无数据
Scan for full text
1.College of Medicine, Zhejiang University, Hangzhou 310058, China
2.College of Life Sciences, Zhejiang University, Hangzhou 310058, China
3.Cancer Center, Zhejiang University, Hangzhou 310058, China
4.Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China
5.International School of Medicine, International Institutes of Medicine, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu 322000, China
6.Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou 310058, China
7.Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
纸质出版日期: 2024-04-15 ,
收稿日期: 2023-07-10 ,
修回日期: 2023-12-11 ,
林思怡,何欣豫,王颖等.LncRNAs在机械转导中的作用及其与Hippo-YAP信号转导的关联[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2024,25(04):280-292.
Siyi LIN, Xinyu HE, Ying WANG, et al. Emerging role of lncRNAs as mechanical signaling molecules in mechanotransduction and their association with Hippo-YAP signaling: a review[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2024,25(4):280-292.
林思怡,何欣豫,王颖等.LncRNAs在机械转导中的作用及其与Hippo-YAP信号转导的关联[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2024,25(04):280-292. DOI: 10.1631/jzus.B2300497.
Siyi LIN, Xinyu HE, Ying WANG, et al. Emerging role of lncRNAs as mechanical signaling molecules in mechanotransduction and their association with Hippo-YAP signaling: a review[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2024,25(4):280-292. DOI: 10.1631/jzus.B2300497.
细胞在组织中受到各种机械力的作用,包括静水压力、剪切应力、压缩和张力。这些机械刺激可通过机械感受器或细胞骨架依赖性反应过程转化为生化信号,从而塑造微环境,并维持细胞生理平衡。研究已证实转录共激活因子YAP/TAZ可作为机械转导因子,对细胞表型(如分化和疾病发病)产生动态影响。这种调节功能涉及细胞骨架、核骨架、整合素、局灶黏附蛋白(FA),以及多种信号通路的整合,包括细胞外信号调节蛋白激酶(ERK)、WNT和Hippo信号通路。此外,最新研究表明长链非编码RNA(lncRNA)可作为机械敏感分子在机械转导过程中发挥作用。本综述讨论了YAP/TAZ和lncRNA响应机械刺激的机制,并总结了参与机械转导的关键信号分子。
Cells within tissues are subject to various mechanical forces
including hydrostatic pressure
shear stress
compression
and tension. These mechanical stimuli can be converted into biochemical signals through mechanoreceptors or cytoskeleton-dependent response processes
shaping the microenvironment and maintaining cellular physiological balance. Several studies have demonstrated the roles of Yes-associated protein (YAP) and its homolog transcriptional coactivator with PDZ-binding motif (TAZ) as mechanotransducers
exerting dynamic influence on cellular phenotypes including differentiation and disease pathogenesis. This regulatory function entails the involvement of the cytoskeleton
nucleoskeleton
integrin
focal adhesions (FAs)
and the integration of multiple signaling pathways
including extracellular signal-regulated kinase (ERK)
wingless/integrated (WNT)
and Hippo signaling. Furthermore
emerging evidence substantiates the implication of long non-coding RNAs (lncRNAs) as mechanosensitive molecules in cellular mechanotransduction. In this review
we discuss the mechanisms through which YAP/TAZ and lncRNAs serve as effectors in responding to mechanical stimuli. Additionally
we summarize and elaborate on the crucial signal molecules involved in mechanotransduction.
