无数据
Scan QR Code
1.Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an 223003, China
2.Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin Institute of Technology, Huai’an 223003, China
纸质出版日期: 2024-09-15 ,
网络出版日期: 2024-08-19 ,
收稿日期: 2023-10-22 ,
修回日期: 2023-12-26 ,
刘培,龙海钰,贺帅等.利用Bacillus paramycoides细胞内蛋白延伸因子Tu揭示硒纳米颗粒的创新绿色合成机制[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2024,25(09):789-795.
Pei LIU, Haiyu LONG, Shuai HE, et al. Unveiling the innovative green synthesis mechanism of selenium nanoparticles by exploiting intracellular protein elongation factor Tu from
刘培,龙海钰,贺帅等.利用Bacillus paramycoides细胞内蛋白延伸因子Tu揭示硒纳米颗粒的创新绿色合成机制[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2024,25(09):789-795. DOI: 10.1631/jzus.B2300738.
Pei LIU, Haiyu LONG, Shuai HE, et al. Unveiling the innovative green synthesis mechanism of selenium nanoparticles by exploiting intracellular protein elongation factor Tu from
纳米硒(SeNPs)因具有独特特性而备受关注,在各领域均有较好的应用前景。因此,开发高效、环保的SeNPs合成方法具有重要意义。本实验室保存的
Bacillus paramycoides
24522在24 h内可将亚硒酸盐还原为具有高稳定性和高分散性的SeNPs,其平均直径为150 nm(100~200 nm),zeta电位为-29.9 eV。本研究提出了一种绿色新颖的还原机制,即利用
B. paramycoides
24522中细胞质蛋白延伸因子Tu(EF-Tu)还原合成SeNPs,并经十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)和液相色谱串联质谱(LC-MS/MS)分析,鉴定EF-Tu分子质量约为43 kDa,含395个氨基酸。实时荧光定量聚合酶链反应(qPCR)结果显示EF-Tu的信使RNA(mRNA)表达量增加8.9倍,这进一步证实了EF-Tu参与了亚硒酸盐的还原。透射电镜(TEM)成像结果显示,SeNPs的合成发生在细胞内。综上可知,小SeNPs最初在细胞内作为种子与EF-Tu相互作用,随后经历成熟过程,并最终通过细胞裂解释放到培养基中。这种创新的绿色合成机制为SeNPs的生产提供了宽广的前景,有助于推进环境友好型纳米材料的合成。
纳米硒(SeNPs)副覃状芽孢杆菌(Bacillus paramycoides)延伸因子Tu硒还原绿色合成机制
Arai K, Clark BF, Duffy L, et al., 1980. Primary structure of elongation factor Tu from Escherichia coli. Proc Natl Acad Sci USA, 77(3):1326-1330. https://doi.org/10.1073/pnas.77.3.1326https://doi.org/10.1073/pnas.77.3.1326
Debieux CM, Dridge EJ, Mueller CM, et al., 2011. A bacterial process for selenium nanosphere assembly. Proc Natl Acad Sci USA, 108(33):13480-13485. https://doi.org/10.1073/pnas.1105959108https://doi.org/10.1073/pnas.1105959108
Defeu Soufo HJ, Reimold C, Breddermann H, et al., 2015. Translation elongation factor EF-Tu modulates filament formation of actin-like MreB protein in vitro. J Mol Biol, 427(8):1715-1727. https://doi.org/10.1016/j.jmb.2015.01.025https://doi.org/10.1016/j.jmb.2015.01.025
Dhanjal S, Cameotra S, 2010. Aerobic biogenesis of selenium nanospheres by Bacillus cereus isolated from coalmine soil. Microb Cell Fact, 9:52. https://doi.org/10.1186/1475-2859-9-52https://doi.org/10.1186/1475-2859-9-52
Dobias J, Suvorova EI, Bernier-Latmani R, 2011. Role of proteins in controlling selenium nanoparticle size. Nanotechnology, 22(19):195605. https://doi.org/10.1088/0957-4484/22/19/195605https://doi.org/10.1088/0957-4484/22/19/195605
Gonzalez-Gil G, Lens PNL, Saikaly PE, 2016. Selenite reduction by anaerobic microbial aggregates: microbial community structure, and proteins associated to the produced selenium spheres. Front Microbiol, 7:571. https://doi.org/10.3389/fmicb.2016.00571https://doi.org/10.3389/fmicb.2016.00571
Jia HL, Huang SW, Cheng S, et al., 2022. Novel mechanisms of selenite reduction in Bacillus subtilis 168: confirmation of multiple-pathway mediated remediation based on transcriptome analysis. J Hazard Mater, 433:128834. https://doi.org/10.1016/j.jhazmat.2022.128834https://doi.org/10.1016/j.jhazmat.2022.128834
Johansen JS, Kavaliauskas D, Pfeil SH, et al., 2018. E. coli elongation factor Tu bound to a GTP analogue displays an open conformation equivalent to the GDP-bound form. Nucleic Acids Res, 46(16):8641-8650. https://doi.org/10.1093/nar/gky697https://doi.org/10.1093/nar/gky697
