无数据
Scan for full text
1.State Key Laboratory of Rice Biology and Breeding; Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects; Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects; Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
2.Institute of Biology, University of Graz, 8010 Graz, Austria
3.School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, SO17 1BJ Southampton, UK
Published Online: 22 May 2024 ,
Received: 14 December 2023 ,
Revised: 26 February 2024 ,
Giovanni Davide BARONE,周雅琦,汪宏凯等.植物微生物群落中细菌-细菌互作对植物健康和生产力的影响[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),
Giovanni Davide BARONE, Yaqi ZHOU, Hongkai WANG, et al. Implications of bacteria‒bacteria interactions within the plant microbiota for plant health and productivity. [J/OL]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology) 1-16(2024)
Giovanni Davide BARONE,周雅琦,汪宏凯等.植物微生物群落中细菌-细菌互作对植物健康和生产力的影响[J].浙江大学学报(英文版)(B辑:生物医学和生物技术), DOI:10.1631/jzus.B2300914.
Giovanni Davide BARONE, Yaqi ZHOU, Hongkai WANG, et al. Implications of bacteria‒bacteria interactions within the plant microbiota for plant health and productivity. [J/OL]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology) 1-16(2024) DOI: 10.1631/jzus.B2300914.
化学农药防治是当前农业生产中防治作物病虫害最主要的措施,对粮食安全生产起到至关重要的作用。化学农药的不合理使用会导致有害生物抗药性和环境污染等问题,因此利用有益农业微生物资源控制作物有害生物被认为是替代化学防治的可持续举措之一。植物微生物群落对宿主植物的生长发育等具有重要作用,其中部分微生物具有开发为微生物农药和肥料的潜力。全面解析微生物群落中细菌之间的相互作用及其生态功能,对合理利用微生物菌落的功能来维持植物的健康和生产力至关重要。本综述重点关注微生物群落中细菌-细菌之间互作机理及其在不同环境下对作物发育与健康的影响,并强调如何通过调控这种互作改善作物生长环境,以及小分子物质和信号调控通路在细菌-细菌相互作用中的关键作用。本文列举了具有生物活性的细菌代谢产物介导细菌-细菌互作的典型案例及其互作机制。未来需要充分利用人工智能等先进技术,将微生物群落中各种二元互作方式整合到整个微生物组的复杂模型中,以进一步了解微生物群落中各组分间的互作机理,为更好地利用农业有益微生物资源解决作物病虫害等问题提供解决方案。
Crop production currently relies on the widespread use of agrochemicals to ensure food security. This practice is considered unsustainable
yet has no viable alternative at present. The plant microbiota can fulfil various functions for its host
some of which could be the basis for developing sustainable protection and fertilization strategies for plants without relying on chemicals. To harness such functions
a detailed understanding of plant‒microbe and microbe‒microbe interactions is necessary. Among interactions within the plant microbiota
those between bacteria are the most common ones; they are not only of ecological importance but also essential for maintaining the health and productivity of the host plants. This review focuses on recent literature in this field and highlights various consequences of bacteria‒bacteria interactions under different agricultural settings. In addition
the molecular and genetic backgrounds of bacteria that facilitate such interactions are emphasized. Representative examples of commonly found bacterial metabolites with bioactive properties
as well as their modes of action
are given. Integrating our understanding of various binary interactions into complex models that encompass the entire microbiota will benefit future developments in agriculture and beyond
which could be further facilitated by artificial intelligence-based technologies.
