无数据
Scan QR Code
1.Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
2.The MOE Frontier Science Center for Brain Science & Brain-machine Integration, Zhejiang University, Hangzhou 310027, China
3.State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai 200050, China
纸质出版日期: 2023-11-15 ,
收稿日期: 2023-04-13 ,
修回日期: 2023-05-30 ,
刘梦雪,姜楠,石颖倩等.自然气味信息在嗅球中的时空编码模式研究[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2023,24(11):1057-1061.
MENGXUE LIU, NAN JIANG, YINGQIAN SHI, et al. Spatiotemporal coding of natural odors in the olfactory bulb. [J]. Journal of zhejiang university-science b (biomedicine & biotechnology), 2023, 24(11): 1057-1061.
刘梦雪,姜楠,石颖倩等.自然气味信息在嗅球中的时空编码模式研究[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2023,24(11):1057-1061. DOI: 10.1631/jzus.B2300249.
MENGXUE LIU, NAN JIANG, YINGQIAN SHI, et al. Spatiotemporal coding of natural odors in the olfactory bulb. [J]. Journal of zhejiang university-science b (biomedicine & biotechnology), 2023, 24(11): 1057-1061. DOI: 10.1631/jzus.B2300249.
气味是评价食品新鲜度最重要的参数之一。当气味以其自然浓度存在时,会在嗅觉系统中引发不同的神经活动模式。本研究提出了一种通过检测食物气味进行食物检测与评价的在体生物传感系统。我们通过将多通道微电极植入在清醒大鼠嗅球的僧帽/丛状细胞层上,进而对神经信号进行实时检测。结果表明,不同的气味可以引起不同的神经振荡活动,每个僧帽/丛状细胞会表现出特定气味的锋电位发放模式。单个大鼠的少量细胞携带足够的信息,可以根据锋电位发放频率变化率的极坐标图来区分不同储存天数的食物。此外,研究表明气味刺激后,β振荡比γ振荡表现出更特异的气味响应模式,这表明β振荡在气味识别中起着更重要的作用。综上,本研究提出的在体神经接口为评估食品新鲜度提供了一种可行性方法。
脑机接口嗅球锋电位活动神经振荡
Buck L, Axel R, 1991. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell, 65:175-187. https://doi.org/10.1016/0092-8674(91)90418-xhttps://doi.org/10.1016/0092-8674(91)90418-x
Bushdid C, Magnasco MO, Vosshall LB, et al., 2014. Humans can discriminate more than 1 trillion olfactory stimuli. Science, 343(6177):1370-1372. https://doi.org/10.1126/science.1249168https://doi.org/10.1126/science.1249168
Kay LM, Beshel J, 2010. A beta oscillation network in the rat olfactory system during a 2-alternative choice odor discrimination task. J Neurophysiol, 104(2):829-839. https://doi.org/10.1152/jn.00166.2010https://doi.org/10.1152/jn.00166.2010
Kay LM, Beshel J, Brea J, et al., 2009. Olfactory oscillations: the what, how and what for. Trends Neurosci, 32(4):207-214. https://doi.org/10.1016/j.tins.2008.11.008https://doi.org/10.1016/j.tins.2008.11.008
Kim C, Lee KK, Kang MS, et al., 2022. Artificial olfactory sensor technology that mimics the olfactory mechanism: a comprehensive review. Biomater Res, 26:40. https://doi.org/10.1186/s40824-022-00287-1https://doi.org/10.1186/s40824-022-00287-1
Lepousez G, Lledo PM, 2013. Odor discrimination requires proper olfactory fast oscillations in awake mice. Neuron, 80(4):1010-1024. https://doi.org/10.1016/j.neuron.2013.07.025https://doi.org/10.1016/j.neuron.2013.07.025
Lledo PM, Gheusi G, Vincent JD, 2005. Information processing in the mammalian olfactory system. Physiol Rev, 85(1):281-317. https://doi.org/10.1152/physrev.00008.2004https://doi.org/10.1152/physrev.00008.2004
Losacco J, Ramirez-Gordillo D, Gilmer J, et al., 2020. Learning improves decoding of odor identity with phase-referenced oscillations in the olfactory bulb. eLife, 9:e52583. https://doi.org/10.7554/eLife.52583https://doi.org/10.7554/eLife.52583
Mori K, Nagao H, Yoshihara Y, 1999. The olfactory bulb: coding and processing of odor molecule information. Science, 286(5440):711-715. https://doi.org/10.1126/science.286.5440.711https://doi.org/10.1126/science.286.5440.711
Murthy VN, Rokni D, 2017. Processing of odor mixtures in the mammalian olfactory system. J Indian Inst Sci, 97(4):415-421. https://doi.org/10.1007/s41745-017-0045-1https://doi.org/10.1007/s41745-017-0045-1
Sankaran S, Khot LR, Panigrahi S, 2012. Biology and applications of olfactory sensing system: a review. Sens Actuat B Chem, 171-172:1-17. https://doi.org/10.1016/j.snb.2012.03.029https://doi.org/10.1016/j.snb.2012.03.029
Xu L, Li WZ, Voleti V, et al., 2020. Widespread receptor-driven modulation in peripheral olfactory coding. Science, 368(6487):eaaz5390. https://doi.org/10.1126/science.aaz5390https://doi.org/10.1126/science.aaz5390
Zhuang LJ, Guo TT, Cao DX, et al., 2015. Detection and classification of natural odors with an in vivo bioelectronic nose. Biosens Bioelectron, 67:694-699. https://doi.org/10.1016/j.bios.2014.09.102https://doi.org/10.1016/j.bios.2014.09.102
Zhuang LJ, Zhang B, Qin Z, et al., 2019. Nasal respiration is necessary for the generation of γ oscillation in the olfactory bulb. Neuroscience, 398:218-230. https://doi.org/10.1016/j.neuroscience.2018.12.011https://doi.org/10.1016/j.neuroscience.2018.12.011
Zhuang LJ, Wei XW, Jiang N, et al., 2021. A biohybrid nose for evaluation of odor masking in the peripheral olfactory system. Biosens Bioelectron, 171:112737. https://doi.org/10.1016/j.bios.2020.112737https://doi.org/10.1016/j.bios.2020.112737
0
浏览量
50
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构