无数据
Scan QR Code
Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Disease, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
纸质出版日期: 2023-11-15 ,
网络出版日期: 2023-10-20 ,
收稿日期: 2023-01-02 ,
修回日期: 2023-04-18 ,
胡金星,姜治伟,张晶等.丝素蛋白涂层在生物材料表面修饰中的应用: 生物医学领域的丝绸之路[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2023,24(11):943-956.
JINXING HU, ZHIWEI JIANG, JING ZHANG, et al. Application of silk fibroin coatings for biomaterial surface modification: a silk road for biomedicine. [J]. Journal of zhejiang university-science b (biomedicine & biotechnology), 2023, 24(11): 943-956.
胡金星,姜治伟,张晶等.丝素蛋白涂层在生物材料表面修饰中的应用: 生物医学领域的丝绸之路[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2023,24(11):943-956. DOI: 10.1631/jzus.B2300003.
JINXING HU, ZHIWEI JIANG, JING ZHANG, et al. Application of silk fibroin coatings for biomaterial surface modification: a silk road for biomedicine. [J]. Journal of zhejiang university-science b (biomedicine & biotechnology), 2023, 24(11): 943-956. DOI: 10.1631/jzus.B2300003.
作为一种天然的生物聚合物,丝素蛋白(SF)因其具有极低的免疫原性、可调节的生物降解性和优良的生物相容性而成为了生物医学领域的热门材料。目前,SF在生物工程的应用已经利用了多种技术。大多数文献综述着眼在基于SF的生物材料及其不同的应用形式,如薄膜、水凝胶和支架。当SF用作其他生物医学基底材料上的涂层时也很有利用价值;然而,关于含SF涂层的生物材料的综述较少。因此,本文收集了SF涂层在生物材料表面改性中应用的研究进展,阐述了其在生物材料表面修饰的各种制备方法,并介绍了生物材料表面改性的最新进展。此外,本文还讨论了SF涂层在生物医学领域的广泛应用,包括骨再生、韧带再生、皮肤和黏膜再生、神经再生及口腔种植体表面修饰。SF涂层有利于诱导细胞黏附和迁移,促进羟基磷灰石沉积和基质矿化,抑制Notch信号通路,是一种很有前景的骨再生策略。同时,SF涂层复合支架是韧带损伤后再生的候选材料。SF涂层可以提高基底材料的机械性能,并使敷料材料在皮肤和黏膜再生过程中具有整体稳定性。此外,SF涂层由于其只有介电特性、机械柔韧性和促进血管生成的作用,可以成为一种加速神经再生的潜在材料。SF涂层也是口腔种植体表面改性的一种有效手段,可以促进不同材料种植体周围的成骨。本综述对SF涂层生物材料的改进具有一定参考价值,并且有助于实现未来的临床转化。
Silk fibroin (SF) as a natural biopolymer has become a popular material for biomedical applications due to its minimal immunogenicity
tunable biodegradability
and high biocompatibility. Nowadays
various techniques have been developed for the applications of SF in bioengineering. Most of the literature reviews focus on the SF-based biomaterials and their different forms of applications such as films
hydrogels
and scaffolds. SF is also valuable as a coating on other substrate materials for biomedicine; however
there are few reviews related to SF-coated biomaterials. Thus
in this review
we focused on the surface modification of biomaterials using SF coatings
demonstrated their various preparation methods on substrate materials
and introduced the latest procedures. The diverse applications of SF coatings for biomedicine are discussed
including bone
ligament
skin
mucosa
and nerve regeneration
and dental implant surface modification. SF coating is conducive to inducing cell adhesion and migration
promoting hydroxyapatite (HA) deposition and matrix mineralization
and inhibiting the Notch signaling pathway
making it a promising strategy for bone regeneration. In addition
SF-coated composite scaffolds can be considered prospective candidates for ligament regeneration after injury. SF coating has been proven to enhance the mechanical properties of the substrate material
and render integral stability to the dressing material during the regeneration of skin and mucosa. Moreover
SF coating is a potential strategy to accelerate nerve regeneration due to its dielectric properties
mechanical flexibility
and angiogenesis promotion effect. In addition
SF coating is an effective and popular means for dental implant surface modification to promote osteogenesis around implants made of different materials. Thus
this review can be of great benefit for further improvements in SF-coated biomaterials
and will undoubtedly contribute to clinical transformation in the future.
