无数据
Scan for full text
1.Department of Hepatopancreatobiliary Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
2.Department of General Surgery, Tangdu Hospital, Air Force Medical University, Xi’an 710032, China
3.Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
4.Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen 361000, China
5.Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
6.Jiangsu Province Engineering Research Center of Tumor Targeted Nano Diagnostic and Therapeutic Materials, Yancheng Teachers University, Yancheng 224007, China
7.Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou 310053, China
8.Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
9.Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150086, China
史武江,王健岗,高坚钧等.3D打印技术在肝胆胰外科中的应用进展[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2024,25(02):123-134.
Wujiang SHI, Jiangang WANG, Jianjun GAO, et al. Utilization of 3D printing technology in hepatopancreatobiliary surgery[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2024,25(2):123-134.
史武江,王健岗,高坚钧等.3D打印技术在肝胆胰外科中的应用进展[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2024,25(02):123-134. DOI: 10.1631/jzus.B2300175.
Wujiang SHI, Jiangang WANG, Jianjun GAO, et al. Utilization of 3D printing technology in hepatopancreatobiliary surgery[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2024,25(2):123-134. DOI: 10.1631/jzus.B2300175.
3D打印技术兴起于20世纪70年代末,经历长期的发展后,在机械工程、工业设计和生物医学领域得到了广泛的应用。在生物医学领域,多项研究初步发现3D打印技术可在肝胆胰外科相关疾病的治疗中发挥重要作用。例如,3D打印技术已被应用于创建疾病器官的详细解剖模型,用于术前制定个性化手术策略、手术模拟、术中导航、医师培训和患者教育。此外,还可利用3D打印技术创建癌症模型,用于化疗药物的研究和选择。为了阐明3D打印技术在肝胆胰外科领域的发展和应用现状,本文介绍了七种常见的3D打印技术,并对3D打印技术在肝胆胰外科领域的研究和应用现状进行了综述。
The technology of three-dimensional (3D) printing emerged in the late 1970s and has since undergone considerable development to find numerous applications in mechanical engineering, industrial design, and biomedicine. In biomedical science, several studies have initially found that 3D printing technology can play an important role in the treatment of diseases in hepatopancreatobiliary surgery. For example, 3D printing technology has been applied to create detailed anatomical models of disease organs for preoperative personalized surgical strategies, surgical simulation, intraoperative navigation, medical training, and patient education. Moreover, cancer models have been created using 3D printing technology for the research and selection of chemotherapy drugs. With the aim to clarify the development and application of 3D printing technology in hepatopancreatobiliary surgery, we introduce seven common types of 3D printing technology and review the status of research and application of 3D printing technology in the field of hepatopancreatobiliary surgery.
3D打印肝胆胰外科器官模型癌症模型
3D printingHepatopancreatobiliary surgeryOrgan modelCancer model
Agung NP, Nadhif MH, Irdam GA, et al., 2021. The role of 3D-printed phantoms and devices for organ-specified appliances in urology. Int J Bioprint, 7(2):333. https://doi.org/10.18063/ijb.v7i2.333https://doi.org/10.18063/ijb.v7i2.333
Allan A, Kealley C, Squelch A, et al., 2019. Patient-specific 3D printed model of biliary ducts with congenital cyst. Quant Imaging Med Surg, 9(1):86-93. https://doi.org/10.21037/qims.2018.12.01https://doi.org/10.21037/qims.2018.12.01
Andolfi C, Plana A, Kania P, et al., 2017. Usefulness of three-dimensional modeling in surgical planning, resident training, and patient education. J Laparoendosc Adv Surg Tech A, 27(5):512-515. https://doi.org/10.1089/lap.2016.0421https://doi.org/10.1089/lap.2016.0421
