无数据
Scan for full text
1.NHC Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
2.National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
3.The Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of Education, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha 410078, China
4.Department of Critical Care Medicine, Hainan Hospital of Chinese PLA General Hospital, Hainan Province Clinical Medical Center, Sanya 572013, China
Published: 15 July 2024 ,
Received: 26 June 2023 ,
Revised: 10 October 2023 ,
谢雯,刘卫东,王磊等.THEM4在Akt通路中的作用:一把双刃剑[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2024,25(07):541-556.
Wen XIE, Weidong LIU, Lei WANG, et al. Roles of THEM4 in the Akt pathway: a double-edged sword. [J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology) 25(7):541-556(2024)
谢雯,刘卫东,王磊等.THEM4在Akt通路中的作用:一把双刃剑[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2024,25(07):541-556. DOI: 10.1631/jzus.B2300457.
Wen XIE, Weidong LIU, Lei WANG, et al. Roles of THEM4 in the Akt pathway: a double-edged sword. [J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology) 25(7):541-556(2024) DOI: 10.1631/jzus.B2300457.
蛋白激酶B(Akt)通路可通过激活下游多个靶基因来调控肿瘤细胞和干细胞的生长、增殖和代谢等,从而影响一系列疾病的发生和治疗。硫酯酶超家族成员4(THEM4)作为硫酯酶超家族成员中的一员,也是Akt激酶的结合蛋白之一。癌症等疾病的机制研究发现THEM4可以与Akt结合从而调控Akt的磷酸化。最初,THEM4被认为是Akt的内源性抑制剂,在肺癌、胰腺癌和肝癌等疾病中抑制Akt的磷酸化。但随后的研究发现,THEM4在乳腺癌和鼻咽癌中通过正向调节Akt活性促进肿瘤细胞的增殖,这与之前的研究结果正好相反。面对这两种截然不同的观点,本文综述了THEM4在Akt通路中的重要作用,重点探讨了THEM4作为一种Akt结合蛋白,在各种疾病(尤其是癌症)中与Akt磷酸化的调控关系。这将有助于更好地了解THEM4联合Akt在疾病治疗中的作用。
The protein kinase B (Akt) pathway can regulate the growth
proliferation
and metabolism of tumor cells and stem cells through the activation of multiple downstream target genes
thus affecting the development and treatment of a range of diseases. Thioesterase superfamily member 4 (THEM4)
a member of the thioesterase superfamily
is one of the Akt kinase-binding proteins. Some studies on the mechanism of cancers and other diseases have shown that THEM4 binds to Akt to regulate its phosphorylation. Initially
THEM4 was considered an endogenous inhibitor of Akt
which can inhibit the phosphorylation of Akt in diseases such as lung cancer
pancreatic cancer
and liver cancer
but subsequently
THEM4 was shown to promote the proliferation of tumor cells by positively regulating Akt activity in breast cancer and nasopharyngeal carcinoma
which contradicts previous findings. Considering these two distinct views
this review summarizes the important roles of THEM4 in the Akt pathway
focusing on THEM4 as an Akt-binding protein and its regulatory relationship with Akt phosphorylation in various diseases
especially cancer. This work provides a better understanding of the roles of THEM4 combined with Akt in the treatment of diseases.
