无数据
Scan for full text
1.College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China
2.Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
纸质出版日期: 2024-07-15 ,
网络出版日期: 2024-06-05 ,
收稿日期: 2023-05-09 ,
修回日期: 2023-09-05 ,
贾晓丹,陆可,梁旭方.神经肽受体Y8b(npy8br)调节日本青鳉(Oryzias latipes)仔鱼的摄食和消化: 来自基因敲除的证据[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2024,25(07):605-616.
Xiaodan JIA, Ke LU, Xufang LIANG. Neuropeptide Y receptor Y8b (
贾晓丹,陆可,梁旭方.神经肽受体Y8b(npy8br)调节日本青鳉(Oryzias latipes)仔鱼的摄食和消化: 来自基因敲除的证据[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2024,25(07):605-616. DOI: 10.1631/jzus.B2300312.
Xiaodan JIA, Ke LU, Xufang LIANG. Neuropeptide Y receptor Y8b (
神经肽Y受体Y8(NPY8R)是一种鱼类特异性受体,具有NPY8AR和NPY8BR两种亚型。生理过程中表达水平的变化以及心室注射后体内调节过程表明,NPY8BR在摄食调节中发挥着重要作用;目前只在少数鱼类中发现有这种作用。为了更好地了解NPY8BR的生理功能,特别是消化方面,我们利用CRISPR/Cas9技术构建了
npy8br
-/-
日本青鳉(
Oryzias latipes
)。实验结果表明,
npy8br
基因缺失会影响青鳉仔鱼的摄食和消化能力,并最终影响其生长。具体来说,缺失
npy8br
会导致鳉鱼仔鱼摄食量减少和食欲相关基因(
npy
、
agrp
)表达水平降低。饲喂10 d(饲喂第10天)的
npy8br
-/-
青鳉仔鱼在摄食8 h后消化道内仍有未完全消化的卤虫(
Artemia nauplii
),消化相关基因(
amy
、
lpl
、
ctra
和
ctrb
)mRNA表达量显著降低,且淀粉酶、胰蛋白酶和脂肪酶活性也显著降低。
npy8br
的缺失抑制了青鳉仔鱼的生长,显著降低了生长相关基因(
gh
和
igf1
)的表达。肠道组织切片显示,
npy8br
-/-
青鳉仔鱼肠道受损,肠壁变薄,肠绒毛变短。本研究首次成功构建了鱼类的
npy8br
基因敲除模型,并证明
npy8br
在消化过程发挥着重要作用。
Neuropeptide Y receptor Y8 (NPY8R) is a fish-specific receptor with two subtypes
NPY8AR and NPY8BR. Changes in expression levels during physiological processes or in vivo regulation after ventricular injection suggest that NPY8BR plays an important role in feeding regulation; this has been found in only a few fish
at present. In order to better understand the physiological function of
npy8br
especially in digestion
we used clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) technology to generate
npy8br
-/-
Japanese medaka (
Oryzias latipes
). We found that the deletion of
npy8br
in medaka larvae affected their feeding and digestion ability
ultimately affecting their growth. Specifically
npy8br
deficiency in medaka larvae resulted in decreased feed intake and decreased expression levels of orexigenic genes (
npy
and
agrp
).
npy8br
-/-
medaka larvae fed for 10 d (10th day of feeding) still had incompletely digested brine shrimp (
Artemia nauplii
) in the digestive tract 8 h after feeding
the messenger RNA (mRNA) expression levels of digestion-related genes (
amy
lpl
ctra
and
ctrb
) were significantly decreased
and the activity of amylase
trypsin
and lipase also significantly decreased. The deletion of
npy8br
in medaka larvae inhibited the growth and significantly decrease
d the expression of growth-related genes (
gh
and
igf1
). Hematoxylin and eosin (H
&
E) sections of intestinal tissue showed that
npy8br
-/-
medaka larvae had damaged intestine
thinned intestinal wall
and shortened intestinal villi. So far
this is the first
npy8br
gene knockout model established in fish and the first demonstration that
npy8br
plays an important role in digestion.