植物微生物组细菌-细菌互作植物病原物农作物生产分子机理
Plant microbiomeBacteria‒bacteria interactionPlant pathogenCrop productionMolecular interaction
Ahmed E, Holmström SJM, 2014. Siderophores in environmental research: roles and applications. Microb Biotechnol, 7(3):196-208. https://doi.org/10.1111/1751-7915.12117https://doi.org/10.1111/1751-7915.12117
Ansari FA, Ahmad I, 2019. Fluorescent Pseudomonas -FAP2 and Bacillus licheniformis interact positively in biofilm mode enhancing plant growth and photosynthetic attributes. Sci Rep, 9:4547. https://doi.org/10.1038/s41598-019-40864-4https://doi.org/10.1038/s41598-019-40864-4
Baars O, Zhang XN, Morel FMM, et al., 2016. The siderophore metabolome of Azotobacter vinelandii. Appl Environ Microbiol, 82(1):27-39. https://doi.org/10.1128/aem.03160-15https://doi.org/10.1128/aem.03160-15
Bailey DC, Alexander E, Rice MR, et al., 2018. Structural and functional delineation of aerobactin biosynthesis in hypervirulent Klebsiella pneumoniae. J Biol Chem, 293(20):7841-7852. https://doi.org/10.1074/jbc.RA118.002798https://doi.org/10.1074/jbc.RA118.002798
Bais HP, Fall R, Vivanco JM, 2004. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol, 134(1):307-319. https://doi.org/10.1104/pp.103.028712https://doi.org/10.1104/pp.103.028712
Banik A, Mukhopadhaya SK, Dangar TK, 2016. Characterization of N2-fixing plant growth promoting endophytic and epiphytic bacterial community of Indian cultivated and wild rice (Oryza spp.) genotypes. Planta, 243(3):799-812. https://doi.org/10.1007/s00425-015-2444-8https://doi.org/10.1007/s00425-015-2444-8
Barry SM, Challis GL, 2009. Recent advances in siderophore biosynthesis. Curr Opin Chem Biol, 13(2):205-215. https://doi.org/10.1016/j.cbpa.2009.03.008https://doi.org/10.1016/j.cbpa.2009.03.008
Baune M, Qi YL, Scholz K, et al., 2017. Structural characterization of pyoverdines produced by Pseudomonas putida KT2440 and Pseudomonas taiwanensis VLB120. BioMetals, 30(4):589-597. https://doi.org/10.1007/s10534-017-0029-7https://doi.org/10.1007/s10534-017-0029-7
Beauregard PB, Chai YR, Vlamakis H, et al., 2013. Bacillus subtilis biofilm induction by plant polysaccharides. Proc Natl Acad Sci USA, 110(17):E1621-E1630. https://doi.org/10.1073/pnas.1218984110https://doi.org/10.1073/pnas.1218984110
Berg G, Rybakova D, Fischer D, et al., 2020. Microbiome definition re-visited: old concepts and new challenges. Microbiome, 8:103. https://doi.org/10.1186/s40168-020-00875-0https://doi.org/10.1186/s40168-020-00875-0
Berg G, Kusstatscher P, Abdelfattah A, et al., 2021. Microbiome modulation—toward a better understanding of plant microbiome response to microbial inoculants. Front Microbiol, 12:650610. https://doi.org/10.3389/fmicb.2021.650610https://doi.org/10.3389/fmicb.2021.650610
Bernal P, Allsopp LP, Filloux A, et al., 2017. The Pseudomonas putida T6SS is a plant warden against phytopathogens. ISME J, 11(4):972-987. https://doi.org/10.1038/ismej.2016.169https://doi.org/10.1038/ismej.2016.169
Biró B, Köves-Péchy K, Tsimilli-Michael M, et al., 2006. Role of beneficial microsymbionts on the plant performance and plant fitness. In: Mukerji KG, Manoharachary C, Singh J (Eds.), Microbial Activity in the Rhizosphere. Springer, Berlin, Heidelberg, p.265-296. https://doi.org/10.1007/3-540-29420-1_14https://doi.org/10.1007/3-540-29420-1_14
Brito IL, 2021. Examining horizontal gene transfer in microbial communities. Nat Rev Microbiol, 19(7):442-453. https://doi.org/10.1038/s41579-021-00534-7https://doi.org/10.1038/s41579-021-00534-7