丝素蛋白涂层表面改性Notch信号通路
Silk fibroinCoatingSurface modificationNotch signaling pathway
Ai CC, Sheng DD, Chen J, et al., 2017. Surface modification of vascular endothelial growth factor-loaded silk fibroin to improve biological performance of ultra-high-molecular-weight polyethylene via promoting angiogenesis. Int J Nanomedicine, 12:7737-7750. https://doi.org/10.2147/Ijn.S148845https://doi.org/10.2147/Ijn.S148845
Altman GH, Diaz F, Jakuba C, et al., 2003. Silk-based biomaterials. Biomaterials, 24(3):401-416. https://doi.org/10.1016/S0142-9612(02)00353-8https://doi.org/10.1016/S0142-9612(02)00353-8
Arasteh S, Kazemnejad S, Khanjani S, et al., 2016. Fabrication and characterization of nano-fibrous bilayer composite for skin regeneration application. Methods, 99:3-12. https://doi.org/10.1016/j.ymeth.2015.08.017https://doi.org/10.1016/j.ymeth.2015.08.017
Arkhangelskiy A, Maniglio D, Bucciarelli A, et al., 2021. Plasma-assisted deposition of silk fibroin on different surfaces. Adv Mater Interfaces, 8(13):2100324. https://doi.org/10.1002/admi.202100324https://doi.org/10.1002/admi.202100324
Aydogdu H, Keskin D, Baran ET, et al., 2016. Pullulan microcarriers for bone tissue regeneration. Mater Sci Eng C, 63:439-449. https://doi.org/10.1016/j.msec.2016.03.002https://doi.org/10.1016/j.msec.2016.03.002
Baranowska-Korczyc A, Hudecki A, Kamińska I, et al., 2021. Silk powder from cocoons and woven fabric as a potential bio-modifier. Materials, 14(22):6919. https://doi.org/10.3390/ma14226919https://doi.org/10.3390/ma14226919
Barik A, Ray SK, Byram PK, et al., 2020. Extensive early mineralization of pre-osteoblasts, inhibition of osteoclastogenesis and faster peri-implant bone healing in osteoporotic rat model: principle effectiveness of bone-specific delivery of Tibolone as evaluated in vitro and in vivo. Biomed Mater, 15(6):064102. https://doi.org/10.1088/1748-605x/abb12bhttps://doi.org/10.1088/1748-605x/abb12b
Bayraktar O, Malay Ö, Özgarip Y, et al., 2005. Silk fibroin as a novel coating material for controlled release of theophylline. Eur J Pharm Biopharm, 60(3):373-381. https://doi.org/10.1016/j.ejpb.2005.02.002https://doi.org/10.1016/j.ejpb.2005.02.002
Bharadwaz A, Jayasuriya AC, 2020. Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration. Mater Sci Eng C, 110:110698. https://doi.org/10.1016/j.msec.2020.110698https://doi.org/10.1016/j.msec.2020.110698
Bi XW, Li LH, Mao ZN, et al., 2020. The effects of silk layer-by-layer surface modification on the mechanical and structural retention of extracellular matrix scaffolds. Biomater Sci, 8(14):4026-4038. https://doi.org/10.1039/d0bm00448khttps://doi.org/10.1039/d0bm00448k
Boni BOO, Bakadia BM, Osi AR, et al., 2022. Immune response to silk sericin-fibroin composites: potential immunogenic elements and alternatives for immunomodulation. Macromol Biosci, 22:2100292. https://doi.org/10.1002/mabi.202100292https://doi.org/10.1002/mabi.202100292
Brånemark PI, 1983. Osseointegration and its experimental background. J Prosthet Dent, 50(3):399-410. https://doi.org/10.1016/s0022-3913(83)80101-2https://doi.org/10.1016/s0022-3913(83)80101-2
