无数据
Scan for full text
1.Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), Gambang, 26300, Malaysia
2.BioAromatic Research Centre of Excellence, Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), Gambang, 26300, Malaysia
3.Department of Bioprocess & Polymer Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor, 81310, Malaysia
4.Organic Agriculture Management, Maejo University International College (MJU-IC), Maejo University, Chiang Mai, 50290, Thailand
5.International Industry and Agriculture Innovation Research Center (IIAR), International College, Maejo University, Chiang Mai, 50290, Thailand
纸质出版日期: 2024-04-15 ,
收稿日期: 2023-05-29 ,
修回日期: 2023-09-11 ,
Reshma PATIL,Aizi Nor Mazila RAMLI,Ang Shu XUAN等.释放生长潜力:利用合生元的力量加强侧耳属植物种植[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2024,25(04):293-306.
Reshma PATIL, Aizi Nor Mazila RAMLI, Ang Shu XUAN, et al. Unlocking the growth potential: harnessing the power of synbiotics to enhance cultivation of
Reshma PATIL,Aizi Nor Mazila RAMLI,Ang Shu XUAN等.释放生长潜力:利用合生元的力量加强侧耳属植物种植[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2024,25(04):293-306. DOI: 10.1631/jzus.B2300383.
Reshma PATIL, Aizi Nor Mazila RAMLI, Ang Shu XUAN, et al. Unlocking the growth potential: harnessing the power of synbiotics to enhance cultivation of
平菇(
Pleurotus
spp.)是全球最广泛栽培的蘑菇品种之一。本研究旨在探讨合生元对
Pleurotus ostreatus
和
Pleurotus pulmonarius
生长和品质的影响。通过每日对蘑菇样品喷洒不同浓度的合生元,测量其生长参数、产量、生物效率、近似成分、矿物质含量、总酚含量和二苯基-1-三硝基苯肼(DPPH)自由基清除活性。结果表明,使用喷洒菊粉和干酪乳杆菌的合生元,平菇的产量最高(56.92克),生物效率也最高(12.65%)。菊粉和干酪乳杆菌的组合最为高效,可以同时提高两种样品蘑菇的生长性能和营养成分。此外在白平菇(
P. ostreatus
)中,菊粉和干酪乳杆菌组合的合生元可产生最高的总酚含量(20.550 mg GAE/g DE),而在灰蘑菇(
P. pulmonarius
)中产生最高总酚含量的是干酪乳杆菌(1.098 mg GAE/g DE),其次是菊粉和干酪乳杆菌(1.079 mg GAE/g DE)。DPPH结果表明,平菇可以作为一种有效的抗氧化剂。综上,合生元可通过增加酚类化合物的含量来提高蘑菇的抗氧化能力,并通过增加矿物质元素的含量来提供更好的健康益处,从而提高了蘑菇的品质。上述研究证明了合生元作为一种生物肥料用于蘑菇栽培的应用潜力,是帮助蘑菇种植者解决质量不稳定的一个有效方案。
The oyster mushroom (
Pleurotus
spp.) is one of the most widely cultivated mushroom species globally. The present study investigated the effect of synbiotics on the growth and quality of
Pleurotus ostreatus
and
Pleurotus pulmonarius
. Different synbiotics formulations were applied by spraying mushroom samples daily and measuring their growth parameters
yield
biological efficiency
proximate composition
mineral content
total phenolic content (TPC)
and diphenyl-1-picryl-hydrazyl (DPPH) radical scavenging activity. Results demonstrated that the most significant yield of oyster mushrooms was harvested from synbiotics sprayed with inulin and
Lactobacillus casei
(56.92 g). Likewise
the highest biological efficiency obtained with a similar synbiotic was 12.65%. Combining inulin and
L. casei
was the most effective method of improving the mushrooms’ growth performance and nutrient content in both samples. Furthermore
synbiotics that combined inulin and
L. casei
resulted in the highest TPC (20.550 mg gallic acid equivalent (GAE)/g dry extract (DE)) in white oyster mushrooms (
P. ostreatus
). In comparison
in grey mushroom (
P. pulmonarius
) the highest TPC was yielded by
L. casei
(1.098 mg GAE/g DE) followed by inulin and
L. casei
(1.079 mg GAE/g DE). The DPPH results indicated that the oyster mushroom could be an efficient antioxidant. The results revealed that applying synbiotics improved the mushrooms’ quality by increasing their antioxidant capacity with higher amounts of phenolic compounds and offering better health benefits with the increased levels of mineral elements. Together
these studies demonstrated the potential of using synbiotics as a biofertilizer
which is helpful for mushroom cultivation; therefore
it might solve the challenge of inconsistent quality mushroom growers face.
