无数据
Scan for full text
1.Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
2.Department of Orthopedics, Yixing People’s Hospital, Yixing 214200, China
3.Department of Orthopedics, Hai’an People’s Hospital, Hai’an 226600, China
4.Department of Orthopedics, Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine, Suzhou 215028, China
纸质出版日期: 2024-06-15 ,
收稿日期: 2023-05-08 ,
修回日期: 2023-08-09 ,
储淼,陈广东,陈楷等.血红素加氧酶1与骨关节炎软骨下破骨细胞失活的相关研究[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2024,25(06):513-528.
Miao CHU, Guangdong CHEN, Kai CHEN, et al. Heme oxygenase 1 linked to inactivation of subchondral osteoclasts in osteoarthritis[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2024,25(6):513-528.
储淼,陈广东,陈楷等.血红素加氧酶1与骨关节炎软骨下破骨细胞失活的相关研究[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2024,25(06):513-528. DOI: 10.1631/jzus.B2300303.
Miao CHU, Guangdong CHEN, Kai CHEN, et al. Heme oxygenase 1 linked to inactivation of subchondral osteoclasts in osteoarthritis[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2024,25(6):513-528. DOI: 10.1631/jzus.B2300303.
骨关节炎(OA)是一种老年慢性进行性骨关节病。破骨细胞活化在早期骨关节炎软骨下骨丢失的发生中起着至关重要的作用。然而,骨性关节炎中破骨细胞分化的具体机制尚不清楚。在本研究中,从基因表达综合库(GEO)中筛选了与OA疾病进展和破骨细胞活化相关的基因表达谱。采用GEO2R和Funrich分析工具寻找差异表达基因(DEGs)。富集分析结果表明,化学致癌作用、活性氧和氧化应激反应主要参与OA软骨下骨的破骨细胞分化。此外,还鉴定了14个与氧化应激相关的DEGs。选择排名第一的差异基因血红素加氧酶1(
HMOX1
)进行进一步验证。相关结果显示,OA软骨下骨破骨细胞活化过程中伴随着
HMOX1
的下调。在体外实验中发现,鼠尾草酚通过靶向
HMOX1
,上调抗氧化蛋白的表达来抑制破骨细胞的形成。同时,在体内发现鼠尾草酚通过抑制软骨下骨破骨细胞的激活来减轻OA的严重程度。综上所述,软骨下骨氧化还原失稳态引起的破骨细胞活化是骨性关节炎进展的重要途径。在软骨下破骨细胞中靶向HMOX1可为早期OA的治疗提供新的见解。
Osteoarthritis (OA) is a chronic progressive osteoarthropathy in the elderly. Osteoclast activation plays a crucial role in the occurrence of subchondral bone loss in early OA. However
the specific mechanism of osteoclast differentiation in OA remains unclear. In our study
gene expression profiles related to OA disease progression and osteoclast activation were screened from the Gene Expression Omnibus (GEO) repository. GEO2R and Funrich analysis tools were employed to find differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses demonstrated that chemical carci
nogenesis
reactive oxygen species (ROS)
and response to oxidative stress were mainly involved in osteoclast differentiation in OA subchondral bone. Furthermore
fourteen DEGs that are associated with oxidative stress were identified. The first ranked differential gene
heme oxygenase 1 (
HMOX1
)
was selected for further validation. Related results showed that osteoclast activation in the pathogenesis of OA subchondral bone is accompanied by the downregulation of
HMOX1
. Carnosol was revealed to inhibit osteoclastogenesis by targeting
HMOX1
and upregulating the expression of antioxidant protein in vitro. Meanwhile
carnosol was found to alleviate the severity of OA by inhibiting the activation of subchondral osteoclasts in vivo. Our research indicated that the activation of osteoclasts due to subchondral bone redox dysplasia may serve as a significant pathway for the advancement of OA. Targeting
HMOX1
in subchondral osteoclasts may offer novel insights for the treatment of early OA.