神经肽Y受体Y8(npy8br)日本青鳉(Oryzias latipes)敲除摄食消化
Neuropeptide Y receptor Y8b (npy8br)Japanese medaka (Oryzias latipes)KnockoutFeedingDigestion
Al-Tameemi R, Aldubaikul A, Salman NA, 2010. Comparative study of α-amylase activity in three Cyprinid species of different feeding habits from Southern Iraq. Turk J Fish Aquat Sci, 10(3):411-414. https://doi.org/10.4194/trjfas.2010.0315https://doi.org/10.4194/trjfas.2010.0315
Assan D, Mustapha UF, Chen HP, et al., 2021. The roles of neuropeptide Y (Npy) and peptide YY (Pyy) in teleost food intake: a mini review. Life, 11(6):547. https://doi.org/10.3390/life11060547https://doi.org/10.3390/life11060547
Canosa LF, Chang JP, Peter RE, 2007. Neuroendocrine control of growth hormone in fish. Gen Comp Endocr, 151(1):1-26. https://doi.org/10.1016/j.ygcen.2006.12.010https://doi.org/10.1016/j.ygcen.2006.12.010
Cara B, Moyano FJ, Zambonino JL, et al., 2007. Trypsin and chymotrypsin as indicators of nutritional status of post‐weaned sea bass larvae. J Fish Biol, 70(6):1798-1808. https://doi.org/10.1111/j.1095-8649.2007.01457.xhttps://doi.org/10.1111/j.1095-8649.2007.01457.x
Cerdá-Reverter JM, Martı́nez-Rodrı́guez G, Zanuy S, et al., 2000. Molecular evolution of the neuropeptide Y (NPY) family of peptides: cloning of three NPY-related peptides from the sea bass (Dicentrarchus labrax). Regul Peptides, 95(1-3):25-34. https://doi.org/10.1016/S0167-0115(00)00132-4https://doi.org/10.1016/S0167-0115(00)00132-4
Chisada SI, Kurokawa T, Murashita K, et al., 2014. Leptin receptor-deficient (knockout) medaka, Oryzias latipes, show chronical up-regulated levels of orexigenic neuropeptides, elevated food intake and stage specific effects on growth and fat allocation. Gen Comp Endocr, 195:9-20. https://doi.org/10.1016/j.ygcen.2013.10.008https://doi.org/10.1016/j.ygcen.2013.10.008
Conlon JM, 2002. The origin and evolution of peptide YY (PYY) and pancreatic polypeptide (PP). Peptides, 23(2):269-278. https://doi.org/10.1016/S0196-9781(01)00608-8https://doi.org/10.1016/S0196-9781(01)00608-8
de Souza APL, Ferreira TH, Mouriño JLP, et al., 2020. Use of Artemia supplemented with exogenous digestive enzymes as sole live food increased survival and growth during the larviculture of the longsnout seahorse Hippocampus reidi. Aquacult Nutr, 26(3):964-977. https://doi.org/10.1111/anu.13054https://doi.org/10.1111/anu.13054
Douglas SE, Mandla S, Gallant JW, 2000. Molecular analysis of the amylase gene and its expression during development in the winter flounder, Pleuronectes americanus. Aquaculture, 190(3-4):247-260. https://doi.org/10.1016/S0044-8486(00)00398-7https://doi.org/10.1016/S0044-8486(00)00398-7
Feng HX, Liang XF, 2022. Knockout of lipoprotein lipase with CRISPR/Cas9 causes severe developmental defects and affects lipid deposition in Japanese medaka (Oryzias latipes). Water Biol Secur, 1(2):100038. https://doi.org/10.1016/j.watbs.2022.100038https://doi.org/10.1016/j.watbs.2022.100038
Galaviz MA, García-Ortega A, Gisbert E, et al., 2012. Expression and activity of trypsin and pepsin during larval development of the spotted rose snapper Lutjanus guttatus. Comp Biochem Physiol Part B Biochem Mol Biol, 161(1):9-16. https://doi.org/10.1016/j.cbpb.2011.09.001https://doi.org/10.1016/j.cbpb.2011.09.001
Harrington M, Molyneux P, Soscia S, et al., 2007. Behavioral and neurochemical sources of variability of circadian period and phase: studies of circadian rhythms of npy-/- mice. Am J Physiol-Regul Integr Comp Physiol, 292(3):R1306-R1314. https://doi.org/10.1152/ajpregu.00383.2006https://doi.org/10.1152/ajpregu.00383.2006