Aseni P, Santaniello T, Rizzetto F, et al., 2021. Hybrid additive fabrication of a transparent liver with biosimilar haptic response for preoperative planning. Diagnostics, 11(9):1734. https://doi.org/10.3390/diagnostics11091734https://doi.org/10.3390/diagnostics11091734
Awad A, Fina F, Goyanes A, et al., 2020. 3D printing: prin
ciples and pharmaceutical applications of selective laser sintering. Int J Pharm, 586:119594. https://doi.org/10.1016/j.ijpharm.2020.119594https://doi.org/10.1016/j.ijpharm.2020.119594
Awad A, Fina F, Goyanes A, et al., 2021. Advances in powder bed fusion 3D printing in drug delivery and healthcare. Adv Drug Deliv Rev, 174:406-424. https://doi.org/10.1016/j.addr.2021.04.025https://doi.org/10.1016/j.addr.2021.04.025
Ballard DH, Wake N, Witowski J, et al., 2020. Radiological society of north america (RSNA) 3D printing special interest group (SIG) clinical situations for which 3D printing is considered an appropriate representation or extension of data contained in a medical imaging examination: abdominal, hepatobiliary, and gastrointestinal conditions. 3D Print Med, 6:13. https://doi.org/10.1186/s41205-020-00065-6https://doi.org/10.1186/s41205-020-00065-6
Bassous NJ, Jones CL, Webster TJ, 2019. 3-D printed Ti-6Al-4V scaffolds for supporting osteoblast and restricting bacterial functions without using drugs: predictive equations and experiments. Acta Biomater, 96:662-673. https://doi.org/10.1016/j.actbio.2019.06.055https://doi.org/10.1016/j.actbio.2019.06.055
Bati AH, Guler E, Ozer MA, et al., 2020. Surgical planning with patient-specific three-dimensional printed pancreaticobiliary disease models-cross-sectional study. Int J Surg, 80:175-183. https://doi.org/10.1016/j.ijsu.2020.06.017https://doi.org/10.1016/j.ijsu.2020.06.017
Bose S, Bhattacharjee A, Banerjee D, et al., 2021. Influence of random and designed porosities on 3D printed tricalcium phosphate-bioactive glass scaffolds. Addit Manuf, 40:101895. https://doi.org/10.1016/j.addma.2021.101895https://doi.org/10.1016/j.addma.2021.101895
Burdall OC, Makin E, Davenport M, et al., 2016. 3D printing to simulate laparoscopic choledochal surgery. J Pediatr Surg, 51(5):828-831. https://doi.org/10.1016/j.jpedsurg.2016.02.093https://doi.org/10.1016/j.jpedsurg.2016.02.093
Casas-Murillo C, Zuñiga-Ruiz A, Lopez-Barron RE, et al., 2021. 3D-printed anatomical models of the cystic duct and its variants, a low-cost solution for an in-house built simulator for laparoscopic surgery training. Surg Radiol Anat, 43(4):537-544. https://doi.org/10.1007/s00276-020-02631-3https://doi.org/10.1007/s00276-020-02631-3
Chedid VG, Kamath AA, Knudsen MJ, et al., 2020. Three-dimensional-printed liver model helps learners identify hepatic subsegments: a randomized-controlled cross-over trial. Am J Gastroenterol, 115(11):1906-1910. https://doi.org/10.14309/ajg.0000000000000958https://doi.org/10.14309/ajg.0000000000000958
Chen CY, Tsou YF, Yeh YT, et al., 2022. Advanced preoperative three-dimensional planning decreases the surgical complications of using large-for-size grafts in pediatric living donor liver transplantation. J Pediatr Surg, 57(7):1210-1214. https://doi.org/10.1016/j.jpedsurg.2022.02.034https://doi.org/10.1016/j.jpedsurg.2022.02.034
Chen H, He YC, Jia WD, 2020. Precise hepatectomy in the intelligent digital era. Int J Biol Sci, 16(3):365-373. https://doi.org/10.7150/ijbs.39387https://doi.org/10.7150/ijbs.39387
Chen JY, Liu XJ, Tian YJ, et al., 2022. 3D-printed anisotropic polymer materials for functional applications. Adv Mater, 34(5):2102877. https://doi.org/10.1002/adma.202102877https://doi.org/10.1002/adma.202102877
Cheng J, Wang ZF, Liu J, et al., 2022. Value of 3D printing technology combined with indocyanine green fluorescent navigation in complex laparoscopic hepatectomy. PLoS ONE, 17(8):e0272815. https://doi.org/10.1371/journal.pone.0272815https://doi.org/10.1371/journal.pone.0272815