破骨细胞氧化应激骨关节炎(OA)血红素加氧酶1(HMOX1)鼠尾草酚
OsteoclastOxidative stressOsteoarthritis (OA)Heme oxygenase 1 (HMOX1)Carnosol
Abramoff B, Caldera FE, 2020. Osteoarthritis: pathology, diagnosis, and treatment options. Med Clin North Am, 104(2):293-311. https://doi.org/10.1016/j.mcna.2019.10.007https://doi.org/10.1016/j.mcna.2019.10.007
Agidigbi TS, Kim C, 2019. Reactive oxygen species in osteoclast differentiation and possible pharmaceutical targets of ROS-mediated osteoclast diseases. Int J Mol Sci, 20(14):3576. https://doi.org/10.3390/ijms20143576https://doi.org/10.3390/ijms20143576
Almeida M, Porter RM, 2019. Sirtuins and FoxOs in osteoporosis and osteoarthritis. Bone, 121:284-292. https://doi.org/10.1016/j.bone.2019.01.018https://doi.org/10.1016/j.bone.2019.01.018
Andreev D, Liu MD, Weidner D, et al., 2020. Osteocyte necrosis triggers osteoclast-mediated bone loss through macrophage-inducible C-type lectin. J Clin Invest, 130(9):4811-4830. https://doi.org/10.1172/jci134214https://doi.org/10.1172/jci134214
Apel K, Hirt H, 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol, 55:373-399. https://doi.org/10.1146/annurev.arplant.55.031903.141701https://doi.org/10.1146/annurev.arplant.55.031903.141701
Bijlsma JW, Berenbaum F, Lafeber FP, 2011. Osteoarthritis: an update with relevance for clinical practice. Lancet, 377(9783):2115-2126. https://doi.org/10.1016/s0140-6736(11)60243-2https://doi.org/10.1016/s0140-6736(11)60243-2
Boyce BF, 2013. Advances in the regulation of osteoclasts and osteoclast functions. J Dent Res, 92(10):860-867. https://doi.org/10.1177/0022034513500306https://doi.org/10.1177/0022034513500306
Boyle WJ, Simonet WS, Lacey DL, 2003. Osteoclast differentiation and activation. Nature, 423(6937):337-342. https://doi.org/10.1038/nature01658https://doi.org/10.1038/nature01658
Cai P, Yan SC, Lu Y, et al., 2022. Carnosol inhibits osteoclastogenesis in vivo and in vitro by blocking the RANKL-induced NF-κB signaling pathway. Mol Med Rep, 26:225. https://doi.org/10.3892/mmr.2022.12741https://doi.org/10.3892/mmr.2022.12741
Cappariello A, Maurizi A, Veeriah V, et al., 2014. The great beauty of the osteoclast. Arch Biochem Biophys, 558:70-78. https://doi.org/10.1016/j.abb.2014.06.017https://doi.org/10.1016/j.abb.2014.06.017
Chen YZ, Lu JW, Li SH, et al., 2020. Carnosol attenuates RANKL-induced osteoclastogenesis in vitro and LPS-induced bone loss. Int Immunopharmacol, 89:106978. https://doi.org/10.1016/j.intimp.2020.106978https://doi.org/10.1016/j.intimp.2020.106978
Cui Z, Crane J, Xie H, et al., 2016. Halofuginone attenuates osteoarthritis by inhibition of TGF-β activity and H-type vessel formation in subchondral bone. Ann Rheum Dis, 75(9):1714-1721. https://doi.org/10.1136/annrheumdis-2015-207923https://doi.org/10.1136/annrheumdis-2015-207923
Drissi H, Sanjay A, 2016. The multifaceted osteoclast; far and beyond bone resorption. J Cell Biochem, 117(8):1753-1756. https://doi.org/10.1002/jcb.25560https://doi.org/10.1002/jcb.25560
Glasson SS, Blanchet TJ, Morris EA, 2007. The surgical destabilization of the medial meniscus (DMM) model of osteoarthritis in the 129/SvEv mouse. Osteoarthritis Cartilage, 15(9):1061-1069. https://doi.org/10.1016/j.joca.2007.03.006https://doi.org/10.1016/j.joca.2007.03.006
Glyn-Jones S, Palmer AJR, Agricola R, et al., 2015. Osteoarthritis. Lancet, 386(9991):376-387. https://doi.org/10.1016/s0140-6736(14)60802-3https://doi.org/10.1016/s0140-6736(14)60802-3
Guo YN, Cui SJ, Tian YJ, et al., 2022. Chondrocyte apoptosis in temporomandibular joint osteoarthritis promotes bone resorption by enhancing chemotaxis of osteoclast precursors. Osteoarthritis Cartilage, 30(8):1140-1153. https://doi.org/10.1016/j.joca.2022.04.002https://doi.org/10.1016/j.joca.2022.04.002
Hu SL, Zhang CW, Ni LB, et al., 2020. Stabilization of HIF-1α alleviates osteoarthritis via enhancing mitophagy. Cell Death Dis, 11(6):481. https://doi.org/10.1038/s41419-020-2680-0https://doi.org/10.1038/s41419-020-2680-0
Hu WH, Chen YQ, Dou C, et al., 2021. Microenvironment in subchondral bone: predominant regulator for the treatment of osteoarthritis. Ann Rheum Dis, 80(4):413-422. https://doi.org/10.1136/annrheumdis-2020-218089https://doi.org/10.1136/annrheumdis-2020-218089
Karsdal MA, Bay-Jensen AC, Lories RJ, et al., 2014. The coup
ling of bone and cartilage turnover in osteoarthritis: opportunities for bone antiresorptives and anabolics as potential treatments? Ann Rheum Dis, 73(2):336-348. https://doi.org/10.1136/annrheumdis-2013-204111https://doi.org/10.1136/annrheumdis-2013-204111
Kim MJ, Kim HS, Lee S, et al., 2021. Hexosamine biosynthetic pathway-derived O-GlcNAcylation is critical for RANKL-mediated osteoclast differentiation. Int J Mol Sci, 22(16):8888. https://doi.org/10.3390/ijms22168888https://doi.org/10.3390/ijms22168888
Kimball JS, Johnson JP, Carlson DA, 2021. Oxidative stress and osteoporosis. J Bone Jt Surg, 103(15):1451-1461. https://doi.org/10.2106/jbjs.20.00989https://doi.org/10.2106/jbjs.20.00989
Lepetsos P, Papavassiliou KA, Papavassiliou AG, 2019. Redox and NF-κB signaling in osteoarthritis. Free Radical Biol Med, 132:90-100. https://doi.org/10.1016/j.freeradbiomed.2018.09.025https://doi.org/10.1016/j.freeradbiomed.2018.09.025
Li B, Chen KZ, Qian ND, et al., 2021. Baicalein alleviates osteoarthritis by protecting subchondral bone, inhibiting angiogenesis and synovial proliferation. J Cell Mol Med, 25(11):5283-5294. https://doi.org/10.1111/jcmm.16538https://doi.org/10.1111/jcmm.16538
Li GY, Yin JM, Gao JJ, et al., 2013. Subchondral bone in osteoarthritis: insight into risk factors and microstructural changes. Arthritis Res Ther, 15(6):223. https://doi.org/10.1186/ar4405https://doi.org/10.1186/ar4405
Liu XH, Ji CX, Xu L, et al., 2018. Hmox1 promotes osteogenic differentiation at the expense of reduced adipogenic differentiation induced by BMP9 in C3H10T1/2 cells. J Cell Biochem, 119(7):5503-5516. https://doi.org/10.1002/jcb.26714https://doi.org/10.1002/jcb.26714
Loeser RF, Olex AL, McNulty MA, et al., 2013. Disease progression and phasic changes in gene expression in a mouse model of osteoarthritis. PLoS ONE, 8:e54633. https://doi.org/10.1371/journal.pone.0054633https://doi.org/10.1371/journal.pone.0054633
Martel-Pelletier J, Barr AJ, Cicuttini FM, et al., 2016. Osteoarthritis. Nat Rev Dis Primers, 2:16072. https://doi.org/10.1038/nrdp.2016.72https://doi.org/10.1038/nrdp.2016.72
Pereira M, Petretto E, Gordon S, et al., 2018. Common signalling pathways in macrophage and osteoclast multinucleation. J Cell Sci, 131(11):jcs216267. https://doi.org/10.1242/jcs.216267https://doi.org/10.1242/jcs.216267
Sakamoto H, Sakai E, Fumimoto R, et al., 2012. Deltamethrin inhibits osteoclast differentiation via regulation of heme oxygenase-1 and NFATc1. Toxicol Vitro, 26(6):817-822. https://doi.org/10.1016/j.tiv.2012.05.005https://doi.org/10.1016/j.tiv.2012.05.005
Schipper HM, Song W, Tavitian A, et al., 2019. The sinister face of heme oxygenase-1 in brain aging and disease. Prog Neurobiol, 172:40-70. https://doi.org/10.1016/j.pneurobio.2018.06.008https://doi.org/10.1016/j.pneurobio.2018.06.008