Keshtmand Z, Khademian E, Poorjafari Jafroodi P, et al., 2023. Green synthesis of selenium nanoparticles using Artemisia chamaemelifolia: toxicity effects through regulation of gene expression for cancer cells and bacteria. Nano-Struct Nano-Objects, 36:101049. https://doi.org/10.1016/j.nanoso.2023.101049https://doi.org/10.1016/j.nanoso.2023.101049
Kieliszek M, Bierla K, Jiménez-Lamana J, et al., 2020. Metabolic response of the yeast Candida utilis during enrichment in selenium. Int J Mol Sci, 21(15):5287. https://doi.org/10.3390/ijms21155287https://doi.org/10.3390/ijms21155287
Kulp A, Kuehn MJ, 2010. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu Rev Microbiol, 64:163-184. https://doi.org/10.1146/annurev.micro.091208.073413https://doi.org/10.1146/annurev.micro.091208.073413
Kumar CMV, Karthick V, Inbakandan D, et al., 2022. Effect of selenium nanoparticles induced toxicity on the marine diatom Chaetoceros gracilis. Process Saf Environ Prot, 163:200-209. https://doi.org/10.1016/j.psep.2022.05.021https://doi.org/10.1016/j.psep.2022.05.021
Lampis S, Zonaro E, Bertolini C, et al., 2014. Delayed formation of zero-valent selenium nanoparticles by Bacillus mycoides SeITE01 as a consequence of selenite reduction under aerobic conditions. Microb Cell Fact, 13:35. https://doi.org/10.1186/1475-2859-13-35https://doi.org/10.1186/1475-2859-13-35
Li K, Xu QL, Gao SS, et al., 2021. Highly stable selenium nanoparticles: assembly and stabilization via flagellin FliC and porin OmpF in Rahnella aquatilis HX2. J Hazard Mater, 414:125545. https://doi.org/10.1016/j.jhazmat.2021.125545https://doi.org/10.1016/j.jhazmat.2021.125545
Liu P, Long HY, Cheng H, et al., 2023. Highly-efficient synthesis of biogenic selenium nanoparticles by Bacillus paramycoides and their antibacterial and antioxidant activities. Front Bioeng Biotechnol, 11:1227619. https://doi.org/10.3389/fbioe.2023.1227619https://doi.org/10.3389/fbioe.2023.1227619
Ma JC, Kobayashi DY, Yee N, 2009. Role of menaquinone biosynthesis genes in selenate reduction by Enterobacter cloacae SLD1a-1 and Escherichia coli K12. Environ Microbiol, 11(1):149-158. https://doi.org/10.1111/j.1462-2920.2008.01749.xhttps://doi.org/10.1111/j.1462-2920.2008.01749.x
Nancharaiah YV, Lens PNL, 2015a. Ecology and biotechnology of selenium-respiring bacteria. Microbiol Mol Biol Rev, 79(1):61-80. https://doi.org/10.1128/MMBR.00037-14https://doi.org/10.1128/MMBR.00037-14
Nancharaiah YV, Lens PNL, 2015b. Selenium biomineralization for biotechnological applications. Trends Biotechnol, 33(6):323-330. https://doi.org/10.1016/j.tibtech.2015.03.004https://doi.org/10.1016/j.tibtech.2015.03.004
Nie XL, Xing Y, Li QF, et al., 2022. ARTP mutagenesis promotes selenium accumulation in Saccharomyces boulardii. LWT, 168:113916. https://doi.org/10.1016/j.lwt.2022.113916https://doi.org/10.1016/j.lwt.2022.113916
Nie XL, Yang XR, He JY, et al., 2023. Bioconversion of inorganic selenium to less toxic selenium forms by microbes: a review. Front Bioeng Biotechnol, 11:1167123. https://doi.org/10.3389/fbioe.2023.1167123https://doi.org/10.3389/fbioe.2023.1167123
Ojeda JJ, Merroun ML, Tugarova AV, et al., 2020. Developments in the study and applications of bacterial transformations of selenium species. Crit Rev Biotechnol, 40(8):1250-1264. https://doi.org/10.1080/07388551.2020.1811199https://doi.org/10.1080/07388551.2020.1811199
Pearce CI, Coker VS, Charnock JM, et al., 2008. Microbial manufacture of chalcogenide-based nanoparticles via the reduction of selenite using Veillonella atypica : an in situ EXAFS study. Nanotechnology, 19(15):155603. https://doi.org/10.1088/0957-4484/19/15/155603https://doi.org/10.1088/0957-4484/19/15/155603
Qiao L, Dou XN, Song XF, et al., 2023. Selenite bioremediation by food-grade probiotic Lactobacillus casei ATCC 393: insights from proteomics analysis. Microbiol Spectr, 11(3):e0065923. https://doi.org/10.1128/spectrum.00659-23https://doi.org/10.1128/spectrum.00659-23
Qu LL, Xu JY, Dai ZH, et al., 2023. Selenium in soil-plant system: transport, detoxification and bioremediation. J Hazard Mater, 452:131272. https://doi.org/10.1016/j.jhazmat.2023.131272https://doi.org/10.1016/j.jhazmat.2023.131272
Tendenedzai JT, Chirwa EMN, Brink HG, 2021. Performance evaluation of selenite (SeO32-) reduction by Enterococcus spp. Catalysts, 11(9):1024. https://doi.org/10.3390/catal11091024https://doi.org/10.3390/catal11091024
Torres AN, Chamorro-Veloso N, Costa P, et al., 2020. Deciphering additional roles for the EF-Tu, L-asparaginase II and OmpT proteins of Shiga toxin-producing Escherichia coli. Microorganisms, 8(8):1184. https://doi.org/10.3390/microorganisms8081184https://doi.org/10.3390/microorganisms8081184
Tugarova AV, Kamnev AA, 2017. Proteins in microbial synthesis of selenium nanoparticles. Talanta, 174:539-547. https://doi.org/10.1016/j.talanta.2017.06.013https://doi.org/10.1016/j.talanta.2017.06.013
Tugarova AV, Mamchenkova PV, Khanadeev VA, et al., 2020. Selenite reduction by the rhizobacterium Azospirillum brasilense, synthesis of extracellular selenium nanoparticles and their characterisation. New Biotechnol, 58:17-24. https://doi.org/10.1016/j.nbt.2020.02.003https://doi.org/10.1016/j.nbt.2020.02.003
Wadhwani SA, Shedbalkar UU, Singh R, et al., 2016. Biogenic selenium nanoparticles: current status and future prospects. Appl Microbiol Biotechnol, 100(6):2555-2566. https://doi.org/10.1007/s00253-016-7300-7https://doi.org/10.1007/s00253-016-7300-7
Widjaja M, Harvey KL, Hagemann L, et al., 2017. Elongation factor Tu is a multifunctional and processed moonlighting protein. Sci Rep, 7:11227. https://doi.org/10.1038/s41598-017-10644-zhttps://doi.org/10.1038/s41598-017-10644-z
Yang Q, Liu JX, Wang KY, et al., 2018. Evaluation of immunogenicity and protective efficacy of the elongation factor Tu against Streptococcus agalactiae in tilapia. Aquaculture, 492:184-189. https://doi.org/10.1016/j.aquaculture.2018.03.056https://doi.org/10.1016/j.aquaculture.2018.03.056
Zambonino MC, Quizhpe EM, Jaramillo FE, et al., 2021. Green synthesis of selenium and tellurium nanoparticles: current trends, biological properties and biomedical applications. Int J Mol Sci, 22(3):989. https://doi.org/10.3390/ijms22030989https://doi.org/10.3390/ijms22030989
Zambonino MC, Quizhpe EM, Mouheb L, et al., 2023. Biogenic selenium nanoparticles in biomedical sciences: properties, current trends, novel opportunities and emerging challenges in theranostic nanomedicine. Nanomaterials, 13(3):424. https://doi.org/10.3390/nano13030424https://doi.org/10.3390/nano13030424
Zhang HY, Hou ZH, Zhang Y, et al., 2022. A soybean EF-Tu family protein GmEF8, an interactor of GmCBL1, enhances drought and heat tolerance in transgenic Arabidopsis and soybean. Int J Biol Macromol, 205:462-472. https://doi.org/10.1016/j.ijbiomac.2022.01.165https://doi.org/10.1016/j.ijbiomac.2022.01.165
Zhang S, He YD, Sen B, et al., 2020. Reactive oxygen species and their applications toward enhanced lipid accumulation in oleaginous microorganisms. Bioresour Technol, 307:123234. https://doi.org/10.1016/j.biortech.2020.12323https://doi.org/10.1016/j.biortech.2020.12323
0
浏览量
2
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构