YAP/TAZ长链非编码RNA(lncRNA)机械转导F-肌动蛋白
YAP/TAZLong non-coding RNA (lncRNA)MechanotransductionF-actin
Aguirre Ghiso JA, Farías EF, Alonso DF, et al., 1997. A phospholipase D and protein kinase C inhibitor blocks the spreading of murine mammary adenocarcinoma cells altering f-actin and β1-integrin point contact distribution. Int J Cancer, 71(5):881-890. https://doi.org/10.1002/(sici)1097-0215(19970529)71:5<881::aid-ijc29>3.0.co;2-9https://doi.org/10.1002/(sici)1097-0215(19970529)71:5<881::aid-ijc29>3.0.co;2-9
Aharonov A, Shakked A, Umansky KB, et al., 2020. ERBB2 drives YAP activation and EMT-like processes during cardiac regeneration. Nat Cell Biol, 22(11):1346-1356. https://doi.org/10.1038/s41556-020-00588-4https://doi.org/10.1038/s41556-020-00588-4
Ahmad US, Uttagomol J, Wan H, 2022. The regulation of the Hippo pathway by intercellular junction proteins. Life, 12(11):1792. https://doi.org/10.3390/life12111792https://doi.org/10.3390/life12111792
Aragona M, Panciera T, Manfrin A, et al., 2013. A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell, 154(5):1047-1059. https://doi.org/10.1016/j.cell.2013.07.042https://doi.org/10.1016/j.cell.2013.07.042
Bertrand AT, Ziaei S, Ehret C, et al., 2014. Cellular microenvironments reveal defective mechanosensing responses and elevated YAP signaling in LMNA-mutated muscle precursors. J Cell Sci, 127(13):2873-2884. https://doi.org/10.1242/jcs.144907https://doi.org/10.1242/jcs.144907
Bruyère C, Versaevel M, Mohammed D, et al., 2019. Actomyosin contractility scales with myoblast elongation and enhances differentiation through YAP nuclear export. Sci Rep, 9:15565. https://doi.org/10.1038/s41598-019-52129-1https://doi.org/10.1038/s41598-019-52129-1
Calvo F, Ege N, Grande-Garcia A, et al., 2013. Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat Cell Biol, 15(6):637-646. https://doi.org/10.1038/ncb2756https://doi.org/10.1038/ncb2756
Chang L, Azzolin L, di Biagio D, et al., 2018. The SWI/SNF complex is a mechanoregulated inhibitor of YAP and TAZ. Nature, 563(7730):265-269. https://doi.org/10.1038/s41586-018-0658-1https://doi.org/10.1038/s41586-018-0658-1
Chen Z, Luo Q, Lin CC, et al., 2016. Simulated microgravity inhibits osteogenic differentiation of mesenchymal stem cells via depolymerizing F-actin to impede TAZ nuclear translocation. Sci Rep, 6:30322. https://doi.org/10.1038/srep30322https://doi.org/10.1038/srep30322
Choi SW, Kim HW, Nam JW, 2019. The small peptide world in long noncoding RNAs. Brief Bioinform, 20(5):1853-1864. https://doi.org/10.1093/bib/bby055https://doi.org/10.1093/bib/bby055
Chu GL, Zhang WD, Zhou PH, et al., 2021. Substrate topography regulates differentiation of annulus fibrosus-derived stem cells via CAV1-YAP-mediated mechanotransduction. ACS Biomater Sci Eng, 7(3):862-871. https://doi.org/10.1021/acsbiomaterials.9b01823https://doi.org/10.1021/acsbiomaterials.9b01823
Corey DP, Hudspeth AJ, 1979. Ionic basis of the receptor potential in a vertebrate hair cell. Nature, 281(5733):675-677. https://doi.org/10.1038/281675a0https://doi.org/10.1038/281675a0
Coste B, Mathur J, Schmidt M, et al., 2010. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science, 330(6000):55-60. https://doi.org/10.1126/science.1193270https://doi.org/10.1126/science.1193270
Discher DE, Janmey P, Wang YL, 2005. Tissue cells feel and respond to the stiffness of their substrate. Science, 310(5751):1139-1143. https://doi.org/10.1126/science.1116995https://doi.org/10.1126/science.1116995
Donnaloja F, Carnevali F, Jacchetti E, et al., 2020. Lamin A/C mechanotransduction in laminopathies. Cells, 9(5):1306. https://doi.org/10.3390/cells9051306https://doi.org/10.3390/cells9051306
Driscoll TP, Cosgrove BD, Heo SJ, et al., 2015. Cytoskeletal to nuclear strain transfer regulates YAP signaling in mesenchymal stem cells. Biophys J, 108(12):2783-2793. https://doi.org/10.1016/j.bpj.2015.05.010https://doi.org/10.1016/j.bpj.2015.05.010
Dupont S, 2016. Role of YAP/TAZ in cell-matrix adhesion-mediated signalling and mechanotransduction. Exp Cell Res, 343(1):42-53. https://doi.org/10.1016/j.yexcr.2015.10.034https://doi.org/10.1016/j.yexcr.2015.10.034
Dupont S, Morsut L, Aragona M, et al., 2011. Role of YAP/TAZ in mechanotransduction. Nature, 474(7350):179-183. https://doi.org/10.1038/nature10137https://doi.org/10.1038/nature10137
Elbediwy A, Vanyai H, Diaz-de-la-Loza MDC, et al., 2018. Enigma proteins regulate YAP mechanotransduction. J Cell Sci, 131(22):jcs221788. https://doi.org/10.1242/jcs.221788https://doi.org/10.1242/jcs.221788
Elosegui-Artola A, Andreu I, Beedle AEM, et al., 2017. Force triggers YAP nuclear entry by regulating transport across nuclear pores. Cell, 171(6):1397-1410.e14. https://doi.org/10.1016/j.cell.2017.10.008https://doi.org/10.1016/j.cell.2017.10.008
Engler A, Bacakova L, Newman C, et al., 2004. Substrate compliance versus ligand density in cell on gel responses. Biophys J, 86(1 Pt 1):617-628. https://doi.org/10.1016/S0006-3495(04)74140-5https://doi.org/10.1016/S0006-3495(04)74140-5
Engler AJ, Sen S, Sweeney HL, et al., 2006. Matrix elasticity directs stem cell lineage specification. Cell, 126(4):677-689. https://doi.org/10.1016/j.cell.2006.06.044https://doi.org/10.1016/j.cell.2006.06.044
Feng XD, Degese MS, Iglesias-Bartolome R, et al., 2014. Hippo-independent activation of YAP by the GNAQ uveal melanoma oncogene through a trio-regulated Rho GTPase signaling circuitry. Cancer Cell, 25(6):831-845. https://doi.org/10.1016/j.ccr.2014.04.016https://doi.org/10.1016/j.ccr.2014.04.016
Fletcher DA, Mullins RD, 2010. Cell mechanics and the cytoskeleton. Nature, 463(7280):485-492. https://doi.org/10.1038/nature08908https://doi.org/10.1038/nature08908
Furukawa KT, Yamashita K, Sakurai N, et al., 2017. The epithelial circumferential actin belt regulates YAP/TAZ through nucleocytoplasmic shuttling of Merlin. Cell Rep, 20(6):1435-1447. https://doi.org/10.1016/j.celrep.2017.07.032https://doi.org/10.1016/j.celrep.2017.07.032
Gao ZR, Ling XY, Shi CY, et al., 2022. Tumor immune checkpoints and their associated inhibitors. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 23(10):823-843. https://doi.org/10.1631/jzus.B2200195https://doi.org/10.1631/jzus.B2200195
Goldmann WH, 2012. Mechanotransduction in cells. Cell Biol Int, 36(6):567-570. https://doi.org/10.1042/CBI20120071https://doi.org/10.1042/CBI20120071
Goldmann WH, 2014. Vinculin-p130Cas interaction is critical for focal adhesion dynamics and mechano-transduction. Cell Biol Int, 38(3):283-286. https://doi.org/10.1002/cbin.10204https://doi.org/10.1002/cbin.10204
Guilluy C, Osborne LD, van Landeghem L, et al., 2014. Isolated nuclei adapt to force and reveal a mechanotransduction pathway in the nucleus. Nat Cell Biol, 16(4):376-381. https://doi.org/10.1038/ncb2927https://doi.org/10.1038/ncb2927
Guvendiren M, Burdick JA, 2012. Stiffening hydrogels to probe short- and long-term cellular responses to dynamic mechanics. Nat Commun, 3:792. https://doi.org/10.1038/ncomms1792https://doi.org/10.1038/ncomms1792
Hoffman LM, Smith MA, Jensen CC, et al., 2020. Mechanical stress triggers nuclear remodeling and the formation of transmembrane actin nuclear lines with associated nuclear pore complexes. Mol Biol Cell, 31(16):1774-1787. https://doi.org/10.1091/mbc.E19-01-0027https://doi.org/10.1091/mbc.E19-01-0027
Hu J, Liao HJ, Ma ZB, et al., 2016. Focal adhesion kinase signaling mediated the enhancement of osteogenesis of human mesenchymal stem cells induced by extracorporeal shockwave. Sci Rep, 6:20875. https://doi.org/10.1038/srep20875https://doi.org/10.1038/srep20875
Hu LH, Wu W, Zou J, 2022. Circular RNAs: typical biomarkers for bone-related diseases. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 23(12):975-988. https://doi.org/10.1631/jzus.B2200211https://doi.org/10.1631/jzus.B2200211
Humphries JD, Byron A, Humphries MJ, 2006. Integrin ligands at a glance. J Cell Sci, 119(Pt 19):3901-3903. https://doi.org/10.1242/jcs.03098https://doi.org/10.1242/jcs.03098
Ingber DE, 1997. Tensegrity: the architectural basis of cellular mechanotransduction. Annu Rev Physiol, 59:575-599. https://doi.org/10.1146/annurev.physiol.59.1.575https://doi.org/10.1146/annurev.physiol.59.1.575
Janota CS, Calero-Cuenca FJ, Gomes ER, 2020. The role of the cell nucleus in mechanotransduction. Curr Opin Cell Biol, 63:204-211. https://doi.org/10.1016/j.ceb.2020.03.001https://doi.org/10.1016/j.ceb.2020.03.001
Jia Q, Zhou W, Yao W, et al., 2016. Downregulation of YAP-dependent Nupr1 promotes tumor-repopulating cell growth in soft matrices. Oncogenesis, 5(4):e220. https://doi.org/10.1038/oncsis.2016.29https://doi.org/10.1038/oncsis.2016.29
Jin P, Jan LY, Jan YN, 2020. Mechanosensitive ion channels: structural features relevant to mechanotransduction mechanisms. Annu Rev Neurosci, 43:207-229. https://doi.org/10.1146/annurev-neuro-070918-050509https://doi.org/10.1146/annurev-neuro-070918-050509
Jojoa-Cruz S, Saotome K, Tsui CCA, et al., 2022. Structural insights into the Venus flytrap mechanosensitive ion channel Flycatcher1. Nat Commun, 13:850. https://doi.org/10.1038/s41467-022-28511-5https://doi.org/10.1038/s41467-022-28511-5
Ju C, Liu RF, Zhang YW, et al., 2019. Mesenchymal stem cell-associated lncRNA in osteogenic differentiation. Biomed Pharmacother, 115:108912. https://doi.org/10.1016/j.biopha.2019.108912https://doi.org/10.1016/j.biopha.2019.108912
Kefauver JM, Ward AB, Patapoutian A, 2020. Discoveries in structure and physiology of mechanically activated ion channels. Nature, 587(7835):567-576. https://doi.org/10.1038/s41586-020-2933-1https://doi.org/10.1038/s41586-020-2933-1
Kim J, Kim YH, Kim J, et al., 2017. YAP/TAZ regulates sprouting angiogenesis and vascular barrier maturation. J Clin Invest, 127(9):3441-3461. https://doi.org/10.1172/JCI93825https://doi.org/10.1172/JCI93825
Kim NG, Gumbiner BM, 2015. Adhesion to fibronectin regulates Hippo signaling via the FAK-Src-PI3K pathway. J Cell Biol, 210(3):503-515. https://doi.org/10.1083/jcb.201501025https://doi.org/10.1083/jcb.201501025
Kuroda M, Ueda K, Kioka N, 2018. Vinexin family (SORBS) proteins regulate mechanotransduction in mesenchymal stem cells. Sci Rep, 8:11581. https://doi.org/10.1038/s41598-018-29700-3https://doi.org/10.1038/s41598-018-29700-3
Kurotsu S, Sadahiro T, Fujita R, et al., 2020. Soft matrix promotes cardiac reprogramming via inhibition of YAP/TAZ and suppression of fibroblast signatures. Stem Cell Rep, 15(3):612-628. https://doi.org/10.1016/j.stemcr.2020.07.022https://doi.org/10.1016/j.stemcr.2020.07.022
Leucht P, Kim JB, Currey JA, et al., 2007. FAK-mediated mechanotransduction in skeletal regeneration. PLoS ONE, 2(4):e390. https://doi.org/10.1371/journal.pone.0000390https://doi.org/10.1371/journal.pone.0000390
Li RH, Tian T, Ge QW, et al., 2021. A phosphatidic acid-binding lncRNA SNHG9 facilitates LATS1 liquid-liquid phase separation to promote oncogenic YAP signaling. Cell Res, 31(10):1088-1105. https://doi.org/10.1038/s41422-021-00530-9https://doi.org/10.1038/s41422-021-00530-9
Liu CZ, Gao XC, Li YH, et al., 2022. The mechanosensitive lncRNA Neat1 promotes osteoblast function through paraspeckle-dependent Smurf1 mRNA retention. Bone Res, 10:18. https://doi.org/10.1038/s41413-022-00191-3https://doi.org/10.1038/s41413-022-00191-3
Liu L, Liu MC, Xie DF, et al., 2021. Role of the extracellular matrix and YAP/TAZ in cell reprogramming. Differentiation, 122:1-6. https://doi.org/10.1016/j.diff.2021.11.001https://doi.org/10.1016/j.diff.2021.11.001
Liu OX, Lin LB, Chew T, et al., 2018. ZO-2 induces cytoplasmic retention of YAP by promoting a LATS1-ZO-2-YAP complex at tight junctions. bioRxiv, preprint. https://doi.org/10.1101/355081https://doi.org/10.1101/355081
Liu Q, Hu XQ, Zhang X, et al., 2016. The TMSB4 pseudogene lncRNA functions as a competing endogenous RNA to promote cartilage degradation in human osteoarthritis. Mol Ther, 24(10):1726-1733. https://doi.org/10.1038/mt.2016.151https://doi.org/10.1038/mt.2016.151
Liu X, Hou WQ, He L, et al., 2019. AMOT130/YAP pathway in topography-induced BMSC osteoblastic differentiation. Colloids Surf B Biointerfaces, 182:110332. https://doi.org/10.1016/j.colsurfb.2019.06.061https://doi.org/10.1016/j.colsurfb.2019.06.061
López-Gay JM, Nunley H, Spencer M, et al., 2020. Apical stress fibers enable a scaling between cell mechanical response and area in epithelial tissue. Science, 370(6514):eabb2169. https://doi.org/10.1126/science.abb2169https://doi.org/10.1126/science.abb2169
Mantella LE, Singh KK, Sandhu P, et al., 2017. Fingerprint of long non-coding RNA regulated by cyclic mechanical stretch in human aortic smooth muscle cells: implications for hypertension. Mol Cell Biochem, 435(1-2):163-173. https://doi.org/10.1007/s11010-017-3065-2https://doi.org/10.1007/s11010-017-3065-2
Maurer M, Lammerding J, 2019. The driving force: nuclear mechanotransduction in cellular function, fate, and disease. Annu Rev Biomed Eng, 21:443-468. https://doi.org/10.1146/annurev-bioeng-060418-052139https://doi.org/10.1146/annurev-bioeng-060418-052139
Meli VS, Veerasubramanian PK, Downing TL, et al., 2023. Mechanosensation to inflammation: roles for YAP/TAZ in innate immune cells. Sci Signal, 16(783):eadc9656. https://doi.org/10.1126/scisignal.adc9656https://doi.org/10.1126/scisignal.adc9656