da Conceicao Ribeiro R, Pal D, Ferreira AM, et al., 2019. Reactive jet impingement bioprinting of high cell density gels for bone microtissue fabrication. Biofabrication, 11(1):015014. https://doi.org/10.1088/1758-5090/aaf625https://doi.org/10.1088/1758-5090/aaf625
Derby B, 2012. Printing and prototyping of tissues and scaffolds. Science, 338(6109):921-926. https://doi.org/10.1126/science.1226340https://doi.org/10.1126/science.1226340
Fang CH, Zhang P, Qi XL, 2019. Digital and intelligent liver surgery in the new era: prospects and dilemmas. eBioMedicine, 41:693-701. https://doi.org/10.1016/j.ebiom.2019.02.017https://doi.org/10.1016/j.ebiom.2019.02.017
Fonseca AC, Melchels FPW, Ferreira MJS, et al., 2020. Emulating human tissues and organs: a bioprinting perspective toward personalized medicine. Chem Rev, 120(19):11093-11139. https://doi.org/10.1021/acs.chemrev.0c00342https://doi.org/10.1021/acs.chemrev.0c00342
Goo HW, Park SJ, Yoo SJ, 2020. Advanced medical use of three-dimensional imaging in congenital heart disease: augmented reality, mixed reality, virtual reality, and three-dimensional printing. Korean J Radiol, 21(2):133-145. https://doi.org/10.3348/kjr.2019.0625https://doi.org/10.3348/kjr.2019.0625
Guillaume O, Geven MA, Sprecher CM, et al., 2017. Surface-enrichment with hydroxyapatite nanoparticles in stereolithography-fabricated composite polymer scaffolds promotes bone repair. Acta Biomater, 54:386-398. https://doi.org/10.1016/j.actbio.2017.03.006https://doi.org/10.1016/j.actbio.2017.03.006
Han CJ, Fang QH, Shi YS, et al., 2020. Recent advances on high-entropy alloys for 3D printing. Adv Mater, 32(26):1903855. https://doi.org/10.1002/adma.201903855https://doi.org/10.1002/adma.201903855
Han T, Yang XD, Xu Y, et al., 2017. Therapeutic value of 3-D printing template-assisted 125I-seed implantation in the treatment of malignant liver tumors. OncoTargets Ther, 10:3277-3283. https://doi.org/10.2147/OTT.S134290https://doi.org/10.2147/OTT.S134290
Huang W, Lu J, Chen KM, et al., 2018. Preliminary application of 3D-printed coplanar template for iodine-125 seed implantation therapy in patients with advanced pancreatic cancer. World J Gastroenterol, 24(46):5280-5287. https://doi.org/10.3748/wjg.v24.i46.5280https://doi.org/10.3748/wjg.v24.i46.5280
Huber T, Huettl F, Tripke V, et al., 2021. Experiences with three-dimensional printing in complex liver surgery. Ann Surg, 273(1):e26-e27. https://doi.org/10.1097/SLA.0000000000004348https://doi.org/10.1097/SLA.0000000000004348
Hung BP, Naved BA, Nyberg EL, et al., 2016. Three-dimensional printing of bone extracellular matrix for craniofacial regeneration. ACS Biomater Sci Eng, 2(10):1806-1816. https://doi.org/10.1021/acsbiomaterials.6b00101https://doi.org/10.1021/acsbiomaterials.6b00101
Igami T, Nakamura Y, Hirose T, et al., 2014. Application of a three-dimensional print of a liver in hepatectomy for small tumors invisible by intraoperative ultrasonography: preliminary experience. World J Surg, 38(12):3163-3166. https://doi.org/10.1007/s00268-014-2740-7https://doi.org/10.1007/s00268-014-2740-7
Ikegami T, Maehara Y, 2013. Transplantation:3D printing of the liver in living donor liver transplantation. Nat Rev Gastroenterol Hepatol, 10(12):697-698. https://doi.org/10.1038/nrgastro.2013.195https://doi.org/10.1038/nrgastro.2013.195
Jin ZBY, Li YR, Yu K, et al., 2021. 3D printing of physical organ models: recent developments and challenges. Adv Sci, 8(17):2101394. https://doi.org/10.1002/advs.202101394https://doi.org/10.1002/advs.202101394
