无数据
Scan QR Code
1.Guangxi Key Laboratory of Diabetic Systems Medicine & Institute of Basic Medical Sciences, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin 541199, China
2.Hunan Mingshun Pharmaceutical Co., Ltd., Shaodong 422800, China
纸质出版日期: 2023-11-15 ,
收稿日期: 2022-12-28 ,
修回日期: 2023-05-17 ,
刘芳,陈诗芮,明新月等.玉竹黄酮通过促进HNF1b蛋白的SUMO化修饰抑制sortilin介导的脂质积累及动脉粥样硬化[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2023,24(11):998-1013.
FANG LIU, SHIRUI CHEN, XINYUE MING, et al. Sortilin-induced lipid accumulation and atherogenesis are suppressed by HNF1b SUMOylation promoted by flavone of
刘芳,陈诗芮,明新月等.玉竹黄酮通过促进HNF1b蛋白的SUMO化修饰抑制sortilin介导的脂质积累及动脉粥样硬化[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2023,24(11):998-1013. DOI: 10.1631/jzus.B2200682.
FANG LIU, SHIRUI CHEN, XINYUE MING, et al. Sortilin-induced lipid accumulation and atherogenesis are suppressed by HNF1b SUMOylation promoted by flavone of
本研究旨在探究肝细胞核因子1β(HNF1b)对巨噬细胞分拣蛋白(sortilin)介导的脂质代谢和主动脉粥样硬化的影响,以及玉竹(
Polygonatum odoratum
)黄酮在促进HNF1b的小泛素蛋白(SUMO)化修饰在动脉粥样硬化保护功效中的作用。通过生物信息学、双荧光素酶报告基因分析和染色质免疫共沉淀试验预测了HNF1b是sortilin表达的转录调控因子。HNF1b过表达降低了人髓系白血病单核(THP-1)巨噬细胞中sortilin的表达和细胞内脂质含量,从而抑制了LDLR
–/–
小鼠的动脉粥样斑块形成。在HNF1b蛋白上鉴定出多个SUMO1修饰位点,并通过免疫共沉淀证实存在SUMO1修饰。HNF1b蛋白的SUMO化修饰增强了HNF1b对sortilin表达的抑制作用,并降低了巨噬细胞中的脂质含量。玉竹黄酮处理促进了SUMO活化酶E1(SAE1)的表达和SAE1催化下对HNF1b蛋白的SUMO化修饰,从而阻止了巨噬细胞中sortilin介导的脂质积累和ApoE
–/–
小鼠的动脉粥样斑块形成,而对SAE1的干扰使得巨噬细胞内脂质代谢的改善和玉竹黄酮治疗对体内抗动脉粥样硬化效果消失。因此,HNF1b通过转录抑制sortilin表达和巨噬细胞内脂质积累,抑制主动脉脂质沉积和动脉粥样硬化的发展,玉竹黄酮促进SAE1催化的HNF1b蛋白SUMO化修饰增强了其抗动脉粥样硬化效应。
This study aims to investigate the impact of hepatocyte nuclear factor 1β (HNF1b) on macrophage sortilin-mediated lipid metabolism and aortic atherosclerosis and explore the role of the flavone of
Polygonatum odoratum
(PAOA-flavone)-promoted small ubiquitin-related modifier (SUMO) modification in the atheroprotective efficacy of HNF1b. HNF1b was predicted to be a transcriptional regulator of sortilin expression via bioinformatics
dual-luciferase reporter gene assay
and chromatin immunoprecipitation. HNF1b overexpression decreased sortilin expression and cellular lipid contents in THP-1 m
acrophages
leading to a depression in atherosclerotic plaque formation in low-density lipoprotein (LDL) receptor-deficient (LDLR
-/-
) mice. Multiple SUMO1-modified sites were identified on the HNF1b protein and co-immunoprecipitation confirmed its SUMO1 modification. The SUMOylation of HNF1b protein enhanced the HNF1b-inhibited effect on sortilin expression and reduced lipid contents in macrophages. PAOA-flavone treatment promoted SUMO-activating enzyme subunit 1 (SAE1) expression and SAE1-catalyzed SUMOylation of the HNF1b protein
which prevented sortilin-mediated lipid accumulation in macrophages and the formation of atherosclerotic plaques in apolipoprotein E-deficient (ApoE
-/-
) mice. Interference with SAE1 abrogated the improvement in lipid metabolism in macrophage cells and atheroprotective efficacy in vivo upon PAOA-flavone administration. In summary
HNF1b transcriptionally suppressed sortilin expression and macrophage lipid accumulation to inhibit aortic lipid deposition and the development of atherosclerosis. This anti-atherosclerotic effect was enhanced by PAOA-flavone-facilitated
SAE1-catalyzed SUMOylation of the HNF1b protein.