蛋白激酶B(Akt)硫酯酶超家族成员4(THEM4)肿瘤增殖肿瘤转移
Protein kinase B (Akt)Thioesterase superfamily member 4 (THEM4)Tumor proliferationTumor metastasis
Abeyrathna P, Su YC, 2015. The critical role of Akt in cardiovascular function. Vascul Pharmacol, 74:38-48. https://doi.org/10.1016/j.vph.2015.05.008https://doi.org/10.1016/j.vph.2015.05.008
Angellotti E, D'Alessio D, Dawson-Hughes B, et al., 2019. Effect of vitamin D supplementation on cardiovascular risk in type 2 diabetes. Clin Nutr, 38(5):2449-2453. https://doi.org/10.1016/j.clnu.2018.10.003https://doi.org/10.1016/j.clnu.2018.10.003
Anwanwan D, Singh SK, Singh S, et al., 2020. Challenges in liver cancer and possible treatment approaches. Biochim Biophys Acta (BBA) Rev Cancer, 1873(1):188314. https://doi.org/10.1016/j.bbcan.2019.188314https://doi.org/10.1016/j.bbcan.2019.188314
Austin S, Nowikovsky K, 2019. LETM1: essential for mitochondrial biology and cation homeostasis? Trends Biochem Sci, 44(8):648-658. https://doi.org/10.1016/j.tibs.2019.04.002https://doi.org/10.1016/j.tibs.2019.04.002
Caswell BT, de Carvalho CC, Nguyen H, et al., 2022. Thioesterase enzyme families: functions, structures, and mechanisms. Protein Sci, 31(3):652-676. https://doi.org/10.1002/pro.4263https://doi.org/10.1002/pro.4263
Chang JW, Jung SN, Kim JH, et al., 2016. Carboxyl-terminal modulator protein positively acts as an oncogenic driver in head and neck squamous cell carcinoma via regulating Akt phosphorylation. Sci Rep, 6:28503. https://doi.org/10.1038/srep28503https://doi.org/10.1038/srep28503
Che N, Yang ZT, Liu XZ, et al., 2021. Suppression of LETM1 inhibits the proliferation and stemness of colorectal cancer cells through reactive oxygen species-induced autophagy. J Cell Mol Med, 25(4):2110-2120. https://doi.org/10.1111/jcmm.16169https://doi.org/10.1111/jcmm.16169
Chen N, Hao J, Li LS, et al., 2016. Carboxy-terminal modulator protein attenuated extracellular matrix deposit by inhibiting phospho-Akt, TGF-β1 and α-SMA in kidneys of diabetic mice. Biochem Biophys Res Commun, 474(4):753-760. https://doi.org/10.1016/j.bbrc.2016.05.032https://doi.org/10.1016/j.bbrc.2016.05.032
Chen YC, Li HY, Liang JL, et al., 2017. CTMP, a predictive biomarker for trastuzumab resistance in HER2-enriched breast cancer patient. Oncotarget, 8(18):29699-29710. https://doi.org/10.18632/oncotarget.10719https://doi.org/10.18632/oncotarget.10719
Collisson EA, Bailey P, Chang DK, et al., 2019. Molecular subtypes of pancreatic cancer. Nat Rev Gastroenterol Hepatol, 16(4):207-220. https://doi.org/10.1038/s41575-019-0109-yhttps://doi.org/10.1038/s41575-019-0109-y
de Lima JGS, Lanza DCF, 2021. 2A and 2A-like sequences: distribution in different virus species and applications in biotechnology. Viruses, 13(11):2160. https://doi.org/10.3390/v13112160https://doi.org/10.3390/v13112160
Duma N, Santana-Davila R, Molina JR, 2019. Non-small cell lung cancer: epidemiology, screening, diagnosis, and treatment. Mayo Clin Proc, 94(8):1623-1640. https://doi.org/10.1016/j.mayocp.2019.01.013https://doi.org/10.1016/j.mayocp.2019.01.013