Burbank L, Mohammadi M, Roper MC, 2015. Siderophore-mediated iron acquisition influences motility and is required for full virulence of the xylem-dwelling bacterial phytopathogen Pantoea stewartii subsp. stewartii. Appl Environ Microbiol, 81(1):139-148. https://doi.org/10.1128/aem.02503-14https://doi.org/10.1128/aem.02503-14
Cernava T, 2021. How microbiome studies could further improve biological control. Biol Control, 160:104669. https://doi.org/10.1016/j.biocontrol.2021.104669https://doi.org/10.1016/j.biocontrol.2021.104669
Cernava T, Berg G, 2022. The emergence of disease-preventing bacteria within the plant microbiota. Environ Microbiol, 24(8):3259-3263. https://doi.org/10.1111/1462-2920.15896https://doi.org/10.1111/1462-2920.15896
Chaudhry S, Sidhu GPS, 2022. Climate change regulated abiotic stress mechanisms in plants: a comprehensive review. Plant Cell Rep, 41(1):1-31. https://doi.org/10.1007/s00299-021-02759-5https://doi.org/10.1007/s00299-021-02759-5
Chen Y, Wang J, Yang N, et al., 2018. Wheat microbiome bacteria can reduce virulence of a plant pathogenic fungus by altering histone acetylation. Nat Commun, 9:3429. https://doi.org/10.1038/s41467-018-05683-7https://doi.org/10.1038/s41467-018-05683-7
Chung S, Kong H, Buyer JS, et al., 2008. Isolation and partial characterization of Bacillus subtilis ME488 for suppression of soilborne pathogens of cucumber and pepper. Appl Microbiol Biotechnol, 80(1):115-123. https://doi.org/10.1007/s00253-008-1520-4https://doi.org/10.1007/s00253-008-1520-4
Combes-Meynet E, Pothier JF, Moënne-Loccoz Y, et al., 2011. The Pseudomonas secondary metabolite 2,4-diacetylphloroglucinol is a signal inducing rhizoplane expression of Azospirillum genes involved in plant-growth promotion. Mol Plant-Microbe Int, 24(2):271-284. https://doi.org/10.1094/MPMI-07-10-0148https://doi.org/10.1094/MPMI-07-10-0148
Danhorn T, Fuqua C, 2007. Biofilm formation by plant-associated bacteria. Annu Rev Microbiol, 61:401-422. https://doi.org/10.1146/annurev.micro.61.080706.093316https://doi.org/10.1146/annurev.micro.61.080706.093316
Deori M, Jayamohan NS, Kumudini BS, 2018. Production, characterization and iron binding affinity of hydroxamate siderophores from rhizosphere associated fluorescent Pseudomonas. J Plant Prot Res, 58(1):36-43. https://doi.org/10.24425/119116https://doi.org/10.24425/119116
D'Souza G, Shitut S, Preussger D, et al., 2018. Ecology and evolution of metabolic cross-feeding interactions in bacteria. Nat Prod Rep, 35(5):455-488. https://doi.org/10.1039/c8np00009chttps://doi.org/10.1039/c8np00009c
Elshafie HS, Camele I, Racioppi R, et al., 2012. In vitro antifungal activity of Burkholderia gladioli pv. agaricicola against some phytopathogenic fungi. Int J Mol Sci, 13(12): 16291-16302. https://doi.org/10.3390/ijms131216291https://doi.org/10.3390/ijms131216291
Fan WJ, Deng JM, Shao L, et al., 2022. The rhizosphere micro
biome improves the adaptive capabilities of plants under high soil cadmium conditions. Front Plant Sci, 13:914103. https://doi.org/10.3389/fpls.2022.914103https://doi.org/10.3389/fpls.2022.914103
Ferreira CMH, Soares HMVM, Soares EV, 2019. Promising bacterial genera for agricultural practices: an insight on plant growth-promoting properties and microbial safety aspects. Sci Total Environ, 682:779-799. https://doi.org/10.1016/j.scitotenv.2019.04.225https://doi.org/10.1016/j.scitotenv.2019.04.225
Finkel OM, Salas-González I, Castrillo G, et al., 2020. A single bacterial genus maintains root growth in a complex microbiome. Nature, 587(7832):103-108. https://doi.org/10.1038/s41586-020-2778-7https://doi.org/10.1038/s41586-020-2778-7
Galán JE, Waksman G, 2018. Protein-injection machines in bacteria. Cell, 172(6):1306-1318. https://doi.org/10.1016/j.cell.2018.01.034https://doi.org/10.1016/j.cell.2018.01.034