Cao Y, Liu FQ, Chen YL, et al., 2017. Drug release from core-shell PVA/silk fibroin nanoparticles fabricated by one-step electrospraying. Sci Rep, 7:11913. https://doi.org/10.1038/s41598-017-12351-1https://doi.org/10.1038/s41598-017-12351-1
Carrasco-Torres G, Valdés-Madrigal MA, Vásquez-Garzón VR, et al., 2019. Effect of silk fibroin on cell viability in electrospun scaffolds of polyethylene oxide. Polymers, 11(3):451. https://doi.org/10.3390/polym11030451https://doi.org/10.3390/polym11030451
Chen J, Zhuang A, Shao HL, et al., 2017. Robust silk fibroin/bacterial cellulose nanoribbon composite scaffolds with radial lamellae and intercalation structure for bone regeneration. J Mater Chem B, 5(20):3640-3650. https://doi.org/10.1039/c7tb00485khttps://doi.org/10.1039/c7tb00485k
Cheng X, Deng DM, Chen LL, et al., 2020. Electrodeposited assembly of additive-free silk fibroin coating from pre-assembled nanospheres for drug delivery. ACS Appl Mater Interfaces, 12(10):12018-12029. https://doi.org/10.1021/acsami.9b21808https://doi.org/10.1021/acsami.9b21808
Cheng X, Long DP, Chen LL, et al., 2021. Electrophoretic deposition of silk fibroin coatings with pre-defined architecture to facilitate precise control over drug delivery. Bioact Mater, 6(11):4243-4254. https://doi.org/10.1016/j.bioactmat.2021.03.046https://doi.org/10.1016/j.bioactmat.2021.03.046
Chouhan D, Mandal BB, 2020. Silk biomaterials in wound healing and skin regeneration therapeutics: from bench to bedside. Acta Biomater, 103:24-51. https://doi.org/10.1016/j.actbio.2019.11.050https://doi.org/10.1016/j.actbio.2019.11.050
dal Prà I, Petrini P, Chiarini A, et al., 2004. Silk fibroin-coated three-dimensional polyurethane scaffolds for tissue engineering: interactions with normal human fibroblasts. Tissue Eng Part A, 9(6):1113-1121. https://doi.org/10.1089/10763270360728026https://doi.org/10.1089/10763270360728026
Ealla KKR, Veeraraghavan VP, Ravula NR, et al., 2022. Silk hydrogel for tissue engineering: a review. J Contemp Dent Pract, 23(4):467-477. https://doi.org/10.5005/jp-journals-10024-3322https://doi.org/10.5005/jp-journals-10024-3322
Elia R, Michelson CD, Perera AL, et al., 2015. Electrodeposited silk coatings for bone implants. J Biomed Mater Res Part B Appl Biomater, 103(8):1602-1609. https://doi.org/10.1002/jbm.b.33351https://doi.org/10.1002/jbm.b.33351
Fan YQ, Li X, Yang RJ, 2018. The surface modification methods for constructing polymer-coated stents. Int J Polym Sci, 2018:3891686. https://doi.org/10.1155/2018/3891686https://doi.org/10.1155/2018/3891686
Hasturk O, Sahoo JK, Kaplan DL, 2020. Synthesis and characterization of silk ionomers for layer-by-layer electrostatic deposition on individual mammalian cells. Biomacromolecules, 21(7):2829-2843. https://doi.org/10.1021/acs.biomac.0c00523https://doi.org/10.1021/acs.biomac.0c00523
Holzapfel BM, Rudert M, Hutmacher DW, 2017. Scaffold-based bone tissue engineering. Orthopade, 46(8):701-710 (in German). https://doi.org/10.1007/s00132-017-3444-0https://doi.org/10.1007/s00132-017-3444-0
Jiang J, Ai CC, Zhan ZF, et al., 2016. Enhanced fibroblast cellular ligamentization process to polyethylene terepthalate artificial ligament by silk fibroin coating. Artif Organs, 40(4):385-393. https://doi.org/10.1111/aor.12571https://doi.org/10.1111/aor.12571