Fallatah B, Shuaib M, Adroub S, et al., 2021. Ago1 controls myogenic differentiation by regulating eRNA-mediated CBP-guided epigenome reprogramming. Cell Rep, 37(9):110066. https://doi.org/10.1016/j.celrep.2021.110066https://doi.org/10.1016/j.celrep.2021.110066
Giustina A, Adler RA, Binkley N, et al., 2020. Consensus statement from 2nd international conference on controversies in vitamin D. Rev Endocr Metab Disord, 21(1):89-116. https://doi.org/10.1007/s11154-019-09532-whttps://doi.org/10.1007/s11154-019-09532-w
Gravitz L, 2014. Liver cancer. Nature, 516(7529):S1. https://doi.org/10.1038/516S1ahttps://doi.org/10.1038/516S1a
Gurney ME, Pu HF, Chiu AY, et al., 1994. Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science, 264(5166):1772-1775. https://doi.org/10.1126/science.8209258https://doi.org/10.1126/science.8209258
Hassoun PM, 2021. Pulmonary arterial hypertension. N Engl J Med, 385(25):2361-2376. https://doi.org/10.1056/NEJMra2000348https://doi.org/10.1056/NEJMra2000348
Hsieh TC, Lin CY, Bennett DJ, et al., 2014. Biochemical and cellular evidence demonstrating AKT-1 as a binding partner for resveratrol targeting protein NQO2. PLoS ONE, 9(6):e101070. https://doi.org/10.1371/journal.pone.0101070https://doi.org/10.1371/journal.pone.0101070
Huang CY, Chen JJ, Wu JS, et al., 2015. Novel link of anti-apoptotic ATF3 with pro-apoptotic CTMP in the ischemic brain. Mol Neurobiol, 51(2):543-557. https://doi.org/10.1007/s12035-014-8710-0https://doi.org/10.1007/s12035-014-8710-0
Huang SH, O'Sullivan B, 2017. Overview of the 8th edition TNM classification for head and neck cancer. Curr Treat Options Oncol, 18(7):40. https://doi.org/10.1007/s11864-017-0484-yhttps://doi.org/10.1007/s11864-017-0484-y
Hwang SK, Kwon JT, Park SJ, et al., 2007. Lentivirus-mediated carboxyl-terminal modulator protein gene transfection via aerosol in lungs of K-ras null mice. Gene Ther, 14(24):1721-1730. https://doi.org/10.1038/sj.gt.3303042https://doi.org/10.1038/sj.gt.3303042
Hwang SK, Lim HT, Minai-Tehrani A, et al., 2009. Repeated aerosol delivery of carboxyl-terminal modulator protein suppresses tumor in the lungs of K-rasLA1 mice. Am J Respir Crit Care Med, 179(12):1131-1140. https://doi.org/10.1164/rccm.200810-1553OChttps://doi.org/10.1164/rccm.200810-1553OC
Jafari M, Ghadami E, Dadkhah T, et al., 2019. PI3K/Akt signaling pathway: erythropoiesis and beyond. J Cell Physiol, 234(3):2373-2385. https://doi.org/10.1002/jcp.27262https://doi.org/10.1002/jcp.27262
Jagannath VA, Filippini G, do Nascimento IJB, et al., 2018. Vitamin D for the management of multiple sclerosis. Cochrane Database Syst Rev, 9(9):CD008422. https://doi.org/10.1002/14651858.CD008422.pub3https://doi.org/10.1002/14651858.CD008422.pub3
Jeong D, Ham J, Kim HW, et al., 2021. ELOVL2: a novel tumor suppressor attenuating tamoxifen resistance in breast cancer. Am J Cancer Res, 11(6):2568-2589.