Gáll T, Lehoczki G, Gyémánt G, et al., 2016. Optimization of desferrioxamine E production by Streptomyces parvulus. Acta Microbiol Immunol Hung, 63(4):475-489. https://doi.org/10.1556/030.63.2016.029https://doi.org/10.1556/030.63.2016.029
Garbeva P, Weisskopf L, 2020. Airborne medicine: bacterial volatiles and their influence on plant health. New Phytol, 226(1):32-43. https://doi.org/10.1111/nph.16282https://doi.org/10.1111/nph.16282
Garcia J, Gannett M, Wei LP, et al., 2022. Selection pressure on the rhizosphere microbiome can alter nitrogen use efficiency and seed yield in Brassica rapa. Commun Biol, 5:959. https://doi.org/10.1038/s42003-022-03860-5https://doi.org/10.1038/s42003-022-03860-5
García-Bayona L, Comstock LE, 2018. Bacterial antagonism in host-associated microbial communities. Science, 361(6408): eaat2456. https://doi.org/10.1126/science.aat2456https://doi.org/10.1126/science.aat2456
Gerc AJ, Stanley-Wall NR, Coulthurst SJ, 2014. Role of the phosphopantetheinyltransferase enzyme, PswP, in the biosynthesis of antimicrobial secondary metabolites by Serratia marcescens Db10. Microbiology, 160(8):1609-1617. https://doi.org/10.1099/mic.0.078576-0https://doi.org/10.1099/mic.0.078576-0
Goudjal Y, Zamoum M, Meklat A, et al., 2016. Plant-growth-promoting potential of endosymbiotic actinobacteria isolated from sand truffles (Terfezia leonis Tul.) of the Algerian Sahara. Ann Microbiol, 66(1):91-100. https://doi.org/10.1007/s13213-015-1085-2https://doi.org/10.1007/s13213-015-1085-2
Gu Q, Yang Y, Yuan QM, et al., 2017. Bacillomycin D produced by Bacillus amyloliquefaciens is involved in the antagonistic interaction with the plant-pathogenic fungus Fusarium graminearum. Appl Environ Microbiol, 83(19):e01075-17. https://doi.org/10.1128/aem.01075-17https://doi.org/10.1128/aem.01075-17
Han SI, Jeon MS, Heo YM, et al., 2020. Effect of Pseudoalteromonas sp. MEBiC 03485 on biomass production and sulfated polysaccharide biosynthesis in Porphyridium cruentum UTEX 161. Bioresour Technol, 302:122791. https://doi.org/10.1016/j.biortech.2020.122791https://doi.org/10.1016/j.biortech.2020.122791
Hassani MA, Durán P, Hacquard S, 2018. Microbial interactions within the plant holobiont. Microbiome, 6:58. https://doi.org/10.1186/s40168-018-0445-0https://doi.org/10.1186/s40168-018-0445-0
Hawkes CV, Kjøller R, Raaijmakers JM, et al., 2021. Extension of plant phenotypes by the foliar microbiome. Annu Rev Plant Biol, 72:823-846. https://doi.org/10.1146/annurev-arplant-080620-114342https://doi.org/10.1146/annurev-arplant-080620-114342
Hernández Medina R, Kutuzova S, Nielsen KN, et al., 2022. Machine learning and deep learning applications in microbiome research. ISME Commun, 2(1):98. https://doi.org/10.1038/s43705-022-00182-9https://doi.org/10.1038/s43705-022-00182-9
Ho BT, Dong TG, Mekalanos JJ, 2014. A view to a kill: the bacterial type VI secretion system. Cell Host Microbe, 15(1):9-21. https://doi.org/10.1016/j.chom.2013.11.008https://doi.org/10.1016/j.chom.2013.11.008
Hoshino Y, Chiba K, Ishino K, et al., 2011. Identification of nocobactin NA biosynthetic gene clusters in Nocardia farcinica. J Bacteriol, 193(2):441-448. https://doi.org/10.1128/jb.00897-10https://doi.org/10.1128/jb.00897-10
Jain A, Chatterjee A, Das S, 2020. Synergistic consortium of beneficial microorganisms in rice rhizosphere promotes host defense to blight-causing Xanthomonas oryzae pv. oryzae. Planta, 252(6):106. https://doi.org/10.1007/s00425-020-03515-xhttps://doi.org/10.1007/s00425-020-03515-x