Hidalgo MC, Urea E, Sanz A, 1999. Comparative study of digestive enzymes in fish with different nutritional habits. Proteolytic and amylase activities. Aquaculture, 170(3-4):267-283. https://doi.org/10.1016/S0044-8486(98)00413-Xhttps://doi.org/10.1016/S0044-8486(98)00413-X
Hide WA, Chan L, Li WH, 1992. Structure and evolution of the lipase superfamily. J Lipid Res, 33(2):167-178. https://doi.org/10.1016/S0022-2275(20)41537-8https://doi.org/10.1016/S0022-2275(20)41537-8
Huhman KL, Gillespie CF, Marvel CL, et al., 1996. Neuropeptide Y phase shifts circadian rhythms in vivo via a Y2 receptor. NeuroReport, 7(7):1249-1252. https://doi.org/10.1097/00001756-199605170-00005https://doi.org/10.1097/00001756-199605170-00005
Kamijo M, Kojima K, Maruyama K, et al., 2011. Neuropeptide Y in tiger puffer (Takifugu rubripes): distribution, cloning, characterization, and mRNA expression responses to prandial condition. Zool Sci, 28(12):882-890. https://doi.org/10.2108/zsj.28.882https://doi.org/10.2108/zsj.28.882
Kulczykowska E, Sánchez Vázquez FJ, 2010. Neurohormonal regulation of feed intake and response to nutrients in fish: aspects of feeding rhythm and stress. Aquac Res, 41(5):654-667. https://doi.org/10.1111/j.1365-2109.2009.02350.xhttps://doi.org/10.1111/j.1365-2109.2009.02350.x
Larhammar D, Salaneck E, 2004. Molecular evolution of NPY receptor subtypes. Neuropeptides, 38(4):141-151. https://doi.org/10.1016/j.npep.2004.06.002https://doi.org/10.1016/j.npep.2004.06.002
Larhammar D, Wraith A, Berglund MM, et al., 2001. Origins of the many NPY-family receptors in mammals. Peptides, 22(3):295-307. https://doi.org/10.1016/S0196-9781(01)00331-Xhttps://doi.org/10.1016/S0196-9781(01)00331-X
Larsson TA, Tay BH, Sundström G, et al., 2009. Neuropeptide Y-family peptides and receptors in the elephant shark, Callorhinchus milii confirm gene duplications before the gnathostome radiation. Genomics, 93(3):254-260. https://doi.org/10.1016/j.ygeno.2008.10.001https://doi.org/10.1016/j.ygeno.2008.10.001
Liang XF, Li GZ, Yao W, et al., 2007. Molecular characterization of neuropeptide Y gene in Chinese perch, an acanthomorph fish. Comp Biochem Physiol Part B Biochem Mol Biol, 148(1):55-64. https://doi.org/10.1016/j.cbpb.2007.04.016https://doi.org/10.1016/j.cbpb.2007.04.016
Livak KJ, Schmittgen TD, 2001. Analysis of relative gene expression data using real-time quantitative PCR and the <math id="M2"><msup><mrow><mn mathvariant="normal">2</mn></mrow><mrow><mo>-</mo><mi mathvariant="normal">Δ</mi><mi mathvariant="normal">Δ</mi><msub><mrow><mi>C</mi></mrow><mrow><mi mathvariant="normal">T</mi></mrow></msub></mrow></msup></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=62329430&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=62329438&type=6.688666342.53999996 method. Methods, 25(4):402-408. https://doi.org/10.1006/meth.2001.1262https://doi.org/10.1006/meth.2001.1262
Loh K, Herzog H, Shi YC, 2015. Regulation of energy homeostasis by the NPY system. Trends Endocr Metab, 26(3):125-135. https://doi.org/10.1016/j.tem.2015.01.003https://doi.org/10.1016/j.tem.2015.01.003
Mir IN, Srivastava PP, Bhat IA, et al., 2018. Expression and activity of trypsin and pepsin during larval development of Indian walking catfish (Clarias magur). Aquaculture, 491:266-272. https://doi.org/10.1016/j.aquaculture.2018.03.049https://doi.org/10.1016/j.aquaculture.2018.03.049
Ndandala CB, Dai M, Mustapha UF, et al., 2022. Current research and future perspectives of GH and IGFs family genes in somatic growth and reproduction of teleost fish. Aquac Rep, 26:101289. https://doi.org/10.1016/j.aqrep.2022.101289https://doi.org/10.1016/j.aqrep.2022.101289