Jin H, Xu CX, Lim HT, et al., 2009. High dietary inorganic phosphate increases lung tumorigenesis and alters Akt signaling. Am J Respir Crit Care Med, 179(1):59-68. https://doi.org/10.1164/rccm.200802-306OChttps://doi.org/10.1164/rccm.200802-306OC
Kao MH, Huang CY, Cheung WM, et al., 2023. Activating transcription factor 3 diminishes ischemic cerebral infarct and behavioral deficit by downregulating carboxyl-terminal modulator protein. Int J Mol Sci, 24(3):2306. https://doi.org/10.3390/ijms24032306https://doi.org/10.3390/ijms24032306
Klein AP, 2021. Pancreatic cancer epidemiology: understanding the role of lifestyle and inherited risk factors. Nat Rev Gastroenterol Hepatol, 18(7):493-502. https://doi.org/10.1038/s41575-021-00457-xhttps://doi.org/10.1038/s41575-021-00457-x
Li J, Shan WR, Zuo ZY, 2018. Age-related upregulation of carboxyl terminal modulator protein contributes to the decreased brain ischemic tolerance in older rats. Mol Neurobiol, 55(7):6145-6154. https://doi.org/10.1007/s12035-017-0826-6https://doi.org/10.1007/s12035-017-0826-6
Li L, Fan CM, 2017. A CREB-MPP7-AMOT regulatory axis controls muscle stem cell expansion and self-renewal competence. Cell Rep, 21(5):1253-1266. https://doi.org/10.1016/j.celrep.2017.10.031https://doi.org/10.1016/j.celrep.2017.10.031
Li Y, Imai N, Nicholls HT, et al., 2021. Thioesterase superfamily member 1 undergoes stimulus-coupled conformational reorganization to regulate metabolism in mice. Nat Commun, 12:3493. https://doi.org/10.1038/s41467-021-23595-xhttps://doi.org/10.1038/s41467-021-23595-x
Li Y, She WY, Xu XR, et al., 2023. AAZ2 induces mitochondrial-dependent apoptosis by targeting PDK1 in gastric cancer. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 24(3):232-247. https://doi.org/10.1631/jzus.B2200351https://doi.org/10.1631/jzus.B2200351
Li ZH, Cai BL, Abdalla BA, et al., 2019. LncIRS1 controls muscle atrophy via sponging miR-15 family to activate IGF1-PI3K/AKT pathway. J Cachexia Sarcopenia Muscle, 10(2):391-410. https://doi.org/10.1002/jcsm.12374https://doi.org/10.1002/jcsm.12374
Lin CH, Lin WD, Huang YC, et al., 2023. Carboxyl-terminal modulator protein facilitates tumor metastasis in triple-negative breast cancer. Cancer Gene Ther, 30(3):404-413. https://doi.org/10.1038/s41417-022-00559-xhttps://doi.org/10.1038/s41417-022-00559-x
Liu XX, Yang Q, Zhu LH, et al., 2018. Carboxyl-terminal modulator protein ameliorates pathological cardiac hypertrophy by suppressing the protein kinase B signaling pathway. J Am Heart Assoc, 7(13):e008654. https://doi.org/10.1161/JAHA.118.008654https://doi.org/10.1161/JAHA.118.008654
Liu YP, Liao WC, Ger LP, et al., 2013. Carboxyl-terminal modulator protein positively regulates Akt phosphorylation and acts as an oncogenic driver in breast cancer. Cancer Res, 73(20):6194-6205. https://doi.org/10.1158/0008-5472.CAN-13-0518https://doi.org/10.1158/0008-5472.CAN-13-0518
Ma Z, Lou SP, Jiang Z, 2020. PHLDA2 regulates EMT and autophagy in colorectal cancer via the PI3K/AKT signaling pathway. Aging (Albany NY), 12(9):7985-8000. https://doi.org/10.18632/aging.103117https://doi.org/10.18632/aging.103117