动脉粥样硬化脂质蓄积HNF1b玉竹黄酮SUMO化修饰
AtherosclerosisLipid accumulationHepatocyte nuclear factor 1β (HNF1b)Flavone of Polygonatum odoratumSUMOylation
Barish GD, Yu RT, Karunasiri MS, et al., 2012. The Bcl6-SMRT/NCoR cistrome represses inflammation to attenuate atherosclerosis. Cell Metab, 15(4):554-562. https://doi.org/10.1016/j.cmet.2012.02.012https://doi.org/10.1016/j.cmet.2012.02.012
Björkegren JLM, Lusis AJ, 2022. Atherosclerosis: recent developments. Cell, 185(10):1630-1645. https://doi.org/10.1016/j.cell.2022.04.004https://doi.org/10.1016/j.cell.2022.04.004
Boggio R, Colombo R, Hay RT, et al., 2004. A mechanism for inhibiting the SUMO pathway. Mol Cell, 16(4):549-561. https://doi.org/10.1016/j.molcel.2004.11.007https://doi.org/10.1016/j.molcel.2004.11.007
Cahill LE, Sacks FM, Rimm EB, et al., 2019. Cholesterol efflux capacity, HDL cholesterol, and risk of coronary heart disease: a nested case-control study in men. J Lipid Res, 60(8):1457-1464. https://doi.org/10.1194/jlr.P093823https://doi.org/10.1194/jlr.P093823
Chan SC, Zhang Y, Shao AN, et al., 2018. Mechanism of fibrosis in HNF1B-related autosomal dominant tubulointerstitial kidney disease. J Am Soc Nephrol, 29(10):2493-2509. https://doi.org/10.1681/ASN.2018040437https://doi.org/10.1681/ASN.2018040437
Chanet A, Milenkovic D, Deval C, et al., 2012. Naringin, the major grapefruit flavonoid, specifically affects atherosclerosis development in diet-induced hypercholesterolemia in mice. J Nutr Biochem, 23(5):469-477. https://doi.org/10.1016/j.jnutbio.2011.02.001https://doi.org/10.1016/j.jnutbio.2011.02.001
da Silva RR, de Oliveira TT, Nagem TJ, et al., 2001. Hypocholesterolemic effect of naringin and rutin flavonoids. Arch Latinoam Nutr, 51(3):258-264 (in Portuguese).