抗氧化剂生物肥料成长表现蘑菇种植侧耳属合生元
AntioxidantBiofertilizerGrowth performanceMushroom cultivationPleurotusSynbiotics
Adebay EA, Oloke JK, 2017. Oyster mushroom (Pleurotus species); a natural functional food. J Microbiol Biotechnol Food Sci, 7(3):254-264. https://doi.org/10.15414/jmbfs.2017/18.7.3.254-264https://doi.org/10.15414/jmbfs.2017/18.7.3.254-264
Ananthan SV, Ahmad N, Noor SH, et al., 2021. Formulation of plant nutrient with synbiotic enhancement. J Chem Eng Ind Biotechnol, 7(2):11-14. https://doi.org/10.15282/jceib.v7i2.3747https://doi.org/10.15282/jceib.v7i2.3747
Bakratsas G, Polydera A, Katapodis P, et al., 2021. Recent trends in submerged cultivation of mushrooms and their application as a source of nutraceuticals and food additives. Future Foods, 4:100086. https://doi.org/10.1016/j.fufo.2021.100086https://doi.org/10.1016/j.fufo.2021.100086
Bellettini MB, Fiorda FA, Maieves HA, et al., 2019. Factors affecting mushroom Pleurotus spp. Saudi J Biol Sci, 26(4):633-646. https://doi.org/10.1016/j.sjbs.2016.12.005https://doi.org/10.1016/j.sjbs.2016.12.005
Braat N, Koster MC, Wösten HAB, 2022. Beneficial interactions between bacteria and edible mushrooms. Fungal Biol Rev, 39:60-72. https://doi.org/10.1016/j.fbr.2021.12.001https://doi.org/10.1016/j.fbr.2021.12.001
Carrasco J, Zied DC, Pardo JE, et al., 2018. Supplementation in mushroom crops and its impact on yield and quality. AMB Express, 8:146. https://doi.org/10.1186/s13568-018-0678-0https://doi.org/10.1186/s13568-018-0678-0
Das N, Mishra S, Biswas L, et al., 2015. Comparative study of five Pleurotus species cultivated in warm temperature on non-sterilized rice straw. Emirates J Food Agric, 27(5):749-755. https://doi.org/10.9755/ejfa.2015.04.107https://doi.org/10.9755/ejfa.2015.04.107
di Benedetto NA, Corbo MR, Campaniello D, et al., 2017. The role of plant growth promoting bacteria in improving nitrogen use efficiency for sustainable crop production: a focus on wheat. AIMS Microbiol, 3(3):413-434. https://doi.org/10.3934/microbiol.2017.3.413https://doi.org/10.3934/microbiol.2017.3.413
El-Aidy F, Abdalla M, El-Sawy SA, et al., 2020. Role of plant probiotics, sucrose and silicon in the production of tomato (Solanum lycopersicum L.) seedlings under heat stress in a greenhouse. Appl Ecol Environ Res, 18(6):7685-7701. https://doi.org/10.15666/aeer/1806_76857701https://doi.org/10.15666/aeer/1806_76857701
Elkanah FA, Oke MA, Adebayo EA, 2022. Substrate composition effect on the nutritional quality of Pleurotus ostreatus (MK751847) fruiting body. Heliyon, 8(11):e11841. https://doi.org/10.1016/J.HELIYON.2022.E11841https://doi.org/10.1016/J.HELIYON.2022.E11841
Elmastas M, Isildak O, Turkekul I, et al., 2007. Determination of antioxidant activity and antioxidant compounds in wild edible mushrooms. J Food Comp Anal, 20(3-4):337-345. https://doi.org/10.1016/j.jfca.2006.07.003https://doi.org/10.1016/j.jfca.2006.07.003
Fan L, Pandey A, Mohan R, et al., 2000. Use of various coffee industry residues for the cultivation of Pleurotus ostreatus in solid state fermentation. Acta Biotechnol, 20(1):41-52. https://doi.org/10.1002/abio.370200108https://doi.org/10.1002/abio.370200108
Girmay Z, Gorems W, Birhanu G, et al., 2016. Growth and yield performance of Pleurotus ostreatus (Jacq. Fr.) Kumm (oyster mushroom) on different substrates. AMB Express, 6:87. https://doi.org/10.1186/s13568-016-0265-1https://doi.org/10.1186/s13568-016-0265-1
Grimm A, Eilertsen L, Chen F, et al., 2021. Cultivation of Pleurotus ostreatus mushroom on substrates made of cellulose fibre rejects: product quality and spent substrate fuel properties. Waste Biomass Valor, 12(8):4331-4340. https://doi.org/10.1007/s12649-020-01311-yhttps://doi.org/10.1007/s12649-020-01311-y
Hasan SMN, Aunsary MN, 2020. Impact of supplanting of flour with mushroom powder on nutritional composition and sensory attributes of cookies. Malays J Halal Res, 3(2):43-49. https://doi.org/10.2478/mjhr-2020-0008https://doi.org/10.2478/mjhr-2020-0008