Joseph E, Rajput SS, Patil S, et al., 2021. Mechanism of adhesion of natural polymer coatings to chemically modified siloxane polymer. Langmuir, 37(9):2974-2984. https://doi.org/10.1021/acs.langmuir.1c00047https://doi.org/10.1021/acs.langmuir.1c00047
Jung SR, Song NJ, Yang DK, et al., 2013. Silk proteins stimulate osteoblast differentiation by suppressing the Notch signaling pathway in mesenchymal stem cells. Nutr Res, 33(2):162-170. https://doi.org/10.1016/j.nutres.2012.11.006https://doi.org/10.1016/j.nutres.2012.11.006
Kumar S, Singh SK, 2017. Fabrication and characterization of fibroin solution and nanoparticle from silk fibers of Bombyx mori. Part Sci Technol, 35(3):304-313. https://doi.org/10.1080/02726351.2016.1154908https://doi.org/10.1080/02726351.2016.1154908
Lim WL, Liau LL, Ng MH, et al., 2019. Current progress in tendon and ligament tissue engineering. Tissue Eng Regen Med, 16(6):549-571. https://doi.org/10.1007/s13770-019-00196-whttps://doi.org/10.1007/s13770-019-00196-w
Lujerdean C, Baci GM, Cucu AA, et al., 2022. The contribution of silk fibroin in biomedical engineering. Insects, 13(3):286. https://doi.org/10.3390/insects13030286https://doi.org/10.3390/insects13030286
Luo ZW, Li J, Qu J, et al., 2019. Cationized Bombyx mori silk fibroin as a delivery carrier of the VEGF165-Ang-1 coexpression plasmid for dermal tissue regeneration. J Mater Chem B, 7(1):80-94. https://doi.org/10.1039/c8tb01424hhttps://doi.org/10.1039/c8tb01424h
Ma XY, Ma TC, Feng YF, et al., 2021. Promotion of osteointegration under diabetic conditions by a silk fibroin coating on 3D-printed porous titanium implants via a ROS-mediated NF-κB pathway. Biomed Mater, 16(3):035015. https://doi.org/10.1088/1748-605X/abaaa1https://doi.org/10.1088/1748-605X/abaaa1
Melke J, Midha S, Ghosh S, et al., 2016. Silk fibroin as biomaterial for bone tissue engineering. Acta Biomater, 31:1-16. https://doi.org/10.1016/j.actbio.2015.09.005https://doi.org/10.1016/j.actbio.2015.09.005
Midha S, Murab S, Ghosh S, 2016. Osteogenic signaling on silk-based matrices. Biomaterials, 97:133-153. https://doi.org/10.1016/j.biomaterials.2016.04.020https://doi.org/10.1016/j.biomaterials.2016.04.020
Muangsanit P, Shipley RJ, Phillips JB, 2018. Vascularization strategies for peripheral nerve tissue engineering. Anat Rec, 301(10):1657-1667. https://doi.org/10.1002/ar.23919https://doi.org/10.1002/ar.23919
Ojah N, Borah R, Ahmed GA, et al., 2020. Surface modification of electrospun silk/AMOX/PVA nanofibers by dielectric barrier discharge plasma: physiochemical properties, drug delivery and in-vitro biocompatibility. Prog Biomater, 9(4):219-237. https://doi.org/10.1007/s40204-020-00144-1https://doi.org/10.1007/s40204-020-00144-1
Qian YN, Li LH, Song Y, et al., 2018. Surface modification of nanofibrous matrices via layer-by-layer functionalized silk assembly for mitigating the foreign body reaction. Biomaterials, 164:22-37. https://doi.org/10.1016/j.biomaterials.2018.02.038https://doi.org/10.1016/j.biomaterials.2018.02.038
Qiao F, Zhang JJ, Wang JH, et al., 2017. Silk fibroin-coated PLGA dimpled microspheres for retarded release of simvastatin. Colloids Surf B Biointerfaces, 158:112-118. https://doi.org/10.1016/j.colsurfb.2017.06.038https://doi.org/10.1016/j.colsurfb.2017.06.038
Qu YY, Hong G, Liu L, et al., 2019. Evaluation of silk fibroin electrogel coating for zirconia material surface. Dent Mater J, 38(5):813-820. https://doi.org/10.4012/dmj.2018-228https://doi.org/10.4012/dmj.2018-228
Rahman M, Balu R, Abraham A, et al., 2021. Engineering a bioactive hybrid coating for in vitro corrosion control of magnesium and its alloy. ACS Appl Bio Mater, 4(7):5542-5555. https://doi.org/10.1021/acsabm.1c00366https://doi.org/10.1021/acsabm.1c00366
Rnjak-Kovacina J, DesRochers TM, Burke KA, et al., 2015. The effect of sterilization on silk fibroin biomaterial properties. Macromol Biosci, 15(6):861-874. https://doi.org/10.1002/mabi.201500013https://doi.org/10.1002/mabi.201500013
Saha S, Pramanik K, Biswas A, 2019. Silk fibroin coated TiO2 nanotubes for improved osteogenic property of Ti6Al4V bone implants. Mater Sci Eng C, 105:109982. https://doi.org/10.1016/j.msec.2019.109982https://doi.org/10.1016/j.msec.2019.109982
Schünemann FH, Galárraga-Vinueza ME, Magini R, et al., 2019. Zirconia surface modifications for implant dentistry. Mater Sci Eng C, 98:1294-1305. https://doi.org/10.1016/j.msec.2019.01.062https://doi.org/10.1016/j.msec.2019.01.062
Sethi N, Kang YB, 2012. Notch signaling: mediator and therapeutic target of bone metastasis. Bonekey Rep, 1:3. https://doi.org/10.1038/bonekey.2012.2https://doi.org/10.1038/bonekey.2012.2
Sharma S, Bano S, Ghosh AS, et al., 2016. Silk fibroin nanoparticles support in vitro sustained antibiotic release and osteogenesis on titanium surface. Nanomedicine, 12(5):1193-1204. https://doi.org/10.1016/j.nano.2015.12.385https://doi.org/10.1016/j.nano.2015.12.385
Šišková AO, Mosnáčková K, Hrůza J, et al., 2021. Electrospun poly(ethylene terephthalate)/silk fibroin composite for filtration application. Polymers, 13(15):2499. https://doi.org/10.3390/polym13152499https://doi.org/10.3390/polym13152499
Sun BB, Zhou ZF, Li DW, et al., 2019. Polypyrrole-coated poly(L-lactic acid-co-ε-caprolactone)/silk fibroin nanofibrous nerve guidance conduit induced nerve regeneration in rat. Mater Sci Eng C, 94:190-199. https://doi.org/10.1016/j.msec.2018.09.021https://doi.org/10.1016/j.msec.2018.09.021
Sun YM, Hu C, Yang YY, et al., 2019. Fibroin/peptide co-functionalized calcium titanate nanorods improve osteoinductivity of titanium via mimicking osteogenic niche. Mater Sci Eng C, 103:109836. https://doi.org/10.1016/j.msec.2019.109836https://doi.org/10.1016/j.msec.2019.109836
Tan MX, Liu WW, Liu FQ, et al., 2019. Silk fibroin-coated nanoagents for acidic lysosome targeting by a functional preservation strategy in cancer chemotherapy. Theranostics, 9(4):961-973. https://doi.org/10.7150/thno.30765https://doi.org/10.7150/thno.30765
Unalan I, Colpankan O, Albayrak AZ, et al., 2016. Biocompatibility of plasma-treated poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanofiber mats modified by silk fibroin for bone tissue regeneration. Mater Sci Eng C, 68:842-850. https://doi.org/10.1016/j.msec.2016.07.054https://doi.org/10.1016/j.msec.2016.07.054
Valencia-Lazcano AA, Román-Doval R, de la Cruz-Burelo E, et al., 2018. Enhancing surface properties of breast implants by using electrospun silk fibroin. J Biomed Mater Res Part B Appl Biomater, 106(5):1655-1661. https://doi.org/10.1002/jbm.b.33973https://doi.org/10.1002/jbm.b.33973
Vig K, Chaudhari A, Tripathi S, et al., 2017. Advances in skin regeneration using tissue engineering. Int J Mol Sci, 18(4):789. https://doi.org/10.3390/ijms18040789https://doi.org/10.3390/ijms18040789
Wang CY, Wang SN, Yang YY, et al., 2018a. Bioinspired, biocompatible and peptide-decorated silk fibroin coatings for enhanced osteogenesis of bioinert implant. J Biomater Sci Polym Ed, 29(13):1595-1611. https://doi.org/10.1080/09205063.2018.1477316https://doi.org/10.1080/09205063.2018.1477316
Wang CY, Jia YC, Yang WC, et al., 2018b. Silk fibroin enhances peripheral nerve regeneration by improving vascularization within nerve conduits. J Biomed Mater Res Part A, 106(7):2070-2077. https://doi.org/10.1002/jbm.a.36390https://doi.org/10.1002/jbm.a.36390
Wang SG, Hu F, Li JC, et al., 2018. Design of electrospun nanofibrous mats for osteogenic differentiation of mesenchymal stem cells. Nanomed Nanotechnol Biol Med, 14(7):2505-2520. https://doi.org/10.1016/j.nano.2016.12.024https://doi.org/10.1016/j.nano.2016.12.024
Wang X, Gu ZP, Jiang B, et al., 2016. Surface modification of strontium-doped porous bioactive ceramic scaffolds via poly(DOPA) coating and immobilizing silk fibroin for excellent angiogenic and osteogenic properties. Biomater Sci, 4(4):678-688. https://doi.org/10.1039/c5bm00482ahttps://doi.org/10.1039/c5bm00482a
Watanabe M, Bhawal UK, Takemoto S, et al., 2021. Bio-functionalized titanium surfaces with modified silk fibroin carrying titanium binding motif to enhance the ossific differentiation of MC3T3-E1. Biotechnol Bioeng, 118(7):2585-2596. https://doi.org/10.1002/bit.27777https://doi.org/10.1002/bit.27777
Wenk E, Merkle HP, Meinel L, 2011. Silk fibroin as a vehicle for drug delivery applications. J Controlled Release, 150(2):128-141. https://doi.org/10.1016/j.jconrel.2010.11.007https://doi.org/10.1016/j.jconrel.2010.11.007
Xiong P, Jia ZJ, Li M, et al., 2018. Biomimetic Ca, Sr/P-doped silk fibroin films on Mg-1Ca alloy with dramatic corrosion resistance and osteogenic activities. ACS Biomater Sci Eng, 4(9):3163-3176. https://doi.org/10.1021/acsbiomaterials.8b00787https://doi.org/10.1021/acsbiomaterials.8b00787
Xiong P, Jia ZJ, Zhou WH, et al., 2019a. Osteogenic and pH stimuli-responsive self-healing coating on biomedical Mg-1Ca alloy. Acta Biomater, 92:336-350. https://doi.org/10.1016/j.actbio.2019.05.027https://doi.org/10.1016/j.actbio.2019.05.027
Xiong P, Yan JL, Wang P, et al., 2019b. A pH-sensitive self-healing coating for biodegradable magnesium implants. Acta Biomater, 98:160-173. https://doi.org/10.1016/j.actbio.2019.04.045https://doi.org/10.1016/j.actbio.2019.04.045
Xu W, Yagoshi K, Asakura T, et al., 2020. Silk fibroin as a coating polymer for sirolimus-eluting magnesium alloy stents. ACS Appl Bio Mater, 3(1):531-538. https://doi.org/10.1021/acsabm.9b00957https://doi.org/10.1021/acsabm.9b00957
