无数据
Scan for full text
1.Center for Plastic & Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou 310014, China
2.School of Stomatology, Bengbu Medical College, Bengbu 233030, China
3.The Second Clinical Medical College, Wenzhou Medical University, Wenzhou 325035, China
4.Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou 311122, China
高鹏飞,张文涛,林宇杰等.木犀草素通过调节PLK1表达和细胞能量代谢抑制口腔癌细胞OC3的生长和迁移[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2023,24(12):1151-1158.
Pengfei GAO, Wentao ZHANG, Yujie LIN, et al. Luteolin suppresses oral carcinoma 3 (OC3) cell growth and migration via modulating polo-like kinase 1 (PLK1) expression and cellular energy metabolism[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2023,24(12):1151-1158.
高鹏飞,张文涛,林宇杰等.木犀草素通过调节PLK1表达和细胞能量代谢抑制口腔癌细胞OC3的生长和迁移[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2023,24(12):1151-1158. DOI: 10.1631/jzus.B2300200.
Pengfei GAO, Wentao ZHANG, Yujie LIN, et al. Luteolin suppresses oral carcinoma 3 (OC3) cell growth and migration via modulating polo-like kinase 1 (PLK1) expression and cellular energy metabolism[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2023,24(12):1151-1158. DOI: 10.1631/jzus.B2300200.
尽管木犀草素的抗癌作用已在多种肿瘤模型中报道,但关于其在口腔癌中的作用研究鲜少。本研究探讨了木犀草素对口腔癌细胞OC3生长和迁移的影响及其机制。结果表明,木犀草素能够抑制或下调OC3细胞的增殖、细胞周期以及p53-Ser15(P)和polo样激酶1(PLK1)蛋白水平。耗氧率(OCR)和胞外酸化率(ECAR)水平以及ATP产量也显著降低。Transwell试验进一步证实OC3细胞的迁移能力会受到木犀草素的影响。综上,本研究发现木犀草素能抑制口腔癌细胞OC3的增殖,其机制可能与p53-PLK1信号传导下调和细胞能量代谢降低有关。
木犀草素口腔癌增殖p53-PLK1信号通路能量代谢抗癌
Al-Ishaq RK, Abotaleb M, Kubatka P, et al., 2019. Flavonoids and their anti-diabetic effects: cellular mechanisms and effects to improve blood sugar levels. Biomolecules, 9(9):430. https://doi.org/10.3390/biom9090430https://doi.org/10.3390/biom9090430
Bhat AA, Yousuf P, Wani NA, et al., 2021. Tumor microenvironment: an evil nexus promoting aggressive head and neck squamous cell carcinoma and avenue for targeted therapy. Sig Transduct Target Ther, 6:12. https://doi.org/10.1038/s41392-020-00419-whttps://doi.org/10.1038/s41392-020-00419-w
Bhusal CK, Uti DE, Mukherjee D, et al., 2023. Unveiling Nature’s potential: promising natural compounds in Parkinson’s disease management. Parkinsonism Relat Disord, 115:105799. https://doi.org/10.1016/j.parkreldis.2023.105799https://doi.org/10.1016/j.parkreldis.2023.105799
Chen P, Zhang JY, Sha BB, et al., 2017. Luteolin inhibits cell proliferation and induces cell apoptosis via down-regulation of mitochondrial membrane potential in esophageal carcinoma cells EC1 and KYSE450. Oncotarget, 8(16):27471-27480. https://doi.org/10.18632/oncotarget.15832https://doi.org/10.18632/oncotarget.15832
Chen QM, Wang YH, Shuai J, 2023. Current status and future prospects of stomatology research. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 24(10):853-867. https://doi.org/10.1631/jzus.B2200702https://doi.org/10.1631/jzus.B2200702
Cook MT, 2018. Mechanism of metastasis suppression by luteolin in breast cancer. Breast Cancer (Dove Med Press), 10:89-100. https://doi.org/10.2147/BCTT.S144202https://doi.org/10.2147/BCTT.S144202
Davella R, Mamidala E, 2021. Luteolin: a potential multiple targeted drug effectively inhibits diabetes mellitus protein targets. J Pharm Res Int, 33(44B):161-171. https://doi.org/10.9734/jpri/2021/v33i44B32661https://doi.org/10.9734/jpri/2021/v33i44B32661