Maiese K, Chong ZZ, Wang SH, et al., 2012. Oxidant stress and signal transduction in the nervous system with the PI 3-K, Akt, and mTOR cascade. Int J Mol Sci, 13(11):13830-13866. https://doi.org/10.3390/ijms131113830https://doi.org/10.3390/ijms131113830
Maira SM, Galetic I, Brazil DP, et al., 2001. Carboxyl-terminal modulator protein (CTMP), a negative regulator of PKB/Akt and v-Akt at the plasma membrane. Science, 294(5541):374-380. https://doi.org/10.1126/science.1062030https://doi.org/10.1126/science.1062030
Masrori P, van Damme P, 2020. Amyotrophic lateral sclerosis: a clinical review. Eur J Neurol, 27(10):1918-1929. https://doi.org/10.1111/ene.14393https://doi.org/10.1111/ene.14393
Mejzini R, Flynn LL, Pitout IL, et al., 2019. ALS genetics, mechanisms, and therapeutics: where are we now? Front Neurosci, 13:1310. https://doi.org/10.3389/fnins.2019.01310https://doi.org/10.3389/fnins.2019.01310
Missiroli S, Perrone M, Genovese I, et al., 2020. Cancer metabolism and mitochondria: finding novel mechanisms to fight tumours. EBioMedicine, 59:102943. https://doi.org/10.1016/j.ebiom.2020.102943https://doi.org/10.1016/j.ebiom.2020.102943
Miyawaki T, Ofengeim D, Noh KM, et al., 2009. The endogenous inhibitor of Akt, CTMP, is critical to ischemia-induced neuronal death. Nat Neurosci, 12(5):618-626. https://doi.org/10.1038/nn.2299https://doi.org/10.1038/nn.2299
Narayanankutty A, 2019. PI3K/Akt/mTOR pathway as a thera-peutic target for colorectal cancer: a review of preclinical and clinical evidence. Curr Drug Targets, 20(12):1217-1226. https://doi.org/10.2174/1389450120666190618123846https://doi.org/10.2174/1389450120666190618123846
Natarajan GK, Mishra J, Camara AKS, et al., 2021. LETM1: a single entity with diverse impact on mitochondrial metabolism and cellular signaling. Front Physiol, 12:637852. https://doi.org/10.3389/fphys.2021.637852https://doi.org/10.3389/fphys.2021.637852
Ni FB, Lin Z, Fan XH, et al., 2020. A novel genomic-clinicopathologic nomogram to improve prognosis prediction of hepatocellular carcinoma. Clin Chim Acta, 504:88-97. https://doi.org/10.1016/j.cca.2020.02.001https://doi.org/10.1016/j.cca.2020.02.001
Ono H, Sakoda H, Fujishiro M, et al., 2007. Carboxy-terminal modulator protein induces Akt phosphorylation and activation, thereby enhancing antiapoptotic, glycogen synthetic, and glucose uptake pathways. Am J Physiol Cell Physiol, 293(5):C1576-C1585. https://doi.org/10.1152/ajpcell.00570.2006https://doi.org/10.1152/ajpcell.00570.2006
Park J, Li YW, Kim SH, et al., 2014. New players in high fat diet-induced obesity: LETM1 and CTMP. Metabolism, 63(3):318-327. https://doi.org/10.1016/j.metabol.2013.10.012https://doi.org/10.1016/j.metabol.2013.10.012
Piao L, Yang ZT, Feng Y, et al., 2019a. LETM1 is a potential biomarker of prognosis in lung non-small cell carcinoma. BMC Cancer, 19:898. https://doi.org/10.1186/s12885-019-6128-9https://doi.org/10.1186/s12885-019-6128-9
Piao L, Feng Y, Yang ZT, et al., 2019b. LETM1 is a potential cancer stem-like cell marker and predicts poor prognosis in colorectal adenocarcinoma. Pathol Res Pract, 215(7):152437. https://doi.org/10.1016/j.prp.2019.152437https://doi.org/10.1016/j.prp.2019.152437
