无数据
Scan for full text
1.Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
2.Department of Gastroenterology, Characteristic Medical Center of Chinese People’s Armed Police Force, Tianjin Key Laboratory of Hepatopancreatic Fiberosis and Molecular Diagnosis & Treatment, Tianjin 300162, China
张兴光, 许威, 仲威龙, 等. 西藏高原汉族人群的肠道微生物变化与肠易激综合征之间的关系研究[J]. 浙江大学学报(英文版)(B辑:生物医学和生物技术), 2023,24(9):823-838.
Xingguang ZHANG, Wei XU, Weilong ZHONG, et al. Exploring the links between gut microbiome changes and irritable bowel syndrome in Han populations in the Tibetan Plateau[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2023,24(9):823-838.
张兴光, 许威, 仲威龙, 等. 西藏高原汉族人群的肠道微生物变化与肠易激综合征之间的关系研究[J]. 浙江大学学报(英文版)(B辑:生物医学和生物技术), 2023,24(9):823-838. DOI: 10.1631/jzus.B2200509.
Xingguang ZHANG, Wei XU, Weilong ZHONG, et al. Exploring the links between gut microbiome changes and irritable bowel syndrome in Han populations in the Tibetan Plateau[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2023,24(9):823-838. DOI: 10.1631/jzus.B2200509.
肠道微生态受高原环境的影响,微生态失调在肠易激综合征(IBS)的发病机制中起着重要作用,但高原环境对汉族人群肠道微生物的变化的影响及高原环境对IBS发生的相关性有待进一步地研究。在本项研究中,我们前瞻性地对从平原进入高原环境工作生活的一组健康队列进行了一年的随访,并对其中一些人的粪便样本进行了16S核糖体RNA(16S rRNA)测序分析。根据参与者的临床症状,与IBS问卷相结合,筛选出队列中的IBS患者。结果表明:高原环境可导致肠道微生物多样性和组成的变化,并随着在高原停留时间的延长,肠道微生物表现出适应性的动态变化,恢复到接近进入高原前的水平,IBS的症状也明显缓解。因此,我们推测高原环境可能是诱发IBS的特殊环境。被证实在IBS的发病机制中发挥重要作用的分类物种g_,Alistipes,、g_,Oscillospira,和s_,Ruminococcus_torques,在高海拔地区IBS队列中也被发现。总之,高原环境导致的肠道微生物失调可能导致了IBS在高原环境中的高发生率,同时心理因素可能也参与了高原环境下IBS的发生,具体的相关机制需要进一步的研究。
The gut microbiome shows changes under a plateau environment, while the disbalance of intestinal microbiota plays an important role in the pathogenesis of irritable bowel syndrome (IBS); however, the relationship between the two remains unexplored. In this work, we followed up a healthy cohort for up to a year before and after living in a plateau environment and performed 16S ribosomal RNA (rRNA) sequencing analysis of their fecal samples. Through evaluating the participants’ clinical symptoms, combined with an IBS questionnaire, we screened the IBS sub-population in our cohort. The sequencing results showed that a high-altitude environment could lead to changes in the diversity and composition of gut flora. In addition, we found that the longer the time volunteers spent in the plateau environment, the more similar their gut microbiota composition and abundance became compared to those before entering the plateau, and IBS symptoms were significantly alleviated. Therefore, we speculated that the plateau may be a special environment that induces IBS. The taxonomic units g_,Alistipes, g_,Oscillospira, and s_,Ruminococcus_torques, which had been proved to play important roles in IBS pathogenesis, were also abundant in the IBS cohort at high altitudes. Overall, the disbalance of gut microbiota induced by the plateau environment contributed to the high frequency of IBS and the psychosocial abnormalities associated with IBS. Our results prompt further research to elucidate the relevant mechanism.
肠道微生物高原环境肠易激综合征
Gut microbiomePlateau environmentIrritable bowel syndrome
Adak A, Maity C, Ghosh K, et al., 2013. Dynamics of predominant microbiota in the human gastrointestinal tract and change in luminal enzymes and immunoglobulin profile during high-altitude adaptation. Folia Microbiol, 58(6):523-528. https://doi.org/10.1007/s12223-013-0241-yhttps://doi.org/10.1007/s12223-013-0241-y
Altveş S, Yildiz HK, Vural HC, 2020. Interaction of the microbiota with the human body in health and diseases. Biosci Microbiota Food Health, 39(2):23-32. https://doi.org/10.12938/bmfh.19-023https://doi.org/10.12938/bmfh.19-023
Basnyat B, Starling JM, 2015. Infectious diseases at high altitude. Microbiol Spectr, 3(4):26. https://doi.org/10.1128/microbiolspec.IOL5-0006-2015https://doi.org/10.1128/microbiolspec.IOL5-0006-2015
Beam A, Clinger E, Hao L, 2021. Effect of diet and dietary components on the composition of the gut microbiota. Nutrients, 13(8):2795. https://doi.org/10.3390/nu13082795https://doi.org/10.3390/nu13082795
Cobo F, Foronda C, Pérez-Carrasco V, et al., 2020. First description of abdominal infection due to Alistipes onderdonkii. Anaerobe, 66:102283. https://doi.org/10.1016/j.anaerobe.2020.102283https://doi.org/10.1016/j.anaerobe.2020.102283
Crouzet L, Gaultier E, Del'Homme C, et al., 2013. The hypersensitivity to colonic distension of IBS patients can be transferred to rats through their fecal microbiota. Neurogastroenterol Motil, 25(4):e272-e282. https://doi.org/10.1111/nmo.12103https://doi.org/10.1111/nmo.12103
Defaye M, Nourrisson C, Baudu E, et al., 2020. Fecal dysbiosis associated with colonic hypersensitivity and behavioral alterations in chronically Blastocystis-infected rats. Sci Rep, 10:9146. https://doi.org/10.1038/s41598-020-66156-whttps://doi.org/10.1038/s41598-020-66156-w
de Punder K, Pruimboom L, 2015. Stress induces endotoxemia and low-grade inflammation by increasing barrier permeability. Front Immunol, 6:223. https://doi.org/10.3389/fimmu.2015.00223https://doi.org/10.3389/fimmu.2015.00223
El-Salhy M, Hatlebakk JG, Gilja OH, et al., 2019. Efficacy of faecal microbiota transplantation for patients with irritable bowel syndrome in a randomised, double-blind, placebo-controlled study. Gut, 69(5):859-867. https://doi.org/10.1136/gutjnl-2019-319630https://doi.org/10.1136/gutjnl-2019-319630
Gomez-Arango LF, Barrett HL, Wilkinson SA, et al., 2018. Low dietary fiber intake increases Collinsella abundance in the gut microbiota of overweight and obese pregnant women. Gut Microbes, 9(3):189-201. https://doi.org/10.1080/19490976.2017.1406584https://doi.org/10.1080/19490976.2017.1406584
Halmos EP, Christophersen CT, Bird AR, et al., 2015. Diets that differ in their FODMAP content alter the colonic luminal microenvironment. Gut, 64(1):93-100. https://doi.org/10.1136/gutjnl-2014-307264https://doi.org/10.1136/gutjnl-2014-307264
Han N, Pan ZY, Liu GW, et al., 2021. Hypoxia: the “invisible pusher” of gut microbiota. Front Microbiol, 12:690600. https://doi.org/10.3389/fmicb.2021.690600https://doi.org/10.3389/fmicb.2021.690600
Hasan AUI, Rahman A, Kobori H, 2019. Interactions between host PPARs and gut microbiota in health and disease. Int J Mol Sci, 20(2):387. https://doi.org/10.3390/ijms20020387https://doi.org/10.3390/ijms20020387
He W, Wei EQ, Wang ML, et al., 2004. Protective effect of minocycline on oxygen/glucose deprivation and NMDA-induced neurotoxicity in rat primary neurons and hippocampal slices. J Zhejiang Univ (Med Sci), 33(3):219-224 (in Chinese). https://doi.org/10.3785/j.issn.1008-9292.2004.03.010https://doi.org/10.3785/j.issn.1008-9292.2004.03.010
Iacob T, Ţăţulescu DF, Dumitraşcu DL, 2017. Therapy of the postinfectious irritable bowel syndrome: an update. Clujul Med, 90(2):133-138. https://doi.org/10.15386/cjmed-752https://doi.org/10.15386/cjmed-752
Jia ZL, Zhao XJ, Liu XS, et al., 2020. Impacts of the plateau environment on the gut microbiota and blood clinical indexes in Han and Tibetan individuals. mSystems, 5(1):e00660-19. https://doi.org/10.1128/mSystems.00660-19https://doi.org/10.1128/mSystems.00660-19
Khanna K, Mishra KP, Ganju L, et al., 2018. High-altitude-induced alterations in gut-immune axis: a review. Int Rev Immunol, 37(2):119-126. https://doi.org/10.1080/08830185.2017.1407763https://doi.org/10.1080/08830185.2017.1407763
Koloski NA, Jones M, Talley NJ, 2016. Evidence that independent gut-to-brain and brain-to-gut pathways operate in the irritable bowel syndrome and functional dyspepsia: a 1-year population-based prospective study. Aliment Pharmacol Ther, 44(6):592-600. https://doi.org/10.1111/apt.13738https://doi.org/10.1111/apt.13738
Labus JS, Osadchiy V, Hsiao EY, et al., 2019. Evidence for an association of gut microbial Clostridia with brain functional connectivity and gastrointestinal sensorimotor function in patients with irritable bowel syndrome, based on tripartite network analysis. Microbiome, 7:45. https://doi.org/10.1186/s40168-019-0656-zhttps://doi.org/10.1186/s40168-019-0656-z
Lan DL, Ji WH, Lin BS, et al., 2017. Correlations between gut microbiota community structures of Tibetans and geography. Sci Rep, 7:16982. https://doi.org/10.1038/s41598-017-17194-4https://doi.org/10.1038/s41598-017-17194-4
Li K, Dan Z, Gesang L, et al., 2016. Comparative analysis of gut microbiota of native Tibetan and Han populations living at different altitudes. PLoS ONE, 11(5):e0155863. https://doi.org/10.1371/journal.pone.0155863https://doi.org/10.1371/journal.pone.0155863
Li K, Peng W, Zhou YL, et al., 2020. Host genetic and environmental factors shape the composition and function of gut microbiota in populations living at high altitude. Biomed Res Int, 2020:1482109. https://doi.org/10.1155/2020/1482109https://doi.org/10.1155/2020/1482109
Liang T, Liu F, Ma LF, et al., 2021. Migration effects on the intestinal microbiota of Tibetans. PeerJ, 9:e12036. https://doi.org/10.7717/peerj.12036https://doi.org/10.7717/peerj.12036
Liu FY, Fan C, Zhang LZ, et al., 2020. Alterations of gut microbiome in Tibetan patients with coronary heart disease. Front Cell Infect Microbiol, 10:373. https://doi.org/10.3389/fcimb.2020.00373https://doi.org/10.3389/fcimb.2020.00373
Liu GY, Li S, Chen N, et al., 2021. Inter-hemispheric functional connections are more vulnerable to attack than structural connection in patients with irritable bowel syndrome. J Neurogastroenterol Motil, 27(3):426-435. https://doi.org/10.5056/jnm20134https://doi.org/10.5056/jnm20134
Liu HN, Wu H, Chen YZ, et al., 2017. Altered molecular signature of intestinal microbiota in irritable bowel syndrome patients compared with healthy controls: a systematic review and meta-analysis. Dig Liver Dis, 49(4):331-337. https://doi.org/10.1016/j.dld.2017.01.142https://doi.org/10.1016/j.dld.2017.01.142
Liu K, Zhang YL, Li QL, et al., 2020. Ethnic differences shape the alpha but not beta diversity of gut microbiota from school children in the absence of environmental differences. Microorganisms, 8(2):254. https://doi.org/10.3390/microorganisms8020254https://doi.org/10.3390/microorganisms8020254
Liu L, Xiao QF, Zhang YL, et al., 2014. A cross-sectional study of irritable bowel syndrome in nurses in China: prevalence and associated psychological and lifestyle factors. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 15(6):590-597. https://doi.org/10.1631/jzus.B1300159https://doi.org/10.1631/jzus.B1300159
Ma Y, Ga Q, Ge RL, et al., 2021. Correlations between intestinal microbial community and hematological profile in native Tibetans and Han immigrants. Front Microbiol, 12:615416. https://doi.org/10.3389/fmicb.2021.615416https://doi.org/10.3389/fmicb.2021.615416
Nagpal R, Shively CA, Appt SA, et al., 2018. Gut microbiome composition in non-human primates consuming a Western or Mediterranean diet. Front Nutr, 5:28. https://doi.org/10.3389/fnut.2018.00028https://doi.org/10.3389/fnut.2018.00028
Nagy-Szakal D, Williams BL, Mishra N, et al., 2017. Fecal metagenomic profiles in subgroups of patients with myalgic encephalomyelitis/chronic fatigue syndrome. Microbiome, 5:44. https://doi.org/10.1186/s40168-017-0261-yhttps://doi.org/10.1186/s40168-017-0261-y
Parker BJ, Wearsch PA, Veloo ACM, et al., 2020. The genus Alistipes: gut bacteria with emerging implications to inflammation, cancer, and mental health. Front Immunol, 11:906. https://doi.org/10.3389/fimmu.2020.00906https://doi.org/10.3389/fimmu.2020.00906
Pinto-Sanchez MI, Ford AC, Avila CA, et al., 2015. Anxiety and depression increase in a stepwise manner in parallel with multiple FGIDs and symptom severity and frequency. Am J Gastroenterol, 110(7):1038-1048. https://doi.org/10.1038/ajg.2015.128https://doi.org/10.1038/ajg.2015.128
Pittayanon R, Lau JT, Yuan YH, et al., 2019. Gut microbiota in patients with irritable bowel syndrome—a systematic review. Gastroenterology, 157(1):97-108. https://doi.org/10.1053/j.gastro.2019.03.049https://doi.org/10.1053/j.gastro.2019.03.049
Sender R, Fuchs S, Milo R, 2016. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell, 164(3):337-340. https://doi.org/10.1016/j.cell.2016.01.013https://doi.org/10.1016/j.cell.2016.01.013
Sperber AD, Bangdiwala SI, Drossman DA, et al., 2021. Worldwide prevalence and burden of functional gastrointestinal disorders, results of Rome Foundation Global Study. Gastroenterology, 160(1):99-114.e3. https://doi.org/10.1053/j.gastro.2020.04.014https://doi.org/10.1053/j.gastro.2020.04.014
Vannucchi MG, Evangelista S, 2018. Experimental models of irritable bowel syndrome and the role of the enteric neurotransmission. J Clin Med, 7(1):4. https://doi.org/10.3390/jcm7010004https://doi.org/10.3390/jcm7010004
Wang J, Su LQ, Zhang L, et al., 2022. Spirulina platensis aqueous extracts ameliorate colonic mucosal damage and modulate gut microbiota disorder in mice with ulcerative colitis by inhibiting inflammation and oxidative stress. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 23(6):481-501. https://doi.org/10.1631/jzus.B2100988https://doi.org/10.1631/jzus.B2100988
Wang X, Wang Y, Li L, et al., 2020. A cross-sectional study of irritable bowel syndrome in an army unit in a severe cold region. J Prev Med Chin People’s Liberation Army, 38(11):29-31 (in Chinese). https://doi.org/10.13704/j.cnki.jyyx.2020.11.012https://doi.org/10.13704/j.cnki.jyyx.2020.11.012
Wu TY, Ding SQ, Liu JL, et al., 2007. High-altitude gastrointestinal bleeding: an observation in Qinghai-Tibetan railroad construction workers on Mountain Tanggula. World J Gastroenterol, 13(5):774-780. https://doi.org/10.3748/wjg.v13.i5.774https://doi.org/10.3748/wjg.v13.i5.774
Wu XY, Zhang HX, Chen J, et al., 2017. Analysis and comparison of the wolf microbiome under different environmental factors using three different data of next generation sequencing. Sci Rep, 7:11332. https://doi.org/10.1038/s41598-017-11770-4https://doi.org/10.1038/s41598-017-11770-4
Yu XZ, Xiao HJ, Tan CJ, et al., 2019. Survey on the onset of irritable bowel syndrome in highland armed police recruits. Med J Chin People’s Armed Police Force, 30(7):637-638 (in Chinese). https://doi.org/10.14010/j.cnki.wjyx.2019.07.025https://doi.org/10.14010/j.cnki.wjyx.2019.07.025
Yuan S, Liao ZX, Huang HJ, et al., 2020. Comparison of the indicators of psychological stress in the population of Hubei province and non-endemic provinces in China during two weeks during the coronavirus disease 2019 (COVID-19) outbreak in February 2020. Med Sci Monit, 26:e923767. https://doi.org/10.12659/msm.923767https://doi.org/10.12659/msm.923767
Zhang JD, Song LJ, Wang YJ, et al., 2019. Beneficial effect of butyrate-producing Lachnospiraceae on stress-induced visceral hypersensitivity in rats. J Gastroenterol Hepatol, 34(8):1368-1376. https://doi.org/10.1111/jgh.14536https://doi.org/10.1111/jgh.14536
Zhu X, Hong GC, Li Y, et al., 2021. Understanding of the site-specific microbial patterns towards accurate identification for patients with diarrhea-predominant irritable bowel syndrome. Microbiol Spectr, 9(3):e0125521. https://doi.org/10.1128/Spectrum.01255-21https://doi.org/10.1128/Spectrum.01255-21
0
浏览量
1
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构