Fang J, Zhou Q, Shi XL, et al., 2007. Luteolin inhibits insulin-like growth factor 1 receptor signaling in prostate cancer cells. Carcinogenesis, 28(3):713-723. https://doi.org/10.1093/carcin/bgl189https://doi.org/10.1093/carcin/bgl189
Fang XJ, Yu SX, Lu YL, et al., 2000. Phosphorylation and inactivation of glycogen synthase kinase 3 by protein kinase A. Proc Natl Acad Sci USA, 97(22):11960-11965. https://doi.org/10.1073/pnas.220413597https://doi.org/10.1073/pnas.220413597
Han T, Li HL, Zhang QY, et al., 2007. Bioactivity-guided fractionation for anti-inflammatory and analgesic properties and constituents of Xanthium strumarium L. Phytomedicine, 14(12):825-829. https://doi.org/10.1016/j.phymed.2007.01.010https://doi.org/10.1016/j.phymed.2007.01.010
He ZJ, Li XQ, Wang Z, et al., 2023. Protective effects of luteolin against amyloid beta-induced oxidative stress and mitochondrial impairments through peroxisome proliferator-activated receptor γ-dependent mechanism in Alzheimer’s disease. Redox Biol, 66:102848. https://doi.org/10.1016/j.redox.2023.102848https://doi.org/10.1016/j.redox.2023.102848
Iida K, Naiki T, Naiki-Ito A, et al., 2020. Luteolin suppresses bladder cancer growth via regulation of mechanistic target of rapamycin pathway. Cancer Sci, 111(4):1165-1179. https://doi.org/10.1111/cas.14334https://doi.org/10.1111/cas.14334
Iliaki S, Beyaert R, Afonina IS, 2021. Polo-like kinase 1 (PLK1) signaling in cancer and beyond. Biochem Pharmacol, 193:114747. https://doi.org/10.1016/j.bcp.2021.114747https://doi.org/10.1016/j.bcp.2021.114747
Imran M, Rauf A, Abu-Izneid T, et al., 2019. Luteolin, a flavonoid, as an anticancer agent: a review. Biomed Pharmacother, 112:108612. https://doi.org/10.1016/j.biopha.2019.108612https://doi.org/10.1016/j.biopha.2019.108612
Jehn P, Dittmann J, Zimmerer R, et al., 2019. Survival rates according to tumour location in patients with surgically treated oral and oropharyngeal squamous cell carcinoma. Anticancer Res, 39(5):2527-2533. https://doi.org/10.21873/anticanres.13374https://doi.org/10.21873/anticanres.13374
Johnson DE, Burtness B, Leemans CR, et al., 2020. Head and neck squamous cell carcinoma. Nat Rev Dis Primers, 6:92. https://doi.org/10.1038/s41572-020-00224-3https://doi.org/10.1038/s41572-020-00224-3
Kang KA, Piao MJ, Ryu YS, et al., 2017. Luteolin induces apoptotic cell death via antioxidant activity in human colon cancer cells. Int J Oncol, 51(4):1169-1178. https://doi.org/10.3892/ijo.2017.4091https://doi.org/10.3892/ijo.2017.4091
Lakhera S, Rana M, Devlal K, et al., 2022. A comprehensive exploration of pharmacological properties, bioactivities and inhibitory potentiality of luteolin from Tridax procumbens as anticancer drug by in-silico approach. Struct Chem, 33(3):703-719. https://doi.org/10.1007/s11224-022-01882-7https://doi.org/10.1007/s11224-022-01882-7
Leemans CR, Snijders PJF, Brakenhoff RH, 2018. The molecular landscape of head and neck cancer. Nat Rev Cancer, 18(5):269-282. https://doi.org/10.1038/nrc.2018.11https://doi.org/10.1038/nrc.2018.11
Li QF, Tie Y, Alu A, et al., 2023. Targeted therapy for head and neck cancer: signaling pathways and clinical studies. Sig Transduct Target Ther, 8:31. https://doi.org/10.1038/s41392-022-01297-0https://doi.org/10.1038/s41392-022-01297-0