Porporato PE, Filigheddu N, Pedro JMBS, et al., 2018. Mitochondrial metabolism and cancer. Cell Res, 28(3):265-280. https://doi.org/10.1038/cr.2017.155https://doi.org/10.1038/cr.2017.155
Revathidevi S, Munirajan AK, 2019. Akt in cancer: mediator and more. Semin Cancer Biol, 59:80-91. https://doi.org/10.1016/j.semcancer.2019.06.002https://doi.org/10.1016/j.semcancer.2019.06.002
Sarbassov DD, Guertin DA, Ali SM, et al., 2005. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science, 307(5712):1098-1101. https://doi.org/10.1126/science.1106148https://doi.org/10.1126/science.1106148
Shariati M, Meric-Bernstam F, 2019. Targeting AKT for cancer therapy. Expert Opin Investig Drugs, 28(11):977-988. https://doi.org/10.1080/13543784.2019.1676726https://doi.org/10.1080/13543784.2019.1676726
Shin JY, Chung YS, Kang B, et al., 2013. Co-delivery of LETM1 and CTMP synergistically inhibits tumor growth in H-ras12V liver cancer model mice. Cancer Gene Ther, 20(3):186-194. https://doi.org/10.1038/cgt.2013.6https://doi.org/10.1038/cgt.2013.6
Shin N, Yi MH, Kim S, et al., 2017. Astrocytic expression of CTMP following an excitotoxic lesion in the mouse hippocampus. Exp Neurobiol, 26(1):25-32. https://doi.org/10.5607/en.2017.26.1.25https://doi.org/10.5607/en.2017.26.1.25
Simon PO, McDunn JE, Kashiwagi H, et al., 2009. Targeting AKT with the proapoptotic peptide, TAT-CTMP: a novel strategy for the treatment of human pancreatic adenocarcinoma. Int J Cancer, 125(4):942-951. https://doi.org/10.1002/ijc.24424https://doi.org/10.1002/ijc.24424
Song MQ, Bode AM, Dong ZG, et al., 2019. AKT as a therapeutic target for cancer. Cancer Res, 79(6):1019-1031. https://doi.org/10.1158/0008-5472.CAN-18-2738https://doi.org/10.1158/0008-5472.CAN-18-2738
Sumi T, Tsuneyoshi N, Nakatsuji N, et al., 2008. Defining early lineage specification of human embryonic stem cells by the orchestrated balance of canonical Wnt/β-catenin, Activin/Nodal and BMP signaling. Development, 135(17):2969-2979. https://doi.org/10.1242/dev.021121https://doi.org/10.1242/dev.021121
Sun XT, Kellner M, Desai AA, et al., 2016. Asymmetric dimethylarginine stimulates Akt1 phosphorylation via heat shock protein 70-facilitated carboxyl-terminal modulator protein degradation in pulmonary arterial endothelial cells. Am J Respir Cell Mol Biol, 55(2):275-287. https://doi.org/10.1165/rcmb.2015-0185OChttps://doi.org/10.1165/rcmb.2015-0185OC
Suo CJ, Gui ZP, Wang ZJ, et al., 2021. Bortezomib limits renal allograft interstitial fibrosis by inhibiting NF-κB/TNF-α/Akt/mTOR/P70S6K/Smurf2 pathway via IκBα protein stabilization. Clin Sci (Lond), 135(1):53-69. https://doi.org/10.1042/CS20201038https://doi.org/10.1042/CS20201038
Thai AA, Solomon BJ, Sequist LV, et al., 2021. Lung cancer. Lancet, 398(10299):535-554. https://doi.org/10.1016/S0140-6736(21)00312-3https://doi.org/10.1016/S0140-6736(21)00312-3
Tillander V, Miniami A, Alves-Bezerra M, et al., 2019. Thioesterase superfamily member 2 promotes hepatic insulin resistance in the setting of glycerol-3-phosphate acyltransferase 1-induced steatosis. J Biol Chem, 294(6):2009-2020. https://doi.org/10.1074/jbc.RA118.005184https://doi.org/10.1074/jbc.RA118.005184
Trayes KP, Cokenakes SEH, 2021. Breast cancer treatment. Am Fam Physician, 104(2):171-178.