Jin PF, Wang Y, Tan Z, et al., 2020. Antibacterial activity and rice-induced resistance, mediated by C15surfactin A, in controlling rice disease caused by Xanthomonas oryzae pv. oryzae. Pestic Biochem Physiol, 169:104669. https://doi.org/10.1016/j.pestbp.2020.104669https://doi.org/10.1016/j.pestbp.2020.104669
Kanchiswamy CN, Malnoy M, Maffei ME, 2015. Chemical diversity of microbial volatiles and their potential for plant growth and productivity. Front Plant Sci, 6:151. https://doi.org/10.3389/fpls.2015.00151https://doi.org/10.3389/fpls.2015.00151
Kesaulya H, Hasinu JV, Tuhumury GNC, 2018. Potential of Bacillus spp produces siderophores insuppressing thewilt disease of banana plants. IOP Conf Ser Earth Environ Sci, 102:012016. https://doi.org/10.1088/1755-1315/102/1/012016https://doi.org/10.1088/1755-1315/102/1/012016
Koutsoudis MD, Tsaltas D, Minogue TD, et al., 2006. Quorum-sensing regulation governs bacterial adhesion, biofilm development, and host colonization in Pantoea stewartii subspecies stewartii. Proc Natl Acad Sci USA, 103(15):5983-5988. https://doi.org/10.1073/pnas.0509860103https://doi.org/10.1073/pnas.0509860103
Kuiper I, Lagendijk EL, Pickford R, et al., 2004. Characterization of two Pseudomonas putida lipopeptide biosurfactants, putisolvin I and II, which inhibit biofilm formation and break down existing biofilms. Mol Microbiol, 51(1):97-113. https://doi.org/10.1046/j.1365-2958.2003.03751.xhttps://doi.org/10.1046/j.1365-2958.2003.03751.x
Lally RD, Galbally P, Moreira AS, et al., 2017. Application of endophytic Pseudomonas fluorescens and a bacterial consortium to Brassica napus can increase plant height and biomass under greenhouse and field conditions. Front Plant Sci, 8:2193. https://doi.org/10.3389/fpls.2017.02193https://doi.org/10.3389/fpls.2017.02193
Lazdunski AM, Ventre I, Sturgis JN, 2004. Regulatory circuits and communication in Gram-negative bacteria. Nat Rev Microbiol, 2(7):581-592. https://doi.org/10.1038/nrmicro924https://doi.org/10.1038/nrmicro924
Li SY, Xiao J, Sun TZ, et al., 2022. Synthetic microbial consortia with programmable ecological interactions. Methods Ecol Evol, 13(7):1608-1621. https://doi.org/10.1111/2041-210x.13894https://doi.org/10.1111/2041-210x.13894
Liao JX, Li ZH, Xiong D, et al., 2023. Quorum quenching by a type IVA secretion system effector. ISME J, 17(10):1564-1577. https://doi.org/10.1038/s41396-023-01457-2https://doi.org/10.1038/s41396-023-01457-2
Liu HW, Brettell LE, Qiu ZG, et al., 2020. Microbiome-mediated stress resistance in plants. Trends Plant Sci, 25(8):733-743. https://doi.org/10.1016/j.tplants.2020.03.014https://doi.org/10.1016/j.tplants.2020.03.014
Lyng M, Kovács ÁT, 2023. Frenemies of the soil: Bacillus and Pseudomonas interspecies interactions. Trends Microbiol, 31(8):845-857. https://doi.org/10.1016/j.tim.2023.02.003https://doi.org/10.1016/j.tim.2023.02.003
Matsumoto H, Fan XY, Wang Y, et al., 2021. Bacterial seed endophyte shapes disease resistance in rice. Nat Plants, 7(1):60-72. https://doi.org/10.1038/s41477-020-00826-5https://doi.org/10.1038/s41477-020-00826-5
McRose DL, Baars O, Morel FMM, et al., 2017. Siderophore production in Azotobacter vinelandii in response to Fe-, Mo- and V-limitation. Environ Microbiol, 19(9):3595-3605. https://doi.org/10.1111/1462-2920.13857https://doi.org/10.1111/1462-2920.13857
Molina-Santiago C, Pearson JR, Navarro Y, et al., 2019. The extracellular matrix protects Bacillus subtilis colonies from Pseudomonas invasion and modulates plant co-colonization. Nat Commun, 10:1919. https://doi.org/10.1038/s41467-019-09944-xhttps://doi.org/10.1038/s41467-019-09944-x
Mueller UG, Juenger TE, Kardish MR, et al., 2021. Artificial selection on microbiomes to breed microbiomes that confer salt tolerance to plants. mSystems, 6(6):e0112521. https://doi.org/10.1128/mSystems.01125-21https://doi.org/10.1128/mSystems.01125-21