Shen C, Gao M, Chen HM, et al., 2021. Reactive oxygen species (ROS)-responsive nanoprobe for bioimaging and targeting therapy of osteoarthritis. J Nanobiotechnol, 19:395. https://doi.org/10.1186/s12951-021-01136-4https://doi.org/10.1186/s12951-021-01136-4
Shi YF, Chen JX, Li SL, et al., 2022. Tangeretin suppresses osteoarthritis progression via the Nrf2/NF-κB and MAPK/NF-κB signaling pathways. Phytomedicine, 98:153928. https://doi.org/10.1016/j.phymed.2022.153928https://doi.org/10.1016/j.phymed.2022.153928
Su WP, Liu GQ, Mohajer B, et al., 2022. Senescent preosteoclast secretome promotes metabolic syndrome associated osteoarthritis through cyclooxygenase 2. eLife, 11:e79773. https://doi.org/10.7554/eLife.79773https://doi.org/10.7554/eLife.79773
Tao HQ, Li WM, Zhang W, et al., 2021. Urolithin A suppresses RANKL-induced osteoclastogenesis and postmenopausal osteoporosis by, suppresses inflammation and downstream NF-κB activated pyroptosis pathways. Pharmacol Res, 174:105967. https://doi.org/10.1016/j.phrs.2021.105967https://doi.org/10.1016/j.phrs.2021.105967
Tateiwa D, Yoshikawa H, Kaito T, 2019. Cartilage and bone destruction in arthritis: pathogenesis and treatment strategy: a literature review. Cells, 8(8):818. https://doi.org/10.3390/cells8080818https://doi.org/10.3390/cells8080818
Wang G, Wang YN, Yang QZ, et al., 2022. Metformin prevents methylglyoxal-induced apoptosis by suppressing oxidative stress in vitro and in vivo. Cell Death Dis, 13:29. https://doi.org/10.1038/s41419-021-04478-xhttps://doi.org/10.1038/s41419-021-04478-x
Wang XY, Yamauchi K, Mitsunaga T, 2020. A review on osteoclast diseases and osteoclastogenesis inhibitors recently developed from natural resources. Fitoterapia, 142:104482. https://doi.org/10.1016/j.fitote.2020.104482https://doi.org/10.1016/j.fitote.2020.104482
Xia BJ, Chen D, Zhang JS, et al., 2014. Osteoarthritis pathogenesis: a review of molecular mechanisms. Calcif Tissue Int, 95(6):495-505. https://doi.org/10.1007/s00223-014-9917-9https://doi.org/10.1007/s00223-014-9917-9
Yamaguchi Y, Sakai E, Sakamoto H, et al., 2014. Inhibitory effects of tert-butylhydroquinone on osteoclast differentiation via up-regulation of heme oxygenase-1 and down-regulation of HMGB1 release and NFATc1 expression. J Appl Toxicol, 34(1):49-56. https://doi.org/10.1002/jat.2827https://doi.org/10.1002/jat.2827
Yang C, Tao HQ, Zhang HF, et al., 2022. TET2 regulates osteoclastogenesis by modulating autophagy in OVX-induced bone loss. Autophagy, 18(12):2817-2829. https://doi.org/10.1080/15548627.2022.2048432https://doi.org/10.1080/15548627.2022.2048432
Zhu CY, Shen SW, Zhang SH, et al., 2022. Autophagy in bone remodeling: a regulator of oxidative stress. Front Endocrinol, 13:898634. https://doi.org/10.3389/fendo.2022.898634https://doi.org/10.3389/fendo.2022.898634
Zhu SA, Zhu JX, Zhen GH, et al., 2019. Subchondral bone osteoclasts induce sensory innervation and osteoarthritis pain. J Clin Invest, 129(3):1076-1093. https://doi.org/10.1172/jci121561https://doi.org/10.1172/jci121561
Zhu XB, Chan YT, Yung PSH, et al., 2021. Subchondral bone remodeling: a therapeutic target for osteoarthritis. Front Cell Dev Biol, 8:607764. https://doi.org/10.3389/fcell.2020.607764https://doi.org/10.3389/fcell.2020.607764
Zorov DB, Juhaszova M, Sollott SJ, 2014. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev, 94(3):909-950. https://doi.org/10.1152/physrev.00026.2013https://doi.org/10.1152/physrev.00026.2013
0
浏览量
30
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构