Jing X, Fu HX, Yu BJ, et al., 2022. Two-photon polymerization for 3D biomedical scaffolds: overview and updates. Front Bioeng Biotechnol, 10:994355. https://doi.org/10.3389/fbioe.2022.994355https://doi.org/10.3389/fbioe.2022.994355
Kim JH, Ha DH, Han ES, et al., 2022. Feasibility and safety of a novel 3D-printed biodegradable biliary stent in an in vivo porcine model: a preliminary study. Sci Rep, 12:15875. https://doi.org/10.1038/s41598-022-19317-yhttps://doi.org/10.1038/s41598-022-19317-y
Kong XX, Nie LY, Zhang HJ, et al., 2016. Do three-dimensional visualization and three-dimensional printing improve hepatic segment anatomy teaching? A randomized controlled study. J Surg Educ, 73(2):264-269. https://doi.org/10.1016/j.jsurg.2015.10.002https://doi.org/10.1016/j.jsurg.2015.10.002
Laronda MM, Rutz AL, Xiao S, et al., 2017. A bioprosthetic ovary created using 3D printed microporous scaffolds restores ovarian function in sterilized mice. Nat Commun, 8:15261. https://doi.org/10.1038/ncomms15261https://doi.org/10.1038/ncomms15261
Li SL, Liu SY, Wang XH, 2022. Advances of 3D printing in vascularized organ construction. Int J Bioprint, 8(3):588. https://doi.org/10.18063/ijb.v8i3.588https://doi.org/10.18063/ijb.v8i3.588
Li WL, Mille LS, Robledo JA, et al., 2020. Recent advances in formulating and processing biomaterial inks for vat polymerization-based 3D printing. Adv Healthc Mater, 9(15):2000156. https://doi.org/10.1002/adhm.202000156https://doi.org/10.1002/adhm.202000156
Liang S, Xie J, Wang FY, et al., 2021. Application of three-dimensional printing technology in peripheral hip diseases. Bioengineered, 12(1):5883-5891. https://doi.org/10.1080/21655979.2021.1967063https://doi.org/10.1080/21655979.2021.1967063
Lim HK, Choi YJ, Choi WC, et al., 2022. Reconstruction of maxillofacial bone defects using patient-specific long-lasting titanium implants. Sci Rep, 12:7538. https://doi.org/10.1038/s41598-022-11200-0https://doi.org/10.1038/s41598-022-11200-0
Liu XX, Yan JN, Liu JY, et al., 2021. Fabrication of a dual-layer cell-laden tubular scaffold for nerve regeneration and bile duct reconstruction. Biofabrication, 13(3):035038. https://doi.org/10.1088/1758-5090/abf995https://doi.org/10.1088/1758-5090/abf995
Lopez-Lopez V, Robles-Campos R, García-Calderon D, et al., 2021. Applicability of 3D-printed models in hepatobiliary surgey: results from “LIV3DPRINT” multicenter study. HPB, 23(5):675-684. https://doi.org/10.1016/j.hpb.2020.09.020https://doi.org/10.1016/j.hpb.2020.09.020
Machekposhti SA, Mohaved S, Narayan RJ, 2019. Inkjet dispensing technologies: recent advances for novel drug discovery. Expert Opin Drug Discov, 14(2):101-113. https://doi.org/10.1080/17460441.2019.1567489https://doi.org/10.1080/17460441.2019.1567489
Mahmoud A, Bennett M, 2015. Introducing 3-dimensional printing of a human anatomic pathology specimen: potential benefits for undergraduate and postgraduate education and anatomic pathology practice. Arch Pathol Lab Med, 139(8):1048-1051. https://doi.org/10.5858/arpa.2014-0408-OAhttps://doi.org/10.5858/arpa.2014-0408-OA
Miller JS, Stevens KR, Yang MT, et al., 2012. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat Mater, 11(9):768-774. https://doi.org/10.1038/nmat3357https://doi.org/10.1038/nmat3357
Müller M, Öztürk E, Arlov Ø, et al., 2017. Alginate sulfate-nanocellulose bioinks for cartilage bioprinting applications. Ann Biomed Eng, 45(1):210-223. https://doi.org/10.1007/s10439-016-1704-5https://doi.org/10.1007/s10439-016-1704-5
Musazzi UM, Khalid GM, Selmin F, et al., 2020. Trends in the production methods of orodispersible films. Int J Pharm, 576:118963. https://doi.org/10.1016/j.ijpharm.2019.118963https://doi.org/10.1016/j.ijpharm.2019.118963