Pedragosa-Badia X, Stichel J, Beck-Sickinger AG, 2013. Neuropeptide Y receptors: how to get subtype selectivity. Front Endocr, 4:5. https://doi.org/10.3389/fendo.2013.00005https://doi.org/10.3389/fendo.2013.00005
Persson L, de Roos AM, 2006. Food‐dependent individual growth and population dynamics in fishes. J Fish Biol, 69(sc):1-20. https://doi.org/10.1111/j.1095-8649.2006.01269.xhttps://doi.org/10.1111/j.1095-8649.2006.01269.x
Rønnestad I, Yúfera M, Ueberschär B, et al., 2013. Feeding behaviour and digestive physiology in larval fish: current knowledge, and gaps and bottlenecks in research. Rev Aquac, 5(s1):S59-S98. https://doi.org/10.1111/raq.12010https://doi.org/10.1111/raq.12010
Salze G, McLean E, Craig SR, 2012. Pepsin ontogeny and stomach development in larval cobia. Aquaculture, 324-325:315-318. https://doi.org/10.1016/j.aquaculture.2011.09.043https://doi.org/10.1016/j.aquaculture.2011.09.043
Shiozaki K, Kawabe M, Karasuyama K, et al., 2020. Neuropeptide Y deficiency induces anxiety-like behaviours in zebrafish (Danio rerio). Sci Rep, 10:5913. https://doi.org/10.1038/s41598-020-62699-0https://doi.org/10.1038/s41598-020-62699-0
Singh C, Rihel J, Prober DA, 2017. Neuropeptide Y regulates sleep by modulating noradrenergic signaling. Curr Biol, 27(24):3796-3811.e5. https://doi.org/10.1016/j.cub.2017.11.018https://doi.org/10.1016/j.cub.2017.11.018
Solovyev M, Kashinskaya E, Gisbert E, 2023. A meta-analysis for assessing the contributions of trypsin and chymotrypsin as the two major endoproteases in protein hydrolysis in fish intestine. Comp Biochem Physiol Part A Mol Integr Physiol, 278:111372. https://doi.org/10.1016/j.cbpa.2023.111372https://doi.org/10.1016/j.cbpa.2023.111372
Solovyev MM, Kashinskaya EN, Izvekova GI, et al., 2014. Feeding habits and ontogenic changes in digestive enzyme patterns in five freshwater teleosts. J Fish Biol, 85(5):1395-1412. https://doi.org/10.1111/jfb.12489https://doi.org/10.1111/jfb.12489
Song Y, Golling G, Thacker TL, et al., 2003. Agouti-related protein (AGRP) is conserved and regulated by metabolic state in the zebrafish, Danio rerio. Endocrine, 22(3):257-266. https://doi.org/10.1385/ENDO:22:3:257https://doi.org/10.1385/ENDO:22:3:257
Sundström G, Larsson TA, Xu B, et al., 2013. Interactions of zebrafish peptide YYb with the neuropeptide Y-family receptors Y4, Y7, Y8a, and Y8b. Front Neurosci, 7:29. https://doi.org/10.3389/fnins.2013.00029https://doi.org/10.3389/fnins.2013.00029
Sveinsdóttir H, Thorarensen H, Gudmundsdóttir Á, 2006. Involvement of trypsin and chymotrypsin activities in Atlantic cod (Gadus morhua) embryogenesis. Aquaculture, 260(1-4):307-314. https://doi.org/10.1016/j.aquaculture.2006.06.009https://doi.org/10.1016/j.aquaculture.2006.06.009
Tschenett A, Singewald N, Carli M, et al., 2003. Reduced anxiety and improved stress coping ability in mice lacking NPY‐Y2 receptors. Eur J Neurosci, 18(1):143-148. https://doi.org/10.1046/j.1460-9568.2003.02725.xhttps://doi.org/10.1046/j.1460-9568.2003.02725.x
Tu YQ, Xie SQ, Han D, et al., 2015. Growth performance, digestive enzyme, transaminase and GH-IGF-I axis gene responsiveness to different dietary protein levels in broodstock allogenogynetic gibel carp (Carassius auratus gibelio) CAS III. Aquaculture, 446:290-297. https://doi.org/10.1016/j.aquaculture.2015.05.003https://doi.org/10.1016/j.aquaculture.2015.05.003
Ullah S, Zhang JZ, Xu BY, et al., 2022. Effect of dietary supplementation of lauric acid on growth performance, antioxidative capacity, intestinal development and gut microbiota on black sea bream (Acanthopagrus schlegelii). PLoS ONE, 17(1):e0262427. https://doi.org/10.1371/journal.pone.0262427https://doi.org/10.1371/journal.pone.0262427