Higgins C, Margot H, Warnquist S, et al., 2017. Mushroom cultivation in the developing world: a comparison of cultivation technologies. IEEE Global Humanitarian Technology Conference, p.1-7. https://doi.org/10.1109/GHTC.2017.8239314https://doi.org/10.1109/GHTC.2017.8239314
Hoa HT, Wang CL, Wang CH, 2015. The effects of different substrates on the growth, yield, and nutritional composition of two oyster mushrooms (Pleurotus ostreatus and Pleurotus cystidiosus). Mycobiology, 43(4):423-434. https://doi.org/10.5941/MYCO.2015.43.4.423https://doi.org/10.5941/MYCO.2015.43.4.423
Hu J, Yang TJ, Friman VP, et al., 2021. Introduction of probiotic bacterial consortia promotes plant growth via impacts on the resident rhizosphere microbiome. Proc Royal Soc B, 288(1960):20211396. https://doi.org/10.1098/rspb.2021.1396https://doi.org/10.1098/rspb.2021.1396
Jin ZQ, Li YL, Ren JH, et al., 2018. Yield, nutritional content, and antioxidant activity of Pleurotus ostreatus on corncobs supplemented with herb residues. Mycobiology, 46(1):24-32. https://doi.org/10.1080/12298093.2018.1454014https://doi.org/10.1080/12298093.2018.1454014
Karami S, Roayaei M, Zahedi E, et al., 2017. Antifungal effects of Lactobacillus species isolated from local dairy products. Int J Pharm Investig, 7(2):77. https://doi.org/10.4103/jphi.JPHI_9_17https://doi.org/10.4103/jphi.JPHI_9_17
Kertesz MA, Thai M, 2018. Compost bacteria and fungi that influence growth and development of Agaricus bisporus and other commercial mushrooms. Appl Microbiol Biotechnol, 102(4):1639-1650. https://doi.org/10.1007/s00253-018-8777-zhttps://doi.org/10.1007/s00253-018-8777-z
Kogure M, Nakaya N, Hirata T, et al., 2021. Sodium/potassium ratio change was associated with blood pressure change: possibility of population approach for sodium/potassium ratio reduction in health checkup. Hypertens Res, 44(2):225-231. https://doi.org/10.1038/s41440-020-00536-7https://doi.org/10.1038/s41440-020-00536-7
Kumar A, Singh M, Singh G, 2013. Effect of different pretreatments on the quality of mushrooms during solar drying. J Food Sci Technol, 50(1):165-170. https://doi.org/10.1007/s13197-011-0320-5https://doi.org/10.1007/s13197-011-0320-5
Kumari S, Naraian R, 2021. Enhanced growth and yield of oyster mushroom by growth‐promoting bacteria Glutamicibacter arilaitensis MRC119. J Basic Microbiol, 61(1):45-54. https://doi.org/10.1002/jobm.202000379https://doi.org/10.1002/jobm.202000379
Lesa KN, Khandaker MU, Mohammad Rashed Iqbal F, et al., 2022. Nutritional value, medicinal importance, and health-promoting effects of dietary mushroom (Pleurotus ostreatus). J Food Qual, 2022:2454180. https://doi.org/10.1155/2022/2454180https://doi.org/10.1155/2022/2454180
Munir N, Xiang TC, Bhuyar P, et al., 2021. Effective microbes (EM) and their potential on mushroom commercialization in Malaysia. Maejo Int J Energy Environ Commun, 3(3):45-55. https://doi.org/10.54279/mijeec.v3i3.246955https://doi.org/10.54279/mijeec.v3i3.246955
Munir N, Ramli ANM, Norsazali NFS, et al., 2023. Valorization of agro-industrial waste for the advancement of mushrooms and their production yield. Biomass Convers Biorefin, in press. https://doi.org/10.1007/s13399-023-04773-xhttps://doi.org/10.1007/s13399-023-04773-x
Nagpal R, Kaur A, 2011. Synbiotic effect of various prebiotics on in vitro activities of probiotic lactobacilli. Ecol Food Nutr, 50(1):63-68. https://doi.org/10.1080/03670244.2011.539161https://doi.org/10.1080/03670244.2011.539161
O'Keefe JM, 1998. Review of research. J Catholic Educ, 2(2):235-236. https://doi.org/10.15365/joce.0202132013https://doi.org/10.15365/joce.0202132013
Oladipo AD, Adegboyega DA, Osunlaja OA, et al., 2020. Comparative yield and biological efficiency of oyster mushroom (Pleurotus ostreatus) cultivated on sawdust of some selected tree species. J Res Forestry Wildl Environ, 12(3):216-222.
