无数据
Scan QR Code
1.College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
2.Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou 310030, China
3.College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
4.Zhejiang Cancer Hospital, the Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
5.School of Medicine, Zhejiang University, Hangzhou 310058, China
6.School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
纸质出版日期: 2023-11-15 ,
收稿日期: 2023-02-16 ,
修回日期: 2023-05-11 ,
周叙强,金维华,江迪等.羊栖菜来源的褐藻多糖硫酸酯调控人胚肺二倍体成纤维细胞中新冠病毒受体分子AXL的表达[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2023,24(11):1047-1052.
XUQIANG ZHOU, WEIHUA JIN, DI JIANG, et al. Fucoidan sulfate from
周叙强,金维华,江迪等.羊栖菜来源的褐藻多糖硫酸酯调控人胚肺二倍体成纤维细胞中新冠病毒受体分子AXL的表达[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2023,24(11):1047-1052. DOI: 10.1631/jzus.B2300087.
XUQIANG ZHOU, WEIHUA JIN, DI JIANG, et al. Fucoidan sulfate from
新冠病毒感染疫情严重威胁着世界各国人民的生命健康。目前,对病毒感染的防治研究主要集中在抑制病毒与分子受体的结合上。AXL作为新发现的严重急性呼吸综合征冠状病毒2型(SARS-CoV-2)受体,在协助病毒感染人体呼吸系统中发挥着重要作用,是未来临床干预的潜在靶点。本研究对已发表的单细胞测序数据进行整理和分析,发现
AXL
在年轻人肺细胞中的表达水平明显高于老年人。人胚肺二倍体成纤维细胞(2BS)是衰老研究的公认细胞株。本文采用2BS细胞构建复制性细胞衰老模型,发现年轻细胞中AXL的蛋白水平明显高于衰老细胞,据此推测年轻人感染的风险可能更高,需要注意防护。我们发现一种羊栖菜褐藻多糖硫酸酯组分(SFW-3)可显著下调年轻2BS细胞中AXL的表达水平,表明SFW-3具有一定的抗SARS-CoV-2感染的研究价值,同时表明2BS细胞株也可作为潜在的SARS-CoV-2体外感染模型。
新冠病毒褐藻多糖硫酸酯酪氨酸蛋白激酶受体血管紧张素转化酶2年龄
Barata PC, Rini BI, 2017. Treatment of renal cell carcinoma: current status and future directions. CA Cancer J Clin, 67(6):507-524. https://doi.org/10.3322/caac.21411https://doi.org/10.3322/caac.21411
Béress A, Wassermann O, Bruhn T, et al., 1993. A new procedure for the isolation of anti-HIV compounds (polysaccharides and polyphenols) from the marine alga fucus vesiculosus. J Nat Prod, 56(4):478-488. https://doi.org/10.1021/np50094a005https://doi.org/10.1021/np50094a005
Boehmer TK, DeVies J, Caruso E, et al., 2020. Changing age distribution of the COVID-19 pandemic—United States, May–August 2020. MMWR Morb Mort Wkly Rep, 69(39):1404-1409. https://doi.org/10.15585/mmwr.mm6939e1https://doi.org/10.15585/mmwr.mm6939e1
Buck CB, Thompson CD, Roberts JN, et al., 2006. Carrageenan is a potent inhibitor of papillomavirus infection. PLoS Pathog, 2(7):e69. https://doi.org/10.1371/journal.ppat.0020069https://doi.org/10.1371/journal.ppat.0020069
Choi EM, Kim AJ, Kim YO, et al., 2005. Immunomodulating activity of arabinogalactan and fucoidan in vitro. J Med Food, 8(4):446-453. https://doi.org/10.1089/jmf.2005.8.446https://doi.org/10.1089/jmf.2005.8.446
Damonte EB, Matulewicz MC, Cerezo AS, 2004. Sulfated seaweed polysaccharides as antiviral agents. Curr Med Chem, 11(18):2399-2419. https://doi.org/10.2174/0929867043364504https://doi.org/10.2174/0929867043364504
Feneyrolles C, Spenlinhauer A, Guiet L, et al., 2014. Axl kinase as a key target for oncology: focus on small molecule inhibitors. Mol Cancer Ther, 13(9):2141-2148. https://doi.org/10.1158/1535-7163.MCT-13-1083https://doi.org/10.1158/1535-7163.MCT-13-1083
Hoshino T, Hayashi T, Hayashi K, et al., 1998. An antivirally active sulfated polysaccharide from Sargassum horneri (TURNER) C.AGARDH. Biol Pharm Bull, 21(7):730-734. https://doi.org/10.1248/bpb.21.730https://doi.org/10.1248/bpb.21.730
Jin WH, Tang H, Zhang JM, et al., 2020. Structural analysis of a novel sulfated galacto-fuco-xylo-glucurono-mannan from Sargassum fusiforme and its anti-lung cancer activity. Int J Biol Macromol, 149:450-458. https://doi.org/10.1016/j.ijbiomac.2020.01.275https://doi.org/10.1016/j.ijbiomac.2020.01.275
Li JH, Zhang ZY, Tong TJ, 1995. The proliferative response and anti-oncogene expression in old 2BS cells after growth factor stimulation. Mech Ageing Dev, 80(1):25-34. https://doi.org/10.1016/0047-6374(94)01557-3https://doi.org/10.1016/0047-6374(94)01557-3
Lim S, Zhang M, Chang TL, 2022. ACE2-independent alternative receptors for SARS-CoV-2. Viruses, 14(11):2535. https://doi.org/10.3390/v14112535https://doi.org/10.3390/v14112535
Lukassen S, Chua RL, Trefzer T, et al., 2020. SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells. EMBO J, 39(10):e105114. https://doi.org/10.15252/embj.20105114https://doi.org/10.15252/embj.20105114
Mao GX, Wang Y, Qiu Q, et al., 2010. Salidroside protects human fibroblast cells from premature senescence induced by H2O2 partly through modulating oxidative status. Mech Ageing Dev, 131(11-12):723-731. https://doi.org/10.1016/j.mad.2010.10.003https://doi.org/10.1016/j.mad.2010.10.003
Morales A, Rojo Rello S, Cristóbal H, et al., 2021. Growth arrest-specific factor 6 (GAS6) is increased in COVID-19 patients and predicts clinical outcome. Biomedicines, 9(4):335. https://doi.org/10.3390/biomedicines9040335https://doi.org/10.3390/biomedicines9040335
Queiroz KCS, Medeiros VP, Queiroz LS, et al., 2008. Inhibition of reverse transcriptase activity of HIV by polysaccharides of brown algae. Biomed Pharmacother, 62(5):303-307. https://doi.org/10.1016/j.biopha.2008.03.006https://doi.org/10.1016/j.biopha.2008.03.006
Reyfman PA, Walter JM, Joshi N, et al., 2019. Single-cell transcriptomic analysis of human lung provides insights into the pathobiology of pulmonary fibrosis. Am J Respir Crit Care Med, 199(12):1517-1536. https://doi.org/10.1164/rccm.201712-2410OChttps://doi.org/10.1164/rccm.201712-2410OC
Sungnak W, Huang N, Bécavin C, et al., 2020. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat Med, 26(5):681-687. https://doi.org/10.1038/s41591-020-0868-6https://doi.org/10.1038/s41591-020-0868-6
Tang Z, Zhang Z, Zheng Y, et al., 1994. Cell aging of human diploid fibroblasts is associated with changes in responsiveness to epidermal growth factor and changes in HER-2 expression. Mech Ageing Dev, 73(1):57-67. https://doi.org/10.1016/0047-6374(94)90038-8https://doi.org/10.1016/0047-6374(94)90038-8
Undurraga EA, Chowell G, Mizumoto K, 2021. COVID-19 case fatality risk by age and gender in a high testing setting in Latin America: Chile, March–August 2020. Inf Dis Poverty, 10:11. https://doi.org/10.1186/s40249-020-00785-1https://doi.org/10.1186/s40249-020-00785-1
Valverde P, 2005. Effects of Gas6 and hydrogen peroxide in Axl ubiquitination and downregulation. Biochem Biophys Res Commun, 333(1):180-185. https://doi.org/10.1016/j.bbrc.2005.05.086https://doi.org/10.1016/j.bbrc.2005.05.086
Wang S, Qiu ZY, Hou YN, et al., 2021. AXL is a candidate receptor for SARS-CoV-2 that promotes infection of pulmonary and bronchial epithelial cells. Cell Res, 31(2):126-140. https://doi.org/10.1038/s41422-020-00460-yhttps://doi.org/10.1038/s41422-020-00460-y
Wang SY, Xu XG, Sun C, et al., 2021. Sulphated glucuronomannan tetramer and hexamer from Sargassum thunbergii exhibit anti-human cytomegalovirus activity by blocking viral entry. Carbohyd Polym, 273:118510. https://doi.org/10.1016/j.carbpol.2021.118510https://doi.org/10.1016/j.carbpol.2021.118510
0
浏览量
24
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构