di Pietro P, Carrizzo A, Sommella E, et al., 2022. Targeting the ASMase/S1P pathway protects from sortilin-evoked vascular damage in hypertension. J Clin Invest, 132(3):e146343. https://doi.org/10.1172/JCI146343https://doi.org/10.1172/JCI146343
Gill G, 2004. SUMO and ubiquitin in the nucleus: different functions, similar mechanisms? Genes Dev, 18(17):2046-2059. https://doi.org/10.1101/gad.1214604https://doi.org/10.1101/gad.1214604
Goettsch C, Kjolby M, Aikawa E, 2018. Sortilin and its multiple roles in cardiovascular and metabolic diseases. Arterioscler Thromb Vasc Biol, 38(1):19-25. https://doi.org/10.1161/ATVBAHA.117.310292https://doi.org/10.1161/ATVBAHA.117.310292
Hirano Y, Murata S, Tanaka K, et al., 2003. Sterol regulatory element-binding proteins are negatively regulated through SUMO-1 modification independent of the ubiquitin/26 S proteasome pathway. J Biol Chem, 278(19):16809-16819. https://doi.org/10.1074/jbc.M212448200https://doi.org/10.1074/jbc.M212448200
Hishikawa K, Nakaki T, Fujita T, 2005. Oral flavonoid supplementation attenuates atherosclerosis development in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol, 25(2):442-446. https://doi.org/10.1161/01.ATV.0000148404.24271.fchttps://doi.org/10.1161/01.ATV.0000148404.24271.fc
Hu M, Huang X, Han X, et al., 2020. Loss of HNF1α function contributes to hepatocyte proliferation and abnormal cholesterol metabolism via downregulating miR-122: a novel mechanism of MODY3. Diabetes Metab Syndr Obes, 13:627-639. https://doi.org/10.2147/DMSO.S236915https://doi.org/10.2147/DMSO.S236915
Ji L, Chen SL, Gu GC, et al., 2021. Discovery of potential biomarkers for human atherosclerotic abdominal aortic aneurysm through untargeted metabolomics and transcriptomics. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 22(9):733-745. https://doi.org/10.1631/jzus.B2000713https://doi.org/10.1631/jzus.B2000713
Johnson ES, 2004. Protein modification by SUMO. Annu Rev Biochem, 73:355-382. https://doi.org/10.1146/annurev.biochem.73.011303.074118https://doi.org/10.1146/annurev.biochem.73.011303.074118
Johnstone KA, Diakogiannaki E, Dhayal S, et al., 2011. Dysregulation of Hnf1b gene expression in cultured beta-cells in response to cytotoxic fatty acid. JOP, 12(1):6-10.
Kato H, Tateishi K, Fujiwara H, et al., 2022. MNX1-HNF1B axis is indispensable for intraductal papillary mucinous neoplasm lineages. Gastroenterology, 162(4):1272-1287. e16. https://doi.org/10.1053/j.gastro.2021.12.254https://doi.org/10.1053/j.gastro.2021.12.254
Kornfeld JW, Baitzel C, Könner AC, et al., 2013. Obesity-induced overexpression of miR-802 impairs glucose metabolism through silencing of Hnf1b. Nature, 494(7435):111-115. https://doi.org/10.1038/nature11793https://doi.org/10.1038/nature11793
Kumar S, Pandey AK, 2013. Chemistry and biological activities of flavonoids: an overview. Sci World J, 2013:162750. https://doi.org/10.1155/2013/162750https://doi.org/10.1155/2013/162750
Li H, Li JQ, Qu ZT, et al., 2020. Intrauterine exposure to low-dose DBP in the mice induces obesity in offspring via suppression of UCP1 mediated ER stress. Sci Rep, 10:16360. https://doi.org/10.1038/s41598-020-73477-3https://doi.org/10.1038/s41598-020-73477-3
Li XX, Liu SH, Zhuang SJ, et al., 2020. Effects of oxiracetam combined with ginkgo biloba extract in the treatment of acute intracerebral hemorrhage: a clinical study. Brain Behav, 10(8):e01661. https://doi.org/10.1002/brb3.1661https://doi.org/10.1002/brb3.1661
Lin HP, Singla B, Ahn W, et al., 2022. Receptor-independent fluid-phase macropinocytosis promotes arterial foam cell formation and atherosclerosis. Sci Transl Med, 14(663):eadd2376. https://doi.org/10.1126/scitranslmed.add2376https://doi.org/10.1126/scitranslmed.add2376
Liu F, Zhu X, Jiang XP, et al., 2022. Transcriptional control by HNF-1: emerging evidence showing its role in lipid metabolism and lipid metabolism disorders. Genes Dis, 9(5):1248-1257. https://doi.org/10.1016/j.gendis.2021.06.010https://doi.org/10.1016/j.gendis.2021.06.010
Liu WH, Zeng M, Fu N, 2021. Functions of nuclear receptors SUMOylation. Clin Chim Acta, 516:27-33. https://doi.org/10.1016/j.cca.2021.01.007https://doi.org/10.1016/j.cca.2021.01.007
Long Z, Cao M, Su SH, et al., 2017. Inhibition of hepatocyte nuclear factor 1b induces hepatic steatosis through DPP4/NOX1-mediated regulation of superoxide. Free Radic Biol Med, 113:71-83. https://doi.org/10.1016/j.freeradbiomed.2017.09.016https://doi.org/10.1016/j.freeradbiomed.2017.09.016
Lu W, Sun J, Zhou HH, et al., 2020. HNF1B inhibits cell proliferation via repression of SMAD6 expression in prostate cancer. J Cell Mol Med, 24(24):14539-14548. https://doi.org/10.1111/jcmm.16081https://doi.org/10.1111/jcmm.16081
Lv YC, Yang J, Gao AB, et al., 2019. Sortilin promotes macrophage cholesterol accumulation and aortic atherosclerosis through lysosomal degradation of ATP-binding cassette transporter A1 protein. Acta Biochim Biophys Sin (Shanghai), 51(5):471-483. https://doi.org/10.1093/abbs/gmz029https://doi.org/10.1093/abbs/gmz029
Lv YC, Gao AB, Yang J, et al., 2020. Long-term adenosine A1 receptor activation-induced sortilin expression promotes α-synuclein upregulation in dopaminergic neurons. Neural Regen Res, 15(4):712-723. https://doi.org/10.4103/1673-5374.266916https://doi.org/10.4103/1673-5374.266916
Matsuura H, 2001. Saponins in garlic as modifiers of the risk of cardiovascular disease. J Nutr, 131(3):1000S-1005S. https://doi.org/10.1093/jn/131.3.1000Shttps://doi.org/10.1093/jn/131.3.1000S
Melchior F, 2000. SUMO—nonclassical ubiquitin. Annu Rev Cell Dev Biol, 16:591-626. https://doi.org/10.1146/annurev.cellbio.16.1.591https://doi.org/10.1146/annurev.cellbio.16.1.591
Mendel DB, Hansen LP, Graves MK, et al., 1991. HNF-1 alpha and HNF-1 beta (vHNF-1) share dimerization and homeo domains, but not activation domains, and form heterodimers in vitro. Genes Dev, 5(6):1042-1056. https://doi.org/10.1101/gad.5.6.1042https://doi.org/10.1101/gad.5.6.1042
Meng N, Chen K, Wang YH, et al., 2022. Dihydrohomoplantagin and homoplantaginin, major flavonoid glycosides from Salvia plebeia R. Br. inhibit oxLDL-induced endothelial cell injury and restrict atherosclerosis via activating Nrf2 anti-oxidation signal pathway. Molecules, 27(6):1990. https://doi.org/10.3390/molecules27061990https://doi.org/10.3390/molecules27061990
Mink PJ, Scrafford CG, Barraj LM, et al., 2007. Flavonoid intake and cardiovascular disease mortality: a prospective study in postmenopausal women. Am J Clin Nutr, 85(3):895-909. https://doi.org/10.1093/ajcn/85.3.895https://doi.org/10.1093/ajcn/85.3.895
Miranda KJ, Loeser RF, Yammani RR, 2010. Sumoylation and nuclear translocation of S100A4 regulate IL-1β-mediated production of matrix metalloproteinase-13. J Biol Chem, 285(41):31517-31524. https://doi.org/10.1074/jbc.M110.125898https://doi.org/10.1074/jbc.M110.125898
Mulvihill EE, Assini JM, Sutherland BG, et al., 2010. Naringenin decreases progression of atherosclerosis by improving dyslipidemia in high-fat-fed low-density lipoprotein receptor-null mice. Arterioscler Thromb Vasc Biol, 30(4):742-748. https://doi.org/10.1161/ATVBAHA.109.201095https://doi.org/10.1161/ATVBAHA.109.201095
Patel KM, Strong A, Tohyama J, et al., 2015. Macrophage sortilin promotes LDL uptake, foam cell formation, and atherosclerosis. Circ Res, 116(5):789-796. https://doi.org/10.1161/CIRCRESAHA.116.305811https://doi.org/10.1161/CIRCRESAHA.116.305811
Patitucci C, Couchy G, Bagattin A, et al., 2017. Hepatocyte nuclear factor 1α suppresses steatosis-associated liver cancer by inhibiting PPARγ transcription. J Clin Invest, 127(5):1873-1888. https://doi.org/10.1172/JCI90327https://doi.org/10.1172/JCI90327
Pawellek A, Ryder U, Tammsalu T, et al., 2017. Characterisation of the biflavonoid hinokiflavone as a pre-mRNA splicing modulator that inhibits SENP. eLife, 6:e27402. https://doi.org/10.7554/eLife.27402https://doi.org/10.7554/eLife.27402
Rodrigues HG, Diniz YS, Faine LA, et al., 2005. Antioxidant effect of saponin: potential action of a soybean flavonoid on glucose tolerance and risk factors for atherosclerosis. Int J Food Sci Nutr, 56(2):79-85. https://doi.org/10.1080/09637480500081738https://doi.org/10.1080/09637480500081738
Salas-Lloret D, González-Prieto R, 2022. Insights in post-translational modifications: ubiquitin and SUMO. Int J Mol Sci, 23(6):3281. https://doi.org/10.3390/ijms23063281https://doi.org/10.3390/ijms23063281
Stein S, Oosterveer MH, Mataki C, et al., 2014. SUMOylation-dependent LRH-1/PROX1 interaction promotes atherosclerosis by decreasing hepatic reverse cholesterol transport. Cell Metab, 20(4):603-613. https://doi.org/10.1016/j.cmet.2014.07.023https://doi.org/10.1016/j.cmet.2014.07.023
Su SH, Wu GY, Cheng XD, et al., 2018. Oleanolic acid attenuates PCBs-induced adiposity and insulin resistance via HNF1b-mediated regulation of redox and PPARγ signaling. Free Radic Biol Med, 124:122-134. https://doi.org/10.1016/j.freeradbiomed.2018.06.003https://doi.org/10.1016/j.freeradbiomed.2018.06.003
Sun S, Yang J, Xie W, et al., 2020. Complicated trafficking behaviors involved in paradoxical regulation of sortilin in lipid metabolism. J Cell Physiol, 235(4):3258-3269. https://doi.org/10.1002/jcp.29292https://doi.org/10.1002/jcp.29292
Susser LI, Rayner KJ, 2022. Through the layers: how macrophages drive atherosclerosis across the vessel wall. J Clin Invest, 132(9):e157011. https://doi.org/10.1172/JCI157011https://doi.org/10.1172/JCI157011
Toniatti C, Monaci P, Nicosia A, et al., 1993. A bipartite activation domain is responsible for the activity of transcription factor HNF1/LFB1 in cells of hepatic and nonhepatic origin. DNA Cell Biol, 12(3):199-208. https://doi.org/10.1089/dna.1993.12.199https://doi.org/10.1089/dna.1993.12.199