Ng WL, Lee JM, Zhou MM, et al., 2020. Vat polymerization-based bioprinting-process, materials, applications and regulatory challenges. Biofabrication, 12(2):022001. https://doi.org/10.1088/1758-5090/ab6034https://doi.org/10.1088/1758-5090/ab6034
Park S, Choi GS, Kim JM, et al., 2022. 3D printing model of abdominal cavity of liver transplantation recipient to prevent large-for-size syndrome. Int J Bioprint, 8(4):609. https://doi.org/10.18063/ijb.v8i4.609https://doi.org/10.18063/ijb.v8i4.609
Placone JK, Engler AJ, 2018. Recent advances in extrusion-based 3D printing for biomedical applications. Adv Healthc Mater, 7(8):1701161. https://doi.org/10.1002/adhm.201701161https://doi.org/10.1002/adhm.201701161
Pugliese L, Marconi S, Negrello E, et al., 2018. The clinical use of 3D printing in surgery. Updates Surg, 70(3):381-388. https://doi.org/10.1007/s13304-018-0586-5https://doi.org/10.1007/s13304-018-0586-5
Renz JF, Busuttil RW, 2000. Adult-to-adult living-donor liver transplantation: a critical analysis. Semin Liver Dis, 20(4):411-424. https://doi.org/10.1055/s-2000-13153https://doi.org/10.1055/s-2000-13153
Rhu J, Kim MS, Kim S, et al., 2021. Application of three-dimensional printing for intraoperative guidance during liver resection of a hepatocellular carcinoma with sophisticated location. Ann Hepatobiliary Pancreat Surg, 25(2):265-269. https://doi.org/10.14701/ahbps.2021.25.2.265https://doi.org/10.14701/ahbps.2021.25.2.265
Ryu DJ, Ban HY, Jung EY, et al., 2020. Osteo-compatibility of 3D titanium porous coating applied by direct energy deposition (DED) for a cementless total knee arthroplasty implant: in vitro and in vivo study. J Clin Med, 9(2):478. https://doi.org/10.3390/jcm9020478https://doi.org/10.3390/jcm9020478
Sampogna G, Pugliese R, Elli M, et al., 2017. Routine clin
ical application of virtual reality in abdominal surgery. Minim Invasive Ther Allied Technol, 26(3):135-143. https://doi.org/10.1080/13645706.2016.1275016https://doi.org/10.1080/13645706.2016.1275016
Siegel RL, Miller KD, Fuchs HE, et al., 2021. Cancer statistics, 2021. CA Cancer J Clin, 71(1):7-33. https://doi.org/10.3322/caac.21654https://doi.org/10.3322/caac.21654
Song C, Min JH, Jeong WK, et al., 2023. Use of individualized 3D-printed models of pancreatic cancer to improve surgeons’ anatomic understanding and surgical planning. Eur Radiol, 33:7646-7655. https://doi.org/10.1007/s00330-023-09756-0https://doi.org/10.1007/s00330-023-09756-0
ten Hove A, de Meijer VE, Hulscher JBF, et al., 2018. Meta-analysis of risk of developing malignancy in congenital choledochal malformation. Br J Surg, 105(5):482-490. https://doi.org/10.1002/bjs.10798https://doi.org/10.1002/bjs.10798
Valls-Esteve A, Tejo-Otero A, Lustig-Gainza P, et al., 2023. Patient-specific 3D printed soft models for liver surgical planning and hands-on training. Gels, 9(4):339. https://doi.org/10.3390/gels9040339https://doi.org/10.3390/gels9040339
Vaz VM, Kumar L, 2021. 3D printing as a promising tool in personalized medicine. AAPS PharmSciTech, 22:49. https://doi.org/10.1208/s12249-020-01905-8https://doi.org/10.1208/s12249-020-01905-8
Wang JZ, Xiong NY, Zhao LZ, et al., 2018. Review fantastic medical implications of 3D-printing in liver surgeries, liver regeneration, liver transplantation and drug hepatotoxicity testing: a review. Int J Surg, 56:1-6. https://doi.org/10.1016/j.ijsu.2018.06.004https://doi.org/10.1016/j.ijsu.2018.06.004
Wang WJ, Sun J, 2021. Dimensional accuracy and clinical adaptation of ceramic crowns fabricated with the stereolithography technique. J Prosthet Dent, 125(4):657-663. https://doi.org/10.1016/j.prosdent.2020.02.032https://doi.org/10.1016/j.prosdent.2020.02.032