Liang GH, Zhao JL, Dou YX, et al., 2022. Mechanism and experimental verification of Luteolin for the treatment of osteoporosis based on network pharmacology. Front Endocrinol, 13:866641. https://doi.org/10.3389/fendo.2022.866641https://doi.org/10.3389/fendo.2022.866641
Lim W, Yang C, Bazer FW, et al., 2016. Luteolin inhibits proliferation and induces apoptosis of human placental choriocarcinoma cells by blocking the PI3K/AKT pathway and regulating sterol regulatory element binding protein activity. Biol Reprod, 95(4):82. https://doi.org/10.1095/biolreprod.116.141556https://doi.org/10.1095/biolreprod.116.141556
Lin D, Kuang G, Wan JY, et al., 2017. Luteolin suppresses the metastasis of triple-negative breast cancer by reversing epithelial-to-mesenchymal transition via downregulation of β-catenin expression. Oncol Rep, 37(2):895-902. https://doi.org/10.3892/or.2016.5311https://doi.org/10.3892/or.2016.5311
Lin SC, Liu CJ, Chiu CP, et al., 2004. Establishment of OC3 oral carcinoma cell line and identification of NF-κB activation responses to areca nut extract. J Oral Pathol Med, 33(2):79-86. https://doi.org/10.1111/j.1600-0714.2004.00034.xhttps://doi.org/10.1111/j.1600-0714.2004.00034.x
Lin Y, Shi RX, Wang X, et al., 2008. Luteolin, a flavonoid with potential for cancer prevention and therapy. Curr Cancer Drug Targets, 8(7):634-646. https://doi.org/10.2174/156800908786241050https://doi.org/10.2174/156800908786241050
Lopez-Lazaro M, 2009. Distribution and biological activities of the flavonoid luteolin. Mini Rev Med Chem, 9(1):31-59. https://doi.org/10.2174/138955709787001712https://doi.org/10.2174/138955709787001712
Mao YJ, Meng LK, Liu HY, et al., 2022. Therapeutic potential of traditional Chinese medicine for vascular endothelial growth factor. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 23(5):353-364. https://doi.org/10.1631/jzus.B2101055https://doi.org/10.1631/jzus.B2101055
Muruganathan N, Dhanapal AR, Baskar V, et al., 2022. Recent updates on source, biosynthesis, and therapeutic potential of natural flavonoid luteolin: a review. Metabolites, 12(11):1145. https://doi.org/10.3390/metabo12111145https://doi.org/10.3390/metabo12111145
Muzaffar J, Bari S, Kirtane K, et al., 2021. Recent advances and future directions in clinical management of head and neck squamous cell carcinoma. Cancers, 13(2):338. https://doi.org/10.3390/cancers13020338https://doi.org/10.3390/cancers13020338
Nabavi SF, Braidy N, Gortzi O, et al., 2015. Luteolin as an anti-inflammatory and neuroprotective agent: a brief review. Brain Res Bull, 119(Part A):1-11. https://doi.org/10.1016/j.brainresbull.2015.09.002https://doi.org/10.1016/j.brainresbull.2015.09.002
Naia L, Pinho CM, Dentoni G, et al., 2021. Neuronal cell-based high-throughput screen for enhancers of mitochondrial function reveals luteolin as a modulator of mitochondria-endoplasmic reticulum coupling. BMC Biol, 19:57. https://doi.org/10.1186/s12915-021-00979-5https://doi.org/10.1186/s12915-021-00979-5
Pandurangan AK, Dharmalingam P, Sadagopan SKA, et al., 2013. Luteolin induces growth arrest in colon cancer cells through involvement of Wnt/β-catenin/GSK-3β signaling. J Environ Pathol Toxicol Oncol, 32(2):131-139. https://doi.org/10.1615/jenvironpatholtoxicoloncol.2013007522https://doi.org/10.1615/jenvironpatholtoxicoloncol.2013007522