Munir N, Hanif M, Abideen Z, et al., 2022. Mechanisms and strategies of plant microbiome interactions to mitigate abiotic stresses. Agronomy, 12(9):2069. https://doi.org/10.3390/agronomy12092069https://doi.org/10.3390/agronomy12092069
Nakkeeran S, Surya T, Vinodkumar S, 2020. Antifungal potential of plant growth promoting Bacillus species against blossom blight of rose. J Plant Growth Regul, 39(1):99-111. https://doi.org/10.1007/s00344-019-09966-1https://doi.org/10.1007/s00344-019-09966-1
Niu B, Paulson JN, Zheng XQ, et al., 2017. Simplified and representative bacterial community of maize roots. Proc Natl Acad Sci USA, 114(12):E2450-E2459. https://doi.org/10.1073/pnas.1616148114https://doi.org/10.1073/pnas.1616148114
Özcengiz G, Öğülür İ, 2015. Biochemistry, genetics and regulation of bacilysin biosynthesis and its significance more than an antibiotic. New Biotechnol, 32(6):612-619. https://doi.org/10.1016/j.nbt.2015.01.006https://doi.org/10.1016/j.nbt.2015.01.006
Pourbabaee AA, Shoaibi F, Emami S, et al., 2018. The potential contribution of siderophore producing bacteria on growth and Fe ion concentration of sunflower (Helianthus annuus L.) under water stress. J Plant Nutr, 41(5):619-626. https://doi.org/10.1080/01904167.2017.1406112https://doi.org/10.1080/01904167.2017.1406112
Purtschert-Montenegro G, Cárcamo-Oyarce G, Pinto-Carbó M, et al., 2022. Pseudomonas putida mediates bacterial killing, biofilm invasion and biocontrol with a type IVB secretion system. Nat Microbiol, 7(10):1547-1557. https://doi.org/10.1038/s41564-022-01209-6https://doi.org/10.1038/s41564-022-01209-6
Raaijmakers JM, de Bruijn I, Nybroe O, et al., 2010. Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev, 34(6):1037-1062. https://doi.org/10.1111/j.1574-6976.2010.00221.xhttps://doi.org/10.1111/j.1574-6976.2010.00221.x
Rajkumar M, Prasad MNV, Swaminathan S, et al., 2013. Climate change driven plant‒metal‒microbe interactions. Environ Int, 53:74-86. https://doi.org/10.1016/j.envint.2012.12.009https://doi.org/10.1016/j.envint.2012.12.009
Rändler-Kleine M, Wolfgang A, Dietel K, et al., 2020. How microbiome approaches can assist industrial development of biological control products. In: Gao YL, Hokkanen HMT, Menzler-Hokkanen I (Eds.), Integrative Biological Control. Springer, Cham, p.201-215. https://doi.org/10.1007/978-3-030-44838-7_13https://doi.org/10.1007/978-3-030-44838-7_13
Raza W, Wang JN, Jousset A, et al., 2020. Bacterial community richness shifts the balance between volatile organic compound-mediated microbe‒pathogen and microbe‒plant interactions. Proc Roy Soc B Biol Sci, 287(1925):20200403. https://doi.org/10.1098/rspb.2020.0403https://doi.org/10.1098/rspb.2020.0403
Roca A, Pizarro-Tobías P, Udaondo Z, et al., 2013. Analysis of the plant growth-promoting properties encoded by the genome of the rhizobacterium Pseudomonas putida BIRD-1. Environ Microbiol, 15(3):780-794. https://doi.org/10.1111/1462-2920.12037https://doi.org/10.1111/1462-2920.12037
Romero-Perdomo F, Abril J, Camelo M, et al., 2017. Azotobacter chroococcum as a potentially useful bacterial biofertilizer for cotton (Gossypium hirsutum): effect in reducing N fertilization. Rev Argent Microbiol, 49(4):377-383. https://doi.org/10.1016/j.ram.2017.04.006https://doi.org/10.1016/j.ram.2017.04.006
Sandy M, Butler A, 2011. Chrysobactin siderophores produced by Dickeya chrysanthemi EC16. J Nat Prod, 74(5):1207-1212. https://doi.org/10.1021/np200126zhttps://doi.org/10.1021/np200126z