Phuyal N, Jha PK, Raturi PP, et al., 2020. In vitro antibacterial activities of methanolic extracts of fruits, seeds, and bark of Zanthoxylum armatum DC. J Trop Med, 2020:2803063. https://doi.org/10.1155/2020/2803063https://doi.org/10.1155/2020/2803063
Rahman M, Sabir AA, Mukta JA, et al., 2018. Plant probiotic bacteria Bacillus and Paraburkholderia improve growth, yield and content of antioxidants in strawberry fruit. Sci Rep, 8:2504. https://doi.org/10.1038/s41598-018-20235-1https://doi.org/10.1038/s41598-018-20235-1
Rahmat, Rahim I, Putera MI, et al., 2020. Growth and production of white oyster mushroom (Pleurotus ostreatus) by adding coconut water to agricultural waste as a carbon source media. IOP Conf Ser Earth Environ Sci, 575:012090. https://doi.org/10.1088/1755-1315/575/1/012090https://doi.org/10.1088/1755-1315/575/1/012090
Raman J, Kim JS, Choi KR, et al., 2022. Application of lactic acid bacteria (LAB) in sustainable agriculture: advantages and limitations. Int J Mol Sci, 23(14):7784. https://doi.org/10.3390/ijms23147784https://doi.org/10.3390/ijms23147784
Rohani MF, Islam SM, Hossain MK, et al., 2022. Probiotics, prebiotics and synbiotics improved the functionality of aquafeed: upgrading growth, reproduction, immunity and disease resistance in fish. Fish Shellfish Immunol, 120:569-589. https://doi.org/10.1016/j.fsi.2021.12.037https://doi.org/10.1016/j.fsi.2021.12.037
Saminathan M, Sieo CC, Kalavathy R, et al., 2011. Effect of prebiotic oligosaccharides on growth of Lactobacillus strains used as a probiotic for chickens. Afr J Microbiol Res, 5(1):57-64. https://doi.org/10.5897/AJMR10.700https://doi.org/10.5897/AJMR10.700
Synytsya A, Míčková K, Jablonský I, et al., 2008. Mushrooms of genus Pleurotus as a source of dietary fibres and glucans for food supplements. Czech J Food Sci, 26(6):441-446. https://doi.org/10.17221/1361-CJFShttps://doi.org/10.17221/1361-CJFS
Tolera KD, Abera S, 2017. Nutritional quality of oyster mushroom (Pleurotus ostreatus) as affected by osmotic pretreatments and drying methods. Food Sci Nutr, 5(5):989-996. https://doi.org/10.1002/fsn3.484https://doi.org/10.1002/fsn3.484
Wilson B, Whelan K, 2017. Prebiotic inulin‐type fructans and galacto‐oligosaccharides: definition, specificity, function, and application in gastrointestinal disorders. J Gastroenterol Hepatol, 32(S1):64-68. https://doi.org/10.1111/jgh.13700https://doi.org/10.1111/jgh.13700
Zarenejad F, Yakhchali B, Rasooli I, 2012. Evaluation of indigenous potent mushroom growth promoting bacteria (MGPB) on Agaricus bisporus production. World J Microbiol Biotechnol, 28(1):99-104. https://doi.org/10.1007/s11274-011-0796-1https://doi.org/10.1007/s11274-011-0796-1
0
浏览量
11
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构