Potočnjak I, Šimić L, Gobin I, et al., 2020. Antitumor activity of luteolin in human colon cancer SW620 cells is mediated by the ERK/FOXO3a signaling pathway. Toxicol Vitro, 66:104852. https://doi.org/10.1016/j.tiv.2020.104852https://doi.org/10.1016/j.tiv.2020.104852
Pu YS, Zhang T, Wang JH, et al., 2018. Luteolin exerts an anticancer effect on gastric cancer cells through multiple signaling pathways and regulating miRNAs. J Cancer, 9(20):3669-3675. https://doi.org/10.7150/jca.27183https://doi.org/10.7150/jca.27183
Rehfeldt SCH, Silva J, Alves C, et al., 2022. Neuroprotective effect of luteolin-7-O-glucoside against 6-OHDA-induced damage in undifferentiated and RA-differentiated SH-SY5Y cells. Int J Mol Sci, 23(6):2914. https://doi.org/10.3390/ijms23062914https://doi.org/10.3390/ijms23062914
Reyes-Farias M, Carrasco-Pozo C, 2019. The anti-cancer effect of quercetin: molecular implications in cancer metabolism. Int J Mol Sci, 20(13):3177. https://doi.org/10.3390/ijms20133177https://doi.org/10.3390/ijms20133177
Ruffin AT, Li H, Vujanovic L, et al., 2023. Improving head and neck cancer therapies by immunomodulation of the tumour microenvironment. Nat Rev Cancer, 23(3):173-188. https://doi.org/10.1038/s41568-022-00531-9https://doi.org/10.1038/s41568-022-00531-9
Seelinger G, Merfort I, Wölfle U, et al., 2008a. Anti-carcinogenic effects of the flavonoid luteolin. Molecules, 13(10):2628-2651. https://doi.org/10.3390/molecules13102628https://doi.org/10.3390/molecules13102628
Seelinger G, Merfort I, Schempp CM, 2008b. Anti-oxidant, anti-inflammatory and anti-allergic activities of luteolin. Planta Med, 74(14):1667-1677. https://doi.org/10.1055/s-0028-1088314https://doi.org/10.1055/s-0028-1088314
Sun BY, Liu YQ, He DH, et al., 2021. Traditional Chinese medicines and their active ingredients sensitize cancer cells to TRAIL-induced apoptosis. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 22(3):190-203. https://doi.org/10.1631/jzus.B2000497https://doi.org/10.1631/jzus.B2000497
Tuorkey MJ, 2016. Molecular targets of luteolin in cancer. Eur J Cancer Prev, 25(1):65-76. https://doi.org/10.1097/CEJ.0000000000000128https://doi.org/10.1097/CEJ.0000000000000128
Wang GG, Lu XH, Li W, et al., 2011. Protective effects of luteolin on diabetic nephropathy in STZ-induced diabetic rats. Evid Based Complement Alternat Med, 2011:323171. https://doi.org/10.1155/2011/323171https://doi.org/10.1155/2011/323171
Wang HT, Yao XQ, Huang KL, et al., 2022. Low-dose dexamethasone in combination with luteolin improves myocardial infarction recovery by activating the antioxidative response. Biomed Pharmacother, 151:113121. https://doi.org/10.1016/j.biopha.2022.113121https://doi.org/10.1016/j.biopha.2022.113121
Zhang WB, Li DB, Shan Y, et al., 2023. Luteolin intake is negatively associated with all-cause and cardiac mortality among patients with type 2 diabetes mellitus. Diabetol Metab Syndr, 15:59. https://doi.org/10.1186/s13098-023-01026-9https://doi.org/10.1186/s13098-023-01026-9
Zhou Z, Chen J, Zhang ZX, et al., 2022. Solubilization of luteolin in PVP40 solid dispersion improves inflammation-induced insulin resistance in mice. Eur J Pharm Sci, 174:106188. https://doi.org/10.1016/j.ejps.2022.106188https://doi.org/10.1016/j.ejps.2022.106188
0
浏览量
1
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构