Schäfer M, Vogel CM, Bortfeld-Miller M, et al., 2022. Mapping phyllosphere microbiota interactions in planta to establish genotype‒phenotype relationships. Nat Microbiol, 7(6):856-867. https://doi.org/10.1038/s41564-022-01132-whttps://doi.org/10.1038/s41564-022-01132-w
Schulz-Bohm K, Gerards S, Hundscheid M, et al., 2018. Calling from distance: attraction of soil bacteria by plant root volatiles. ISME J, 12(5):1252-1262. https://doi.org/10.1038/s41396-017-0035-3https://doi.org/10.1038/s41396-017-0035-3
Schütze E, Ahmed E, Voit A, et al., 2015. Siderophore production by streptomycetes—stability and alteration of ferrihydroxamates in heavy metal-contaminated soil. Environ Sci Pollut Res, 22(24):19376-19383. https://doi.org/10.1007/s11356-014-3842-3https://doi.org/10.1007/s11356-014-3842-3
Singh M, Awasthi A, Soni SK, et al., 2015. Complementarity among plant growth promoting traits in rhizospheric bacterial communities promotes plant growth. Sci Rep, 5:15500. https://doi.org/10.1038/srep15500https://doi.org/10.1038/srep15500
Song GC, Riu M, Ryu CM, 2019. Beyond the two compartments Petri-dish: optimising growth promotion and induced resistance in cucumber exposed to gaseous bacterial volatiles in a miniature greenhouse system. Plant Methods, 15:9. https://doi.org/10.1186/s13007-019-0395-yhttps://doi.org/10.1186/s13007-019-0395-y
Soutar CD, Stavrinides J, 2018. The evolution of three siderophore biosynthetic clusters in environmental and host-associating strains of Pantoea. Mol Genet Genomics, 293(6):1453-1467. https://doi.org/10.1007/s00438-018-1477-7https://doi.org/10.1007/s00438-018-1477-7
Su P, Kang HX, Peng QZ, et al., 2024. Microbiome homeostasis on rice leaves is regulated by a precursor molecule of lignin biosynthesis. Nat Commun, 15:23. https://doi.org/10.1038/s41467-023-44335-3https://doi.org/10.1038/s41467-023-44335-3
Sun XL, Xu ZH, Xie JY, et al., 2022. Bacillus velezensis stimulates resident rhizosphere Pseudomonas stutzeri for plant health through metabolic interactions. ISME J, 16(3):774-787. https://doi.org/10.1038/s41396-021-01125-3https://doi.org/10.1038/s41396-021-01125-3
Tan JQ, Kerstetter JE, Turcotte MM, 2021. Eco-evolutionary interaction between microbiome presence and rapid biofilm evolution determines plant host fitness. Nat Ecol Evol, 5(5):670-676. https://doi.org/10.1038/s41559-021-01406-2https://doi.org/10.1038/s41559-021-01406-2
Tassinari M, Doan T, Bellinzoni M, et al., 2022. The antibacterial type VII secretion system of Bacillus subtilis: structure and interactions of the pseudokinase YukC/EssB. mBio, 13(5):e0013422. https://doi.org/10.1128/mbio.00134-22https://doi.org/10.1128/mbio.00134-22
Tsuge K, Inoue S, Ano T, et al., 2005. Horizontal transfer of iturin A operon, itu, to Bacillus subtilis 168 and conversion into an iturin A producer. Antimicrob Agents Chemother, 49(11):4641-4648. https://doi.org/10.1128/aac.49.11.4641-4648.2005https://doi.org/10.1128/aac.49.11.4641-4648.2005
Venturi V, Bez C, 2021. A call to arms for cell‒cell interactions between bacteria in the plant microbiome. Trends Plant Sci, 26(11):1126-1132. https://doi.org/10.1016/j.tplants.2021.07.007https://doi.org/10.1016/j.tplants.2021.07.007
Wang JJ, Xu S, Yang R, et al., 2021. Bacillus amyloliquefaciens FH-1 significantly affects cucumber seedlings and the rhizosphere bacterial community but not soil. Sci Rep, 11:12055. https://doi.org/10.1038/s41598-021-91399-6https://doi.org/10.1038/s41598-021-91399-6
Wang MC, Cernava T, 2023. Soterobionts: disease-preventing microorganisms and proposed strategies to facilitate their discovery. Curr Opin Microbiol, 75:102349. https://doi.org/10.1016/j.mib.2023.102349https://doi.org/10.1016/j.mib.2023.102349