Volkoff H, 2006. The role of neuropeptide Y, orexins, cocaine and amphetamine-related transcript, cholecystokinin, amylin and leptin in the regulation of feeding in fish. Comp Biochem Physiol Part A Mol Integr Physiol, 144(3):325-331. https://doi.org/10.1016/j.cbpa.2005.10.026https://doi.org/10.1016/j.cbpa.2005.10.026
Volkoff H, Peter RE, 2006. Feeding behavior of fish and its control. Zebrafish, 3(2):131-140. https://doi.org/10.1089/zeb.2006.3.131https://doi.org/10.1089/zeb.2006.3.131
Wan YM, Zhang Y, Ji PF, et al., 2012. Molecular characterization of CART, AgRP, and MC4R genes and their expression with fasting and re-feeding in common carp (Cyprinus carpio). Mol Biol Rep, 39(3):2215-2223. https://doi.org/10.1007/s11033-011-0970-4https://doi.org/10.1007/s11033-011-0970-4
Wang F, Chen WM, Lin HR, et al., 2014. Cloning, expression, and ligand-binding characterization of two neuropeptide Y receptor subtypes in orange-spotted grouper, Epinephelus coioides. Fish Physiol Biochem, 40(6):1693-1707. https://doi.org/10.1007/s10695-014-9960-5https://doi.org/10.1007/s10695-014-9960-5
Wong H, Schotz MC, 2002. The lipase gene family. J Lipid Res, 43(7):993-999. https://doi.org/10.1194/jlr.R200007-JLR200https://doi.org/10.1194/jlr.R200007-JLR200
Wraith A, Törnsten A, Chardon P, et al., 2000. Evolution of the neuropeptide Y receptor family: gene and chromosome duplications deduced from the cloning and mapping of the five receptor subtype genes in pig. Genome Res, 10(3):302-310. https://doi.org/10.1101/gr.10.3.302https://doi.org/10.1101/gr.10.3.302
Xu B, Lagman D, Sundström G, et al., 2015. Neuropeptide Y family receptors Y1 and Y2 from sea lamprey, Petromyzon marinus. Gen Comp Endocr, 222:106-115. https://doi.org/10.1016/j.ygcen.2015.08.005https://doi.org/10.1016/j.ygcen.2015.08.005
Zhang JX, Guo LY, Feng L, et al., 2013. Soybean β-conglycinin induces inflammation and oxidation and causes dysfunction of intestinal digestion and absorption in fish. PLoS ONE, 8(3):e58115. https://doi.org/10.1371/journal.pone.0058115https://doi.org/10.1371/journal.pone.0058115
Zhang YP, Zhang Z, Liang XF, et al., 2021. Role of NPY receptor 8 in regulating of food intake in Chinese perch (Siniperca chuatsi). Aquac Int, 29(6):2619-2634. https://doi.org/10.1007/s10499-021-00771-whttps://doi.org/10.1007/s10499-021-00771-w
Zhao J, Liu Y, Jiang J, et al., 2012. Effects of dietary isoleucine on growth, the digestion and absorption capacity and gene expression in hepatopancreas and intestine of juvenile Jian carp (Cyprinus carpio var. Jian). Aquaculture, 368-369:117-128. https://doi.org/10.1016/j.aquaculture.2012.09.019https://doi.org/10.1016/j.aquaculture.2012.09.019
Zhou L, Budge SM, Ghaly AE, et al., 2011. Extraction, purification and characterization of fish chymotrypsin: a review. Am J Biochem Biotechnol, 7(3):104-123. https://doi.org/10.3844/ajbbsp.2011.104.123https://doi.org/10.3844/ajbbsp.2011.104.123
Zhou Y, Liang XF, Yuan XC, et al., 2013. Neuropeptide Y stimulates food intake and regulates metabolism in grass carp, Ctenopharyngodon idellus. Aquaculture, 380-383:52-61. https://doi.org/10.1016/j.aquaculture.2012.11.033https://doi.org/10.1016/j.aquaculture.2012.11.033
Zou XQ, Chen L, Li BJ, et al., 2022. The neuropeptide Y receptor gene repository, phylogeny and comparative expression in allotetraploid common carp. Sci Rep, 12:9449. https://doi.org/10.1038/s41598-022-13587-2https://doi.org/10.1038/s41598-022-13587-2
0
浏览量
24
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构