Vertegaal ACO, 2022. Signalling mechanisms and cellular functions of SUMO. Nat Rev Mol Cell Biol, 23(11):715-731. https://doi.org/10.1038/s41580-022-00500-yhttps://doi.org/10.1038/s41580-022-00500-y
Wang JQ, He CX, Gao P, et al., 2020. HNF1B-mediated repression of SLUG is suppressed by EZH2 in aggressive prostate cancer. Oncogene, 39(6):1335-1346. https://doi.org/10.1038/s41388-019-1065-2https://doi.org/10.1038/s41388-019-1065-2
Wang W, Zhao MH, Zhao Y, et al., 2020. PDGFRα/β-PI3K-Akt pathway response to the interplay of mitochondrial dysfunction and DNA damage in Aroclor 1254-exposed porcine granulosa cells. Environ Pollut, 263(Part A):114534. https://doi.org/10.1016/j.envpol.2020.114534https://doi.org/10.1016/j.envpol.2020.114534
Wang X, Wu H, Yu WH, et al., 2017. Hepatocyte nuclear factor 1b is a novel negative regulator of white adipocyte differentiation. Cell Death Differ, 24(9):1588-1597. https://doi.org/10.1038/cdd.2017.85https://doi.org/10.1038/cdd.2017.85
Watanabe T, Ozawa A, Masuda S, et al., 2020. Transcriptional regulation of the Angptl8 gene by hepatocyte nuclear factor-1 in the murine liver. Sci Rep, 10:9999. https://doi.org/10.1038/s41598-020-66570-0https://doi.org/10.1038/s41598-020-66570-0
Wu H, Yu WH, Meng FS, et al., 2017. Polychlorinated biphenyls-153 induces metabolic dysfunction through activation of ROS/NF-κB signaling via downregulation of HNF1b. Redox Biol, 12:300-310. https://doi.org/10.1016/j.redox.2017.02.026https://doi.org/10.1016/j.redox.2017.02.026
Xue F, Zhao ZL, Gu YP, et al., 2021. 7,8-Dihydroxyflavone modulates bone formation and resorption and ameliorates ovariectomy-induced osteoporosis. eLife, 10:e64872. https://doi.org/10.7554/eLife.64872https://doi.org/10.7554/eLife.64872
Yang SB, Zhao T, Wu LX, et al., 2020. Effects of dietary carbohydrate sources on lipid metabolism and SUMOylation modification in the liver tissues of yellow catfish. Br J Nutr, 124(12):1241-1250. https://doi.org/10.1017/S0007114520002408https://doi.org/10.1017/S0007114520002408
Yu CX, Wen Q, Ren QD, et al., 2021. Polychlorinated biphenyl congener 180 (PCB 180) regulates mitotic clonal expansion and enhances adipogenesis through modulation of C/EBPβ SUMOylation in preadipocytes. Food Chem Toxicol, 152:112205. https://doi.org/10.1016/j.fct.2021.112205https://doi.org/10.1016/j.fct.2021.112205
Yu K, Wang Y, Zheng YQ, et al., 2023. qPTM: an updated database for PTM dynamics in human, mouse, rat and yeast. Nucleic Acids Res, 51(D1):D479-D487. https://doi.org/10.1093/nar/gkac820https://doi.org/10.1093/nar/gkac820
Zhong LY, Cayabyab FS, Tang CK, et al., 2016. Sortilin: a novel regulator in lipid metabolism and atherogenesis. Clin Chim Acta, 460:11-17. https://doi.org/10.1016/j.cca.2016.06.013https://doi.org/10.1016/j.cca.2016.06.013
Zhuo XZ, Tian YL, Wei YD, et al., 2019. Flavone of hippophae (H-flavone) lowers atherosclerotic risk factors via upregulation of the adipokine C1q/tumor necrosis factor-related protein 6 (CTRP6) in macrophages. Biosci Biotechnol Biochem, 83(11):2000-2007. https://doi.org/10.1080/09168451.2019.1634997https://doi.org/10.1080/09168451.2019.1634997
0
浏览量
28
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构