Wei Z, Yang TJ, Friman VP, et al., 2015. Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health. Nat Commun, 6:8413. https://doi.org/10.1038/ncomms9413https://doi.org/10.1038/ncomms9413
Weise T, Kai M, Gummesson A, et al., 2012. Volatile organic compounds produced by the phytopathogenic bacterium Xanthomonas campestris pv. vesicatoria 85-10. Beilstein J Org Chem, 8:579-596. https://doi.org/10.3762/bjoc.8.65https://doi.org/10.3762/bjoc.8.65
Xu SD, Liu YX, Cernava T, et al., 2022. Fusarium fruiting body microbiome member Pantoea agglomerans inhibits fungal pathogenesis by targeting lipid rafts. Nat Microbiol, 7(6):831-843. https://doi.org/10.1038/s41564-022-01131-xhttps://doi.org/10.1038/s41564-022-01131-x
Yang RH, Shi Q, Huang TT, et al., 2023. The natural pyrazolotriazine pseudoiodinine from Pseudomonas mosselii 923 inhibits plant bacterial and fungal pathogens. Nat Commun, 14:734. https://doi.org/10.1038/s41467-023-36433-zhttps://doi.org/10.1038/s41467-023-36433-z
Yannarell SM, Grandchamp GM, Chen SY, et al., 2019. A dual-species biofilm with emergent mechanical and protective properties. J Bacteriol, 201(18):e00670-18. https://doi.org/10.1128/jb.00670-18https://doi.org/10.1128/jb.00670-18
Yin XT, Xu LN, Xu L, et al., 2011. Evaluation of the efficacy of endophytic Bacillus amyloliquefaciens against Botryosphaeria dothidea and other phytopathogenic microorganisms. Afr J Microbiol Res, 5(4):340-345. https://doi.org/10.5897/AJMR10.679https://doi.org/10.5897/AJMR10.679
Yuan WF, Ruan S, Qi GF, et al., 2022. Plant growth-promoting and antibacterial activities of cultivable bacteria alive in tobacco field against Ralstonia solanacearum. Environ Microbiol, 24(3):1411-1429. https://doi.org/10.1111/1462-2920.15868https://doi.org/10.1111/1462-2920.15868
Yuan ZL, Druzhinina IS, Labbé J, et al., 2016. Specialized microbiome of a halophyte and its role in helping non-host plants to withstand salinity. Sci Rep, 6:32467. https://doi.org/10.1038/srep32467https://doi.org/10.1038/srep32467
Zeng XY, Zou YM, Zheng J, et al., 2023. Quorum sensing-mediated microbial interactions: mechanisms, applications, challenges and perspectives. Microbiol Res, 273:127414. https://doi.org/10.1016/j.micres.2023.127414https://doi.org/10.1016/j.micres.2023.127414
Zeriouh H, Romero D, García-Gutiérrez L, et al., 2011. The iturin-like lipopeptides are essential components in the biological control arsenal of Bacillus subtilis against bacterial diseases of cucurbits. Mol Plant Microbe Interact, 24(12):1540-1552. https://doi.org/10.1094/MPMI-06-11-0162https://doi.org/10.1094/MPMI-06-11-0162
Zhang WL, Zhang Y, Wang XX, et al., 2017. Siderophores in clinical isolates of Klebsiella pneumoniae promote ciprofloxacin resistance by inhibiting the oxidative stress. Biochem Biophys Res Commun, 491(3):855-861. https://doi.org/10.1016/j.bbrc.2017.04.108https://doi.org/10.1016/j.bbrc.2017.04.108
Zhang XX, Ma YN, Wang X, et al., 2022. Dynamics of rice microbiomes reveal core vertically transmitted seed endophytes. Microbiome, 10:216. https://doi.org/10.1186/s40168-022-01422-9https://doi.org/10.1186/s40168-022-01422-9
Zhou YQ, Wang HK, Xu SD, et al., 2022. Bacterial‒fungal interactions under agricultural settings: from physical to chemical interactions. Stress Biol, 2:22. https://doi.org/10.1007/s44154-022-00046-1https://doi.org/10.1007/s44154-022-00046-1
Zhu SB, Hong JK, Wang T, 2024. Horizontal gene transfer is predicted to overcome the diversity limit of competing microbial species. Nat Commun, 15:800. https://doi.org/10.1038/s41467-024-45154-whttps://doi.org/10.1038/s41467-024-45154-w
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution