR, Meelis W, et al., 1994. Effect of environmental stressors on time course, variability and form of self-grooming in the rat: handling, social contact, defeat, novelty, restraint and fur moistening. Behav Brain Res, 65(1):47-55. https://doi.org/10.1016/0166-4328(94)90072-8https://doi.org/10.1016/0166-4328(94)90072-8
Várkonyi D, Török B, Sipos E, et al., 2022. Investigation of anxiety- and depressive-like symptoms in 4- and 8-month-old male triple transgenic mouse models of Alzheimer’s disease. Int J Mol Sci, 23(18):10816. https://doi.org/10.3390/ijms231810816https://doi.org/10.3390/ijms231810816
Vidal R, Barbeito AG, Miravalle L, et al., 2009. Cerebral amyloid angiopathy and parenchymal amyloid deposition in transgenic mice expressing the Danish mutant form of human BRI2. Brain Pathol, 19(1):58-68. https://doi.org/10.1111/j.1750-3639.2008.00164.xhttps://doi.org/10.1111/j.1750-3639.2008.00164.x
Wan YH, Ade KK, Caffall Z, et al., 2014. Circuit-selective striatal synaptic dysfunction in the Sapap3 knockout mouse model of obsessive-compulsive disorder. Biol Psychiatry, 75(8):623-630. https://doi.org/10.1016/j.biopsych.2013.01.008https://doi.org/10.1016/j.biopsych.2013.01.008
Wang B, Zheng Y, Shi H, et al., 2017. Zfp462 deficiency causes anxiety-like behaviors with excessive self-grooming in mice. Genes Brain Behav, 16(2):296-307. https://doi.org/10.1111/gbb.12339https://doi.org/10.1111/gbb.12339
Wang D, An SC, Zhang X, 2008. Prevention of chronic stress-induced depression-like behavior by inducible nitric oxide inhibitor. Neurosci Lett, 433(1):59-64. https://doi.org/10.1016/j.neulet.2007.12.041https://doi.org/10.1016/j.neulet.2007.12.041
Wang XM, McCoy PA, Rodriguiz RM, et al., 2011. Synaptic dysfunction and abnormal behaviors in mice lacking major isoforms of Shank3. Hum Mol Genet, 20(15):3093-3108. https://doi.org/10.1093/hmg/ddr212https://doi.org/10.1093/hmg/ddr212
Welch JM, Lu J, Rodriguiz RM, et al., 2007. Cortico-striatal synaptic defects and OCD-like behaviours in Sapap3-mutant mice. Nature, 448(7156):894-900. https://doi.org/10.1038/nature06104https://doi.org/10.1038/nature06104
Won H, Lee HR, Gee HY, et al., 2012. Autistic-like social behaviour in Shank2-mutant mice improved by restoring NMDA receptor function. Nature, 486(7402):261-265. https://doi.org/10.1038/nature11208https://doi.org/10.1038/nature11208
Xie ZY, Li DP, Cheng XY, et al., 2022. A brain-to-spinal sensorimotor loop for repetitive self-grooming. Neuron, 110(5):874-890.e7. https://doi.org/10.1016/j.neuron.2021.11.028https://doi.org/10.1016/j.neuron.2021.11.028
Xu YZ, Lu YG, Cassidy RM, et al., 2019. Identification of a neurocircuit underlying regulation of feeding by stress-related emotional responses. Nat Commun, 10:3446. https://doi.org/10.1038/s41467-019-11399-zhttps://doi.org/10.1038/s41467-019-11399-z
Xu YZ, Jiang ZY, Li HL, et al., 2023. Lateral septum as a melanocortin downstream site in obesity development. Cell Rep, 42(5):112502. https://doi.org/10.1016/j.celrep.2023.112502https://doi.org/10.1016/j.celrep.2023.112502
Yang M, Perry K, Weber MD, et al., 2011. Social peers rescue autism-relevant sociability deficits in adolescent mice. Autism Res, 4(1):17-27. https://doi.org/10.1002/aur.163https://doi.org/10.1002/aur.163
Yang M, Bozdagi O, Scattoni ML, et al., 2012. Reduced excitatory neurotransmission and mild autism-relevant phenotypes in adolescent Shank3 null mutant mice. J Neurosci, 32(19):6525-6541. https://doi.org/10.1523/JNEUROSCI.6107-11.2012https://doi.org/10.1523/JNEUROSCI.6107-11.2012
Yu XZ, Taylor AMW, Nagai J, et al., 2018. Reducing astrocyte calcium signaling in vivo alters striatal microcircuits and causes repetitive behavior. Neuron, 99(6):1170-1187.e9. https://doi.org/10.1016/j.neuron.2018.08.015https://doi.org/10.1016/j.neuron.2018.08.015
Zhang K, Hill K, Labak S, et al., 2014. Loss of glutamic acid decarboxylase (Gad67) in Gpr88-expressing neurons induces learning and social behavior deficits in mice. Neurosci, 275:238-247. https://doi.org/10.1016/j.neuroscience.2014.06.020https://doi.org/10.1016/j.neuroscience.2014.06.020
Zhang YF, Vargas Cifuentes L, Wright KN, et al., 2021. Ventral striatal islands of Calleja neurons control grooming in mice. Nat Neurosci, 24(12):1699-1710. https://doi.org/10.1038/s41593-021-00952-zhttps://doi.org/10.1038/s41593-021-00952-z
Zhang YF, Janke E, Bhattarai JP, et al., 2022. Self-directed orofacial grooming promotes social attraction in mice via chemosensory communication. iScience, 25(5):104284. https://doi.org/10.1016/j.isci.2022.104284https://doi.org/10.1016/j.isci.2022.104284
Zhang YF, Wu JL, Wang YQ, et al., 2023. Ventral striatal islands of Calleja neurons bidirectionally mediate depression-like behaviors in mice. Nat Commun, 14:6887. https://doi.org/10.1038/s41467-023-42662-zhttps://doi.org/10.1038/s41467-023-42662-z
0
浏览量
11
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构