Meng ZP, Qiu YJ, Lin KC, et al., 2018. RAP2 mediates mechanoresponses of the Hippo pathway. Nature, 560(7720):655-660. https://doi.org/10.1038/s41586-018-0444-0https://doi.org/10.1038/s41586-018-0444-0
Moreno-Vicente R, Pavón DM, Martín-Padura I, et al., 2018. Caveolin-1 modulates mechanotransduction responses to substrate stiffness through actin-dependent control of YAP. Cell Rep, 25(6):1622-1635.e6. https://doi.org/10.1016/j.celrep.2018.10.024https://doi.org/10.1016/j.celrep.2018.10.024
Morgan JT, Murphy CJ, Russell P, 2013. What do mechanotransduction, Hippo, Wnt, and TGFβ have in common? YAP and TAZ as key orchestrating molecules in ocular health and disease. Exp Eye Res, 115:1-12. https://doi.org/10.1016/j.exer.2013.06.012https://doi.org/10.1016/j.exer.2013.06.012
Nardone G, Oliver-de la Cruz J, Vrbsky J, et al., 2017. YAP regulates cell mechanics by controlling focal adhesion assembly. Nat Commun, 8:15321. https://doi.org/10.1038/ncomms15321https://doi.org/10.1038/ncomms15321
Niu LM, Lou FZ, Sun Y, et al., 2020. A micropeptide encoded by lncRNA MIR155HG suppresses autoimmune inflammation via modulating antigen presentation. Sci Adv, 6(21):eaaz2059. https://doi.org/10.1126/sciadv.aaz2059https://doi.org/10.1126/sciadv.aaz2059
Owens DJ, Fischer M, Jabre S, et al., 2020. Lamin mutations cause increased YAP nuclear entry in muscle stem cells. Cells, 9(4):816. https://doi.org/10.3390/cells9040816https://doi.org/10.3390/cells9040816
Panciera T, Citron A, di Biagio D, et al., 2020. Reprogramming normal cells into tumour precursors requires ECM stiffness and oncogene-mediated changes of cell mechanical properties. Nat Mater, 19(7):797-806. https://doi.org/10.1038/s41563-020-0615-xhttps://doi.org/10.1038/s41563-020-0615-x
Patwardhan S, Mahadik P, Shetty O, et al., 2021. ECM stiffness-tuned exosomes drive breast cancer motility through thrombospondin-1. Biomaterials, 279:121185. https://doi.org/10.1016/j.biomaterials.2021.121185https://doi.org/10.1016/j.biomaterials.2021.121185
Puklin-Faucher E, Sheetz MP, 2009. The mechanical integrin cycle. J Cell Sci, 122(2):179-186. https://doi.org/10.1242/jcs.042127https://doi.org/10.1242/jcs.042127
Qu L, He XY, Tang Q, et al., 2022. Iron metabolism, ferroptosis, and lncRNA in cancer: knowns and unknowns. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 23(10):844-862 https://doi.org/10.1631/jzus.B2200194https://doi.org/10.1631/jzus.B2200194
Schwartz C, Fischer M, Mamchaoui K, et al., 2017. Lamins and nesprin-1 mediate inside-out mechanical coupling in muscle cell precursors through FHOD1. Sci Rep, 7:1253. https://doi.org/10.1038/s41598-017-01324-zhttps://doi.org/10.1038/s41598-017-01324-z
Seetharaman S, Etienne-Manneville S, 2018. Integrin diversity brings specificity in mechanotransduction. Biol Cell, 110(3):49-64. https://doi.org/10.1111/boc.201700060https://doi.org/10.1111/boc.201700060
Shevelyov YY, Ulianov SV, 2019. The nuclear lamina as an organizer of chromosome architecture. Cells, 8(2):136. https://doi.org/10.3390/cells8020136https://doi.org/10.3390/cells8020136
Sladitschek-Martens HL, Guarnieri A, Brumana G, et al., 2022. YAP/TAZ activity in stromal cells prevents ageing by controlling cGAS-STING. Nature, 607(7920):790-798. https://doi.org/10.1038/s41586-022-04924-6https://doi.org/10.1038/s41586-022-04924-6
Solon J, Levental I, Sengupta K, et al., 2007. Fibroblast adaptation and stiffness matching to soft elastic substrates. Biophys J, 93(12):4453-4461. https://doi.org/10.1529/biophysj.106.101386https://doi.org/10.1529/biophysj.106.101386
Sun YB, Yong KMA, Villa-Diaz LG, et al., 2014. Hippo/YAP-mediated rigidity-dependent motor neuron differentiation of human pluripotent stem cells. Nat Mater, 13(6):599-604. https://doi.org/10.1038/nmat3945https://doi.org/10.1038/nmat3945
Tamada M, Sheetz MP, Sawada Y, 2004. Activation of a signaling cascade by cytoskeleton stretch. Dev Cell, 7(5):709-718. https://doi.org/10.1016/j.devcel.2004.08.021https://doi.org/10.1016/j.devcel.2004.08.021
Tanoue T, Takeichi M, 2004. Mammalian Fat1 cadherin regulates actin dynamics and cell‒cell contact. J Cell Biol, 165(4):517-528. https://doi.org/10.1083/jcb.200403006https://doi.org/10.1083/jcb.200403006
Tee SY, Fu JP, Chen CS, et al., 2011. Cell shape and substrate rigidity both regulate cell stiffness. Biophys J, 100(5):L25-L27. https://doi.org/10.1016/j.bpj.2010.12.3744https://doi.org/10.1016/j.bpj.2010.12.3744
Todorovski V, Fox AH, Choi YS, 2020. Matrix stiffness-sensitive long noncoding RNA NEAT1 seeded paraspeckles in cancer cells. Mol Biol Cell, 31(16):1654-1662. https://doi.org/10.1091/mbc.E20-02-0097https://doi.org/10.1091/mbc.E20-02-0097
Tschumperlin DJ, 2011. Mechanotransduction. Compr Physiol, 1(2):1057-1073. https://doi.org/10.1002/cphy.c100016https://doi.org/10.1002/cphy.c100016
Uray IP, Uray K, 2021. Mechanotransduction at the plasma membrane-cytoskeleton interface. Int J Mol Sci, 22(21):11566. https://doi.org/10.3390/ijms222111566https://doi.org/10.3390/ijms222111566
Virdi JK, Pethe P, 2021. Biomaterials regulate mechanosensors YAP/TAZ in stem cell growth and differentiation. Tissue Eng Regen Med, 18(2):199-215. https://doi.org/10.1007/s13770-020-00301-4https://doi.org/10.1007/s13770-020-00301-4
Wang J, Zhang YF, Zhang N, et al., 2015. An updated review of mechanotransduction in skin disorders: transcriptional regulators, ion channels, and microRNAs. Cell Mol Life Sci, 72(11):2091-2106. https://doi.org/10.1007/s00018-015-1853-yhttps://doi.org/10.1007/s00018-015-1853-y
Wang KC, Yeh YT, Nguyen P, et al., 2016. Flow-dependent YAP/TAZ activities regulate endothelial phenotypes and atherosclerosis. Proc Natl Acad Sci USA, 113(41):11525-11530. https://doi.org/10.1073/pnas.1613121113https://doi.org/10.1073/pnas.1613121113
Wang L, Luo JY, Li BC, et al., 2016. Integrin-YAP/TAZ-JNK cascade mediates atheroprotective effect of unidirectional shear flow. Nature, 540(7634):579-582. https://doi.org/10.1038/nature20602https://doi.org/10.1038/nature20602
Wu JJ, Zhao J, Sun L, et al., 2018. Long non-coding RNA H19 mediates mechanical tension-induced osteogenesis of bone marrow mesenchymal stem cells via FAK by sponging miR-138. Bone, 108:62-70. https://doi.org/10.1016/j.bone.2017.12.013https://doi.org/10.1016/j.bone.2017.12.013
Wu LY, Han CL, Lin HH, et al., 2022. Ha-RasV12-induced multilayer cellular aggregates is mediated by Rac1 activation rather than YAP activation. Biomedicines, 10(5):977. https://doi.org/10.3390/biomedicines10050977https://doi.org/10.3390/biomedicines10050977
Wu P, Mo YZ, Peng M, et al., 2020. Emerging role of tumor-related functional peptides encoded by lncRNA and circRNA. Mol Cancer, 19:22. https://doi.org/10.1186/s12943-020-1147-3https://doi.org/10.1186/s12943-020-1147-3
Xu JJ, Sun MY, Tan Y, et al., 2017. Effect of matrix stiffness on the proliferation and differentiation of umbilical cord mesenchymal stem cells. Differentiation, 96:30-39. https://doi.org/10.1016/j.diff.2017.07.001https://doi.org/10.1016/j.diff.2017.07.001
Xu XC, Zhang Y, Wang X, et al., 2021. Substrate stiffness drives epithelial to mesenchymal transition and proliferation through the NEAT1-Wnt/β-catenin pathway in liver cancer. Int J Mol Sci, 22(21):12066. https://doi.org/10.3390/ijms222112066https://doi.org/10.3390/ijms222112066
Yamashiro Y, Thang BQ, Ramirez K, et al., 2020. Matrix mechanotransduction mediated by thrombospondin-1/integrin/YAP in the vascular remodeling. Proc Natl Acad Sci USA, 117(18):9896-9905. https://doi.org/10.1073/pnas.1919702117https://doi.org/10.1073/pnas.1919702117
Yu FX, Zhao B, Panupinthu N, et al., 2012. Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell, 150(4):780-791. https://doi.org/10.1016/j.cell.2012.06.037https://doi.org/10.1016/j.cell.2012.06.037
Yui S, Azzolin L, Maimets M, et al., 2018. YAP/TAZ-dependent reprogramming of colonic epithelium links ECM remodeling to tissue regeneration. Cell Stem Cell, 22(1):35-49.e7. https://doi.org/10.1016/j.stem.2017.11.001https://doi.org/10.1016/j.stem.2017.11.001
Zanconato F, Cordenonsi M, Piccolo S, 2016. YAP/TAZ at the roots of cancer. Cancer Cell, 29(6):783-803. https://doi.org/10.1016/j.ccell.2016.05.005https://doi.org/10.1016/j.ccell.2016.05.005
Zhang HL, Liu G, Mao X, et al., 2022. LncRNA MEG3 induces endothelial differentiation of mouse derived adipose-derived stem cells by targeting miR-145-5p/KLF4. Mol Biol Rep, 49(9):8495-8505. https://doi.org/10.1007/s11033-022-07671-zhttps://doi.org/10.1007/s11033-022-07671-z
Zhang Q, Lin SY, Liao JF, et al., 2018. Physical cues drive chondrogenic differentiation. Curr Stem Cell Res Ther, 13(7):576-582. https://doi.org/10.2174/1574888X13666180102121455https://doi.org/10.2174/1574888X13666180102121455
Zhao B, Wei XM, Li WQ, et al., 2007. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev, 21(21):2747-2761. https://doi.org/10.1101/gad.1602907https://doi.org/10.1101/gad.1602907
Zhao B, Li L, Wang L, et al., 2012. Cell detachment activates the Hippo pathway via cytoskeleton reorganization to induce anoikis. Genes Dev, 26(1):54-68. https://doi.org/10.1101/gad.173435.111https://doi.org/10.1101/gad.173435.111
Zheng LJ, Luo CY, Yang N, et al., 2022. Ionizing radiation-induced long noncoding RNA CRYBG3 regulates YAP/TAZ through mechanotransduction. Cell Death Dis, 13(3):209. https://doi.org/10.1038/s41419-022-04650-xhttps://doi.org/10.1038/s41419-022-04650-x
Zhu GZ, Zeng CJ, Qian YP, et al., 2021. Tensile strain promotes osteogenic differentiation of bone marrow mesenchymal stem cells through upregulating lncRNA-MEG3. Histol Histopathol, 36(9):939-946. https://doi.org/10.14670/HH-18-365https://doi.org/10.14670/HH-18-365
Zhu HY, Li J, Li YZ, et al., 2021. Glucocorticoid counteracts cellular mechanoresponses by LINC01569-dependent glucocorticoid receptor-mediated mRNA decay. Sci Adv, 7(9):eabd9923. https://doi.org/10.1126/sciadv.abd9923https://doi.org/10.1126/sciadv.abd9923
0
浏览量
29
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构