Vaes N, Schonkeren SL, Rademakers G, et al., 2021. Loss of enteric neuronal Ndrg4 promotes colorectal cancer via increased release of Nid1 and Fbln2. EMBO Rep, 22(6):e51913. https://doi.org/10.15252/embr.202051913https://doi.org/10.15252/embr.202051913
Vincent A, Herman J, Schulick R, et al., 2011. Pancreatic cancer. Lancet, 378(9791):607-620. https://doi.org/10.1016/S0140-6736(10)62307-0https://doi.org/10.1016/S0140-6736(10)62307-0
Wang B, Xu X, Liu X, et al., 2021. Enolase-phosphatase 1 acts as an oncogenic driver in glioma. J Cell Physiol, 236(2):1184-1194. https://doi.org/10.1002/jcp.29926https://doi.org/10.1002/jcp.29926
Wang DT, Yin Y, Yang YJ, et al., 2014. Resveratrol prevents TNF-α-induced muscle atrophy via regulation of Akt/mTOR/FoxO1 signaling in C2C12 myotubes. Int Immunopharmacol, 19(2):206-213. https://doi.org/10.1016/j.intimp.2014.02.002https://doi.org/10.1016/j.intimp.2014.02.002
Wang JM, Fry CME, Walker CL, 2019. Carboxyl-terminal modulator protein regulates Akt signaling during skeletal muscle atrophy in vitro and a mouse model of amyotrophic lateral sclerosis. Sci Rep, 9:3920. https://doi.org/10.1038/s41598-019-40553-2https://doi.org/10.1038/s41598-019-40553-2
Wang JM, Tierney L, Wilson C, et al., 2023. Carboxyl-terminal modulator protein (CTMP) deficiency mitigates denervation-induced skeletal muscle atrophy. Biochem Biophys Res Commun, 644:155-161. https://doi.org/10.1016/j.bbrc.2023.01.023https://doi.org/10.1016/j.bbrc.2023.01.023
Wang QS, He YH, Shen YJ, et al., 2014. Vitamin D inhibits COX-2 expression and inflammatory response by targeting thioesterase superfamily member 4. J Biol Chem, 289(17):11681-11694. https://doi.org/10.1074/jbc.M113.517581https://doi.org/10.1074/jbc.M113.517581
Wang WY, Wen QY, Xu LN, et al., 2014. Activation of Akt/mTOR pathway is associated with poor prognosis of nasopharyngeal carcinoma. PLoS ONE, 9(8):e106098. https://doi.org/10.1371/journal.pone.0106098https://doi.org/10.1371/journal.pone.0106098
Wang XK, Marchisio MA, 2021. Synthetic polycistronic sequences in eukaryotes. Synth Syst Biotechnol, 6(4):254-261. https://doi.org/10.1016/j.synbio.2021.09.003https://doi.org/10.1016/j.synbio.2021.09.003
Wen L, Liu L, Tong LY, et al., 2019. NDRG4 prevents cerebral ischemia/reperfusion injury by inhibiting neuronal apoptosis. Genes Dis, 6(4):448-454. https://doi.org/10.1016/j.gendis.2019.01.001https://doi.org/10.1016/j.gendis.2019.01.001
Wu X, Liang YR, Jing XN, et al., 2018. Rifampicin prevents SH-SY5Y cells from rotenone-induced apoptosis via the PI3K/Akt/GSK-3β/CREB signaling pathway. Neurochem Res, 43(4):886-893. https://doi.org/10.1007/s11064-018-2494-yhttps://doi.org/10.1007/s11064-018-2494-y
Xu HJ, Yan XJ, Zhu HC, et al., 2022. TBL1X and Flot2 form a positive feedback loop to promote metastasis in nasopharyngeal carcinoma. Int J Biol Sci, 18(3):1134-1149. https://doi.org/10.7150/ijbs.68091https://doi.org/10.7150/ijbs.68091
Yin HD, He HR, Shen XX, et al., 2020. MiR-9-5p inhibits skeletal muscle satellite cell proliferation and differentiation by targeting IGF2BP3 through the IGF2-PI3K/Akt signaling pathway. Int J Mol Sci, 21(5):1655. https://doi.org/10.3390/ijms21051655https://doi.org/10.3390/ijms21051655