Yamano M, Hirose R, Lye PY, et al., 2022. Bioengineered silkworm for producing cocoons with high fibroin content for regenerated fibroin biomaterial-based applications. Int J Mol Sci, 23(13):7433. https://doi.org/10.3390/ijms23137433https://doi.org/10.3390/ijms23137433
Yang MY, Zhou GS, Shuai YJ, et al., 2015. Ca2+-induced self-assembly of Bombyx mori silk sericin into a nanofibrous network-like protein matrix for directing controlled nucleation of hydroxylapatite nano-needles. J Mater Chem B, 3(12):2455-2462. https://doi.org/10.1039/c4tb01944jhttps://doi.org/10.1039/c4tb01944j
Yao MZ, Huang-Fu MY, Liu HN, et al., 2016. Fabrication and characterization of drug-loaded nano-hydroxyapatite/polyamide 66 scaffolds modified with carbon nanotubes and silk fibroin. Int J Nanomedicine, 11:6181-6194. https://doi.org/10.2147/Ijn.S106929https://doi.org/10.2147/Ijn.S106929
Ye XG, Li S, Chen XX, et al., 2017. Polyethylenimine/silk fibroin multilayers deposited nanofibrics for cell culture. Int J Biol Macromol, 94(Part A):492-499. https://doi.org/10.1016/j.ijbiomac.2016.10.047https://doi.org/10.1016/j.ijbiomac.2016.10.047
Yucel T, Lovett ML, Kaplan DL, 2014. Silk-based biomaterials for sustained drug delivery. J Controlled Release, 190:381-397. https://doi.org/10.1016/j.jconrel.2014.05.059https://doi.org/10.1016/j.jconrel.2014.05.059
Zhang Y, Shi N, He L, et al., 2021. Silk sericin activates mild immune response and increases antibody production. J Biomed Nanotechnol, 17(12):2433-2443. https://doi.org/10.1166/jbn.2021.3206https://doi.org/10.1166/jbn.2021.3206
Zhou WH, Jia ZJ, Xiong P, et al., 2017. Bioinspired and biomimetic AgNPs/gentamicin-embedded silk fibroin coatings for robust antibacterial and osteogenetic applications. ACS Appl Mater Interfaces, 9(31):25830-25846. https://doi.org/10.1021/acsami.7b06757https://doi.org/10.1021/acsami.7b06757
Zhou WH, Zhang T, Yan JL, et al., 2020. In vitro and in vivo evaluation of structurally-controlled silk fibroin coatings for orthopedic infection and in-situ osteogenesis. Acta Biomater, 116:223-245. https://doi.org/10.1016/j.actbio.2020.08.040https://doi.org/10.1016/j.actbio.2020.08.040
Zhou WH, Yan JL, Li YY, et al., 2021. Based on the synergistic effect of Mg2+ and antibacterial peptides to improve the corrosion resistance, antibacterial ability and osteogenic activity of magnesium-based degradable metals. Biomater Sci, 9(3):807-825. https://doi.org/10.1039/d0bm01584ahttps://doi.org/10.1039/d0bm01584a
Zhu L, Lin JX, Pei LJ, et al., 2022. Recent advances in environmentally friendly and green degumming processes of silk for textile and non-textile applications. Polymers, 14(4):659. https://doi.org/10.3390/polym14040659https://doi.org/10.3390/polym14040659
Ziemba AM, Fink TD, Crochiere MC, et al., 2020. Coating topologically complex electrospun fibers with nanothin silk fibroin enhances neurite outgrowth in vitro. ACS Biomater Sci Eng, 6(3):1321-1332. https://doi.org/10.1021/acsbiomaterials.9b01487https://doi.org/10.1021/acsbiomaterials.9b01487
0
浏览量
20
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构