Wang YM, Wu D, Wu GH, et al., 2020. Metastasis-on-a-chip mimicking the progression of kidney cancer in the liver for predicting treatment efficacy. Theranostics, 10(1):300-311. https://doi.org/10.7150/thno.38736https://doi.org/10.7150/thno.38736
Wang YY, Mullertz A, Rantanen J, 2022. Additive manufacturing of solid products for oral drug delivery using binder jetting three-dimensional printing. AAPS PharmSciTech, 23(6):196. https://doi.org/10.1208/s12249-022-02321-whttps://doi.org/10.1208/s12249-022-02321-w
Witowski J, Pędziwiatr M, Major P, et al., 2017. Cost-effective, personalized, 3D-printed liver model for preoperative planning before laparoscopic liver hemihepatectomy for colorectal cancer metastases. Int J Comput Assist Radiol Surg, 12(12):2047-2054. https://doi.org/10.1007/s11548-017-1527-3https://doi.org/10.1007/s11548-017-1527-3
Witowski J, Budzyński A, Grochowska A, et al., 2020. Decision-making based on 3D printed models in laparoscopic liver resections with intraoperative ultrasound: a prospective observational study. Eur Radiol, 30(3):1306-1312. https://doi.org/10.1007/s00330-019-06511-2https://doi.org/10.1007/s00330-019-06511-2
Xiang N, Fang C, Fan Y, et al., 2015. Application of liver three-dimensional printing in hepatectomy for complex massive hepatocarcinoma with rare variations of portal vein: preliminary experience. Int J Clin Exp Med, 8(10):18873-18878.
Xie FH, Sun LJ, Pang Y, et al., 2021. Three-dimensional bio-printing of primary human hepatocellular carcinoma for personalized medicine. Biomaterials, 265:120416. https://doi.org/10.1016/j.biomaterials.2020.120416https://doi.org/10.1016/j.biomaterials.2020.120416
Yang HY, Sun LJ, Pang Y, et al., 2021. Three-dimensional bioprinted hepatorganoids prolong survival of mice with liver failure. Gut, 70(3):567-574. https://doi.org/10.1136/gutjnl-2019-319960https://doi.org/10.1136/gutjnl-2019-319960
Yang TY, Tan TB, Yang JL, et al., 2018. The impact of using three-dimensional printed liver models for patient education. J Int Med Res, 46(4):1570-1578. https://doi.org/10.1177/0300060518755267https://doi.org/10.1177/0300060518755267
Yang Y, Zhou ZY, Liu R, et al., 2018. Application of 3D visualization and 3D printing technology on ERCP for patients with hilar cholangiocarcinoma. Exp Ther Med, 15(4):3259-3264. https://doi.org/10.3892/etm.2018.5831https://doi.org/10.3892/etm.2018.5831
Zein NN, Hanouneh IA, Bishop PD, et al., 2013. Three-dimensional print of a liver for preoperative planning in living donor liver transplantation. Liver Transpl, 19(12):1304-1310. https://doi.org/10.1002/lt.23729https://doi.org/10.1002/lt.23729
Zeng N, Yang J, Xiang N, et al., 2020. Application of 3D visualization and 3D printing in individualized precision surgery for Bismuth-Corlette type III and IV hilar cholangiocarcinoma. J Southern Med Univ, 40(8):1172-1177 (in Chinese). https://doi.org/10.12122/j.issn.1673-4254.2020.08.15https://doi.org/10.12122/j.issn.1673-4254.2020.08.15
Zhang AP, Qu X, Soman P, et al., 2012. Rapid fabrication of complex 3D extracellular microenvironments by dynamic optical projection stereolithography. Adv Mater, 24(31):4266-4270. https://doi.org/10.1002/adma.201202024https://doi.org/10.1002/adma.201202024
Zhang YY, Xia JF, Zhang JY, et al., 2022. Validity of a soft and flexible 3D-printed nissen fundoplication model in surgical training. Int J Bioprint, 8(2):546. https://doi.org/10.18063/ijb.v8i2.546https://doi.org/10.18063/ijb.v8i2.546
Zhu W, Ma XY, Gou ML, et al., 2016. 3D printing of functional biomaterials for tissue engineering. Curr Opin Biotechnol, 40:103-112. https://doi.org/10.1016/j.copbio.2016.03.014https://doi.org/10.1016/j.copbio.2016.03.014
0
浏览量
6
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构