Zeng J, He SL, Li LJ, et al., 2021. Hsp90 up-regulates PD-L1 to promote HPV-positive cervical cancer via HER2/PI3K/AKT pathway. Mol Med, 27:130. https://doi.org/10.1186/s10020-021-00384-2https://doi.org/10.1186/s10020-021-00384-2
Zhang EY, Shi HL, Yang L, et al., 2017. Ginsenoside Rd regulates the Akt/mTOR/p70S6K signaling cascade and suppresses angiogenesis and breast tumor growth. Oncol Rep, 38(1):359-367. https://doi.org/10.3892/or.2017.5652https://doi.org/10.3892/or.2017.5652
Zhang SS, Xue R, Geng YP, et al., 2020. Fisetin prevents HT22 cells from high glucose-induced neurotoxicity via PI3K/Akt/CREB signaling pathway. Front Neurosci, 14:241. https://doi.org/10.3389/fnins.2020.00241https://doi.org/10.3389/fnins.2020.00241
Zhang SX, Li DG, Zhao M, et al., 2021. Exosomal miR-183-5p shuttled by M2 polarized tumor-associated macrophage promotes the development of colon cancer via targeting THEM4 mediated PI3K/AKT and NF-κB pathways. Front Oncol, 11:672684. https://doi.org/10.3389/fonc.2021.672684https://doi.org/10.3389/fonc.2021.672684
Zhang X, Dong ZC, Fan H, et al., 2023. Scutellarin prevents acute alcohol-induced liver injury via inhibiting oxidative stress by regulating the Nrf2/HO-1 pathway and inhibiting inflammation by regulating the AKT, p38 MAPK/NF-κB pathways. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 24(7):617-631. https://doi.org/10.1631/jzus.B2200612https://doi.org/10.1631/jzus.B2200612
Zhao H, Lim K, Choudry A, et al., 2012. Correlation of structure and function in the human hotdog-fold enzyme hTHEM4. Biochemistry, 51(33):6490-6492. https://doi.org/10.1021/bi300968nhttps://doi.org/10.1021/bi300968n
Zhao SJ, Kong FQ, Jie J, et al., 2020. Macrophage MSR1 promotes BMSC osteogenic differentiation and M2-like polarization by activating PI3K/AKT/GSK3β/β-catenin pathway. Theranostics, 10(1):17-35. https://doi.org/10.7150/thno.36930https://doi.org/10.7150/thno.36930
Zhou BY, Yang CH, Yan X, et al., 2020. LETM1 knockdown promotes autophagy and apoptosis through AMP-activated protein kinase phosphorylation-mediated Beclin-1/Bcl-2 complex dissociation in hepatocellular carcinoma. Front Oncol, 10:606790. https://doi.org/10.3389/fonc.2020.606790https://doi.org/10.3389/fonc.2020.606790
Zhu MF, Zheng R, Guo YW, et al., 2017. NDRG4 promotes myogenesis via Akt/CREB activation. Oncotarget, 8(60):101720-101734. https://doi.org/10.18632/oncotarget.21591https://doi.org/10.18632/oncotarget.21591
Zhuravleva E, Gut H, Hynx D, et al., 2012. Acyl coenzyme A thioesterase Them5/Acot15 is involved in cardiolipin remodeling and fatty liver development. Mol Cell Biol, 32(14):2685-2697. https://doi.org/10.1128/MCB.00312-12https://doi.org/10.1128/MCB.00312-12
Zong WX, Rabinowitz JD, White E, 2016. Mitochondria and cancer. Mol Cell, 61(5):667-676. https://doi.org/10.1016/j.molcel.2016.02.011https://doi.org/10.1016/j.molcel.2016.02.011
0
Views
18
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution