无数据
Scan for full text
1.Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai 200438, China
2.National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai 200433, China
曹红,周绪昌,徐博文等.哺乳动物细胞蛋白质折叠和内质网相关降解的研究进展[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2024,25(03):212-232.
Hong CAO, Xuchang ZHOU, Bowen XU, et al. Advances in the study of protein folding and endoplasmic reticulum-associated degradation in mammal cells. [J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology) 25(3):212-232(2024)
曹红,周绪昌,徐博文等.哺乳动物细胞蛋白质折叠和内质网相关降解的研究进展[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2024,25(03):212-232. DOI: 10.1631/jzus.B2300403.
Hong CAO, Xuchang ZHOU, Bowen XU, et al. Advances in the study of protein folding and endoplasmic reticulum-associated degradation in mammal cells. [J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology) 25(3):212-232(2024) DOI: 10.1631/jzus.B2300403.
内质网是体内蛋白质产生和质量控制的关键场所,体内约1/3的蛋白是经内质网合成并加工发挥作用。蛋白质合成后需要进行一定的折叠,形成正确的三维构象,从而发挥其功能。然而在蛋白质折叠过程中易出现错误,导致未折叠和(或)错误折叠蛋白在内质网内聚集,进而导致内质网应激。对此,机体可通过内质网质量控制(ERQC)和内质网相关降解(ERAD)对生成的蛋白质质量进行检测,并通过降解异常折叠蛋白质,以维持内质网内蛋白稳态。目前为止,对哺乳动物体内有关蛋白质折叠和ERAD的详细机制描述尚不全面。为此,本文综述了哺乳动物细胞中蛋白质折叠与ERAD的过程和功能,并重点对ERAD相关蛋白质构象疾病的潜在病理生理学进行了介绍。
The endoplasmic reticulum is a key site for protein production and quality control. More than one-third of proteins are synthesized and folded into the correct three-dimensional conformation in the endoplasmic reticulum. However, during protein folding, unfolded and/or misfolded proteins are prone to occur, which may lead to endoplasmic reticulum stress. Organisms can monitor the quality of the proteins produced by endoplasmic reticulum quality control (ERQC) and endoplasmic reticulum-associated degradation (ERAD), which maintain endoplasmic reticulum protein homeostasis by degrading abnormally folded proteins. The underlying mechanisms of protein folding and ERAD in mammals have not yet been fully explored. Therefore, this paper reviews the process and function of protein folding and ERAD in mammalian cells, in order to help clinicians better understand the mechanism of ERAD and to provide a scientific reference for the treatment of diseases caused by abnormal ERAD.
内质网相关降解蛋白质折叠泛素化逆向转位
Endoplasmic reticulum-associated degradation (ERAD)Protein foldingUbiquitinationRetrotranslocation
Abisambra JF, Jinwal UK, Blair LJ, et al., 2013. Tau accumulation activates the unfolded protein response by impairing endoplasmic reticulum-associated degradation. J Neurosci, 33(22):9498-9507. https://doi.org/10.1523/jneurosci.5397-12.2013https://doi.org/10.1523/jneurosci.5397-12.2013
Albrecht D, Isenberg AL, Stradford J, et al., 2020. Associations between vascular function and tau PET are associated with global cognition and amyloid. J Neurosci, 40(44):8573-8586. https://doi.org/10.1523/jneurosci.1230-20.2020https://doi.org/10.1523/jneurosci.1230-20.2020
Alcock F, Swanton E, 2009. Mammalian OS-9 is upregulated in response to endoplasmic reticulum stress and facilitates ubiquitination of misfolded glycoproteins. J Mol Biol, 385(4):1032-1042. https://doi.org/10.1016/j.jmb.2008.11.045https://doi.org/10.1016/j.jmb.2008.11.045
Alzayady KJ, Panning MM, Kelley GG, et al., 2005. Involvement of the p97-Ufd1-Npl4 complex in the regulated endoplasmic reticulum-associated degradation of inositol 1,4,5-trisphosphate receptors. J Biol Chem, 280(41):34530-34537. https://doi.org/10.1074/jbc.M508890200https://doi.org/10.1074/jbc.M508890200
Amano T, Yamasaki S, Yagishita N, et al., 2003. Synoviolin/Hrd1, an E3 ubiquitin ligase, as a novel pathogenic factor for arthropathy. Genes Dev, 17(19):2436-2449. https://doi.org/10.1101/gad.1096603https://doi.org/10.1101/gad.1096603
Bagola K, von Delbrück M, Dittmar G, et al., 2013. Ubiquitin binding by a CUE domain regulates ubiquitin chain formation by ERAD E3 ligases. Mol Cell, 50(4):528-539. https://doi.org/10.1016/j.molcel.2013.04.005https://doi.org/10.1016/j.molcel.2013.04.005
Ballar P, Shen YX, Yang H, et al., 2006. The role of a novel p97/valosin-containing protein-interacting motif of gp78 in endoplasmic reticulum-associated degradation. J Biol Chem, 281(46):35359-35368. https://doi.org/10.1074/jbc.M603355200https://doi.org/10.1074/jbc.M603355200
Ballar P, Ors AU, Yang H, et al., 2010. Differential regulation of CFTRΔF508 degradation by ubiquitin ligases gp78 and Hrd1. Int J Biochem Cell Biol, 42(1):167-173. https://doi.org/10.1016/j.biocel.2009.10.005https://doi.org/10.1016/j.biocel.2009.10.005
Barghout SH, Schimmer AD, 2021. E1 enzymes as therapeutic targets in cancer. Pharmacol Rev, 73(1):1-56. https://doi.org/10.1124/pharmrev.120.000053https://doi.org/10.1124/pharmrev.120.000053
Bartee E, Mansouri M, Hovey Nerenberg BT, et al., 2004. Downregulation of major histocompatibility complex class I by human ubiquitin ligases related to viral immune evasion proteins. J Virol, 78(3):1109-1120. https://doi.org/10.1128/jvi.78.3.1109-1120.2004https://doi.org/10.1128/jvi.78.3.1109-1120.2004
Bernasconi R, Galli C, Calanca V, et al., 2010. Stringent requirement for HRD1, SEL1L, and OS-9/XTP3-B for disposal of ERAD-Ls substrates. J Cell Biol, 188(2):223-235. https://doi.org/10.1083/jcb.200910042https://doi.org/10.1083/jcb.200910042
Bernasconi R, Molinari M, 2011. ERAD and ERAD tuning: disposal of cargo and of ERAD regulators from the mammalian ER. Curr Opin Cell Biol, 23(2):176-183. https://doi.org/10.1016/j.ceb.2010.10.002https://doi.org/10.1016/j.ceb.2010.10.002
Blackwood EA, Macdonnell LF, Thuerauf DJ, et al., 2023. Noncanonical form of ERAD regulates cardiac hypertrophy. Circulation, 147(1):66-82. https://doi.org/10.1161/CIRCULATIONAHA.122.061557https://doi.org/10.1161/CIRCULATIONAHA.122.061557
Blythe EE, Olson KC, Chau V, et al., 2017. Ubiquitin- and ATP-dependent unfoldase activity of P97/VCP·NPLOC4·UFD1L is enhanced by a mutation that causes multisystem proteinopathy. Proc Natl Acad Sci USA, 114(22):E4380-E4388. https://doi.org/10.1073/pnas.1706205114https://doi.org/10.1073/pnas.1706205114
Bonifacino JS, Cosson P, Klausner RD, 1990. Colocalized transmembrane determinants for ER degradation and subunit assembly explain the intracellular fate of TCR chains. Cell, 63(3):503-513. https://doi.org/10.1016/0092-8674(90)90447-mhttps://doi.org/10.1016/0092-8674(90)90447-m
Borgo C, D'Amore C, Capurro V, et al., 2022. Targeting the E1 ubiquitin-activating enzyme (UBA1) improves elexacaftor/tezacaftor/ivacaftor efficacy towards F508del and rare misfolded CFTR mutants. Cell Mol Life Sci, 79(4):192. https://doi.org/10.1007/s00018-022-04215-3https://doi.org/10.1007/s00018-022-04215-3
Braakman I, Bulleid NJ, 2011. Protein folding and modification in the mammalian endoplasmic reticulum. Annu Rev Biochem, 80:71-99. https://doi.org/10.1146/annurev-biochem-062209-093836https://doi.org/10.1146/annurev-biochem-062209-093836
Calì T, Galli C, Olivari S, et al., 2008. Segregation and rapid turnover of EDEM1 by an autophagy-like mechanism modulates standard ERAD and folding activities. Biochem Biophys Res Commun, 371(3):405-410. https://doi.org/10.1016/j.bbrc.2008.04.098https://doi.org/10.1016/j.bbrc.2008.04.098
Cao J, Wang J, Qi W, et al., 2007. Ufd1 is a cofactor of gp78 and plays a key role in cholesterol metabolism by regulating the stability of HMG-CoA reductase. Cell Metab, 6(2):115-128. https://doi.org/10.1016/j.cmet.2007.07.002https://doi.org/10.1016/j.cmet.2007.07.002
Carrier L, 2010. Too much of a good thing is bad: proteasome inhibition induces stressed hearts to fail. Cardiovasc Res, 88(3):389-390. https://doi.org/10.1093/cvr/cvq315https://doi.org/10.1093/cvr/cvq315
Carvalho P, Goder V, Rapoport TA, 2006. Distinct ubiquitin-ligase complexes define convergent pathways for the degradation of ER proteins. Cell, 126(2):361-373. https://doi.org/10.1016/j.cell.2006.05.043https://doi.org/10.1016/j.cell.2006.05.043
Carvalho P, Stanley AM, Rapoport TA, 2010. Retrotranslocation of a misfolded luminal ER protein by the ubiquitin-ligase Hrd1p. Cell, 143(4):579-591. https://doi.org/10.1016/j.cell.2010.10.028https://doi.org/10.1016/j.cell.2010.10.028
Chakrabarti KS, Li J, Das R, et al., 2017. Conformational dynamics and allostery in E2:E3 interactions drive ubiquitination: gp78 and Ube2g2. Structure, 25(5):794-805.e5. https://doi.org/10.1016/j.str.2017.03.016https://doi.org/10.1016/j.str.2017.03.016
Chen B, Mariano J, Tsai YC, et al., 2006. The activity of a human endoplasmic reticulum-associated degradation E3, gp78, requires its cue domain, RING finger, and an E2-binding site. Proc Natl Acad Sci USA, 103(2):341-346. https://doi.org/10.1073/pnas.0506618103https://doi.org/10.1073/pnas.0506618103
Chen L, Madura K, 2002. Rad23 promotes the targeting of proteolytic substrates to the proteasome. Mol Cell Biol, 22(13):4902-4913. https://doi.org/10.1128/MCB.22.13.4902-4913.2002https://doi.org/10.1128/MCB.22.13.4902-4913.2002
Chen Q, Zhong YW, Wu YR, et al., 2016. HRD1-mediated ERAD tuning of ER-bound E2 is conserved between plants and mammals. Nat Plants, 2(7):16094. https://doi.org/10.1038/nplants.2016.94https://doi.org/10.1038/nplants.2016.94
Chiritoiu M, Chiritoiu GN, Munteanu CVA, et al., 2020. EDEM1 drives misfolded protein degradation via ERAD and exploits ER-phagy as back-up mechanism when ERAD is impaired. Int J Mol Sci, 21(10):3468. https://doi.org/10.3390/ijms21103468https://doi.org/10.3390/ijms21103468
Chou TF, Bulfer SL, Weihl CC, et al., 2014. Specific inhibition of p97/VCP ATPase and kinetic analysis demonstrate interaction between D1 and D2 ATPase domains. J Mol Biol, 426(15):2886-2899. https://doi.org/10.1016/j.jmb.2014.05.022https://doi.org/10.1016/j.jmb.2014.05.022
Christianson JC, Shaler TA, Tyler RE, et al., 2008. OS-9 and GRP94 deliver mutant α1-antitrypsin to the Hrd1-SEL1L ubiquitin ligase complex for ERAD. Nat Cell Biol, 10(3):272-282. https://doi.org/10.1038/ncb1689https://doi.org/10.1038/ncb1689
Christianson JC, Olzmann JA, Shaler TA, et al., 2012. Defining human ERAD networks through an integrative mapping strategy. Nat Cell Biol, 14(1):93-105. https://doi.org/10.1038/ncb2383https://doi.org/10.1038/ncb2383
Connor AM, Mahomed N, Gandhi R, et al., 2012. TNFα modulates protein degradation pathways in rheumatoid arthritis synovial fibroblasts. Arthritis Res Ther, 14(2):R62. https://doi.org/10.1186/ar3778https://doi.org/10.1186/ar3778
Crotti L, Celano G, Dagradi F, et al., 2008. Congenital long QT syndrome. Orphanet J Rare Dis, 3:18. https://doi.org/10.1186/1750-1172-3-18https://doi.org/10.1186/1750-1172-3-18
Curran ME, Splawski I, Timothy KW, et al., 1995. A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell, 80(5):795-803. https://doi.org/10.1016/0092-8674(95)90358-5https://doi.org/10.1016/0092-8674(95)90358-5
Das R, Mariano J, Tsai YC, et al., 2009. Allosteric activation of E2-RING finger-mediated ubiquitylation by a structurally defined specific E2-binding region of gp78. Mol Cell, 34(6):674-685. https://doi.org/10.1016/j.molcel.2009.05.010https://doi.org/10.1016/j.molcel.2009.05.010
Davis C, Spaller BL, Matouschek A, 2021. Mechanisms of substrate recognition by the 26S proteasome. Curr Opin Struct Biol, 67:161-169. https://doi.org/10.1016/j.sbi.2020.10.010https://doi.org/10.1016/j.sbi.2020.10.010
Day SM, 2013. The ubiquitin proteasome system in human cardiomyopathies and heart failure. Am J Physiol Heart Circ Physiol, 304(10):H1283-H1293. https://doi.org/10.1152/ajpheart.00249.2012https://doi.org/10.1152/ajpheart.00249.2012
Doroudgar S, Völkers M, Thuerauf DJ, et al., 2015. Hrd1 and ER-associated protein degradation, ERAD, are critical elements of the adaptive ER stress response in cardiac myocytes. Circ Res, 117(6):536-546. https://doi.org/10.1161/circresaha.115.306993https://doi.org/10.1161/circresaha.115.306993
Eisele MR, Reed RG, Rudack T, et al., 2018. Expanded coverage of the 26S proteasome conformational landscape reveals mechanisms of peptidase gating. Cell Rep, 24(5):1301-1315.e5. https://doi.org/10.1016/j.celrep.2018.07.004https://doi.org/10.1016/j.celrep.2018.07.004
Elsasser S, Gali RR, Schwickart M, et al., 2002. Proteasome subunit Rpn1 binds ubiquitin-like protein domains. Nat Cell Biol, 4(9):725-730. https://doi.org/10.1038/ncb845https://doi.org/10.1038/ncb845
Eura Y, Yanamoto H, Arai Y, et al., 2012. Derlin-1 deficiency is embryonic lethal, Derlin-3 deficiency appears normal, and Herp deficiency is intolerant to glucose load and ischemia in mice. PLoS ONE, 7(3):e34298. https://doi.org/10.1371/journal.pone.0034298https://doi.org/10.1371/journal.pone.0034298
Eura Y, Miyata T, Kokame K, 2020. Derlin-3 is required for changes in ERAD complex formation under ER stress. Int J Mol Sci, 21(17):6146. https://doi.org/10.3390/ijms21176146https://doi.org/10.3390/ijms21176146
Fang SY, Ferrone M, Yang CH, et al., 2001. The tumor autocrine motility factor receptor, gp78, is a ubiquitin protein ligase implicated in degradation from the endoplasmic reticulum. Proc Natl Acad Sci USA, 98(25):14422-14427. https://doi.org/10.1073/pnas.251401598https://doi.org/10.1073/pnas.251401598
Feige MJ, Hendershot LM, 2013. Quality control of integral membrane proteins by assembly-dependent membrane integration. Mol Cell, 51(3):297-309. https://doi.org/10.1016/j.molcel.2013.07.013https://doi.org/10.1016/j.molcel.2013.07.013
Fernández-Sáiz V, Buchberger A, 2010. Imbalances in p97 co-factor interactions in human proteinopathy. EMBO Rep, 11(6):479-485. https://doi.org/10.1038/embor.2010.49https://doi.org/10.1038/embor.2010.49
Flierman D, Coleman CS, Pickart CM, et al., 2006. E2-25K mediates US11-triggered retro-translocation of MHC class I heavy chains in a permeabilized cell system. Proc Natl Acad Sci USA, 103(31):11589-11594. https://doi.org/10.1073/pnas.0605215103https://doi.org/10.1073/pnas.0605215103
Foo B, Barbier C, Guo K, et al., 2019. Mutation-specific peripheral and ER quality control of hERG channel cell-surface expression. Sci Rep, 9:6066. https://doi.org/10.1038/s41598-019-42331-6https://doi.org/10.1038/s41598-019-42331-6
Francisco AB, Singh R, Li S, et al., 2010. Deficiency of suppressor enhancer Lin12 1 like (SEL1L) in mice leads to systemic endoplasmic reticulum stress and embryonic lethality. J Biol Chem, 285(18):13694-13703. https://doi.org/10.1074/jbc.M109.085340https://doi.org/10.1074/jbc.M109.085340
Gao BX, Lee SM, Chen A, et al., 2008. Synoviolin promotes IRE1 ubiquitination and degradation in synovial fibroblasts from mice with collagen-induced arthritis. EMBO Rep, 9(5):480-485. https://doi.org/10.1038/embor.2008.37https://doi.org/10.1038/embor.2008.37
Geevasinga N, Menon P, Özdinler PH, et al., 2016. Pathophysiological and diagnostic implications of cortical dysfunction in ALS. Nat Rev Neurol, 12(11):651-661. https://doi.org/10.1038/nrneurol.2016.140https://doi.org/10.1038/nrneurol.2016.140
Greenblatt EJ, Olzmann JA, Kopito RR, 2011. Derlin-1 is a rhomboid pseudoprotease required for the dislocation of mutant α-1 antitrypsin from the endoplasmic reticulum. Nat Struct Mol Biol, 18(10):1147-1152. https://doi.org/10.1038/nsmb.2111https://doi.org/10.1038/nsmb.2111
Hagiwara M, Ling JJ, Koenig PA, et al., 2016. Posttranscriptional regulation of glycoprotein quality control in the endoplasmic reticulum is controlled by the E2 Ub-conjugating enzyme UBC6e. Mol Cell, 63(5):753-767. https://doi.org/10.1016/j.molcel.2016.07.014https://doi.org/10.1016/j.molcel.2016.07.014
Hampton RY, Gardner RG, Rine J, 1996. Role of 26S proteasome and HRD genes in the degradation of 3-hydroxy-3-methylglutaryl-CoA reductase, an integral endoplasmic reticulum membrane protein. Mol Biol Cell, 7(12):2029-2044. https://doi.org/10.1091/mbc.7.12.2029https://doi.org/10.1091/mbc.7.12.2029
Hanna J, Leggett DS, Finley D, 2003. Ubiquitin depletion as a key mediator of toxicity by translational inhibitors. Mol Cell Biol, 23(24):9251-9261. https://doi.org/10.1128/MCB.23.24.9251-9261.2003https://doi.org/10.1128/MCB.23.24.9251-9261.2003
Hantouche C, Williamson B, Valinsky WC, et al., 2017. Bag1 co-chaperone promotes TRC8 E3 ligase-dependent degradation of misfolded human ether a go-go-related gene (hERG) potassium channels. J Biol Chem, 292(6):2287-2300. https://doi.org/10.1074/jbc.M116.752618https://doi.org/10.1074/jbc.M116.752618
Hassink G, Kikkert M, van Voorden S, et al., 2005. TEB4 is a C4HC3 ring finger-containing ubiquitin ligase of the endoplasmic reticulum. Biochem J, 388(2):647-655. https://doi.org/10.1042/BJ20041241https://doi.org/10.1042/BJ20041241
Hebert DN, Lamriben L, Powers ET, et al., 2014. The intrinsic and extrinsic effects of N-linked glycans on glycoproteostasis. Nat Chem Biol, 10(11):902-910. https://doi.org/10.1038/nchembio.1651https://doi.org/10.1038/nchembio.1651
Helenius A, Aebi M, 2004. Roles of N-linked glycans in the endoplasmic reticulum. Annu Rev Biochem, 73:1019-1049. https://doi.org/10.1146/annurev.biochem.73.011303.073752https://doi.org/10.1146/annurev.biochem.73.011303.073752
Hirsch C, Blom D, Ploegh HL, 2003. A role for N-glycanase in the cytosolic turnover of glycoproteins. EMBO J, 22(5):1036-1046. https://doi.org/10.1093/emboj/cdg107https://doi.org/10.1093/emboj/cdg107
Hori O, Ichinoda F, Yamaguchi A, et al., 2004. Role of Herp in the endoplasmic reticulum stress response. Genes Cells, 9(5):457-469. https://doi.org/10.1111/j.1356-9597.2004.00735.xhttps://doi.org/10.1111/j.1356-9597.2004.00735.x
Horimoto S, Ninagawa S, Okada T, et al., 2013. The unfolded protein response transducer ATF6 represents a novel transmembrane-type endoplasmic reticulum-associated degradation substrate requiring both mannose trimming and SEL1L protein. J Biol Chem, 288(44):31517-31527. https://doi.org/10.1074/jbc.M113.476010https://doi.org/10.1074/jbc.M113.476010
Hosokawa N, Wada I, 2016. Association of the SEL1L protein transmembrane domain with HRD1 ubiquitin ligase regulates ERAD-L. FEBS J, 283(1):157-172. https://doi.org/10.1111/febs.13564https://doi.org/10.1111/febs.13564
Hosokawa N, Wada I, Nagasawa K, et al., 2008. Human XTP3-B forms an endoplasmic reticulum quality control scaffold with the HRD1-SEL1L ubiquitin ligase complex and BiP. J Biol Chem, 283(30):20914-20924. https://doi.org/10.1074/jbc.M709336200https://doi.org/10.1074/jbc.M709336200
Iida Y, Fujimori T, Okawa K, et al., 2011. SEL1L protein critically determines the stability of the HRD1-SEL1L endoplasmic reticulum-associated degradation (ERAD) complex to optimize the degradation kinetics of ERAD substrates. J Biol Chem, 286(19):16929-16939. https://doi.org/10.1074/jbc.M110.215871https://doi.org/10.1074/jbc.M110.215871
Ishikura S, Weissman AM, Bonifacino JS, 2010. Serine residues in the cytosolic tail of the T-cell antigen receptor α-chain mediate ubiquitination and endoplasmic reticulum-associated degradation of the unassembled protein. J Biol Chem, 285(31):23916-23924. https://doi.org/10.1074/jbc.M110.127936https://doi.org/10.1074/jbc.M110.127936
Iurlaro R, Muñoz-Pinedo C, 2016. Cell death induced by endoplasmic reticulum stress. FEBS J, 283(14):2640-2652. https://doi.org/10.1111/febs.13598https://doi.org/10.1111/febs.13598
Jahn TR, Radford SE, 2005. The Yin and Yang of protein folding. FEBS J, 272(23):5962-5970. https://doi.org/10.1111/j.1742-4658.2005.05021.xhttps://doi.org/10.1111/j.1742-4658.2005.05021.x
Jiang JH, Ballinger CA, Wu YX, et al., 2001. CHIP is a U-box-dependent E3 ubiquitin ligase: identification of Hsc70 as a target for ubiquitylation. J Biol Chem, 276(46):42938-42944. https://doi.org/10.1074/jbc.M101968200https://doi.org/10.1074/jbc.M101968200
Johnson JO, Mandrioli J, Benatar M, et al., 2010. Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron, 68(5):857-864. https://doi.org/10.1016/j.neuron.2010.11.036https://doi.org/10.1016/j.neuron.2010.11.036
Jung ES, Hong H, Kim C, et al., 2015. Acute ER stress regulates amyloid precursor protein processing through ubiquitin-dependent degradation. Sci Rep, 5:8805. https://doi.org/10.1038/srep08805https://doi.org/10.1038/srep08805
Kaneko M, Ishiguro M, Niinuma Y, et al., 2002. Human HRD1 protects against ER stress-induced apoptosis through ER-associated degradation. FEBS Lett, 532(1-2):147-152. https://doi.org/10.1016/s0014-5793(02)03660-8https://doi.org/10.1016/s0014-5793(02)03660-8
Kaneko M, Koike H, Saito R, et al., 2010. Loss of HRD1-mediated protein degradation causes amyloid precursor protein accumulation and amyloid-β generation. J Neurosci, 30(11):3924-3932. https://doi.org/10.1523/jneurosci.2422-09.2010https://doi.org/10.1523/jneurosci.2422-09.2010
Kanning KC, Kaplan A, Henderson CE, 2010. Motor neuron diversity in development and disease. Annu Rev Neurosci, 33:409-440. https://doi.org/10.1146/annurev.neuro.051508.135722https://doi.org/10.1146/annurev.neuro.051508.135722
Khoury GA, Baliban RC, Floudas CA, 2011. Proteome-wide post-translational modification statistics: frequency analysis and curation of the Swiss-Prot database. Sci Rep, 1:90. https://doi.org/10.1038/srep00090https://doi.org/10.1038/srep00090
Kikkert M, Doolman R, Dai M, et al., 2004. Human HRD1 is an E3 ubiquitin ligase involved in degradation of proteins from the endoplasmic reticulum. J Biol Chem, 279(5):3525-3534. https://doi.org/10.1074/jbc.M307453200https://doi.org/10.1074/jbc.M307453200
Kityk R, Kopp J, Mayer MP, 2018. Molecular mechanism of J-domain-triggered ATP hydrolysis by Hsp70 chaperones. Mol Cell, 69(2):227-237.e4. https://doi.org/10.1016/j.molcel.2017.12.003https://doi.org/10.1016/j.molcel.2017.12.003
Kleijnen MF, Shih AH, Zhou PB, et al., 2000. The hPLIC proteins may provide a link between the ubiquitination machinery and the proteasome. Mol Cell, 6(2):409-419. https://doi.org/10.1016/s1097-2765(00)00040-xhttps://doi.org/10.1016/s1097-2765(00)00040-x
Kwon D, Kim SM, Jacob P, et al., 2019. Induction via functional protein stabilization of hepatic cytochromes P450 upon gp78/autocrine motility factor receptor (AMFR) ubiquitin E3-ligase genetic ablation in mice: therapeutic and toxicological relevance. Mol Pharmacol, 96(5):641-654. https://doi.org/10.1124/mol.119.117069https://doi.org/10.1124/mol.119.117069
Lee JN, Song BL, Debose-Boyd RA, et al., 2006. Sterol-regulated degradation of Insig-1 mediated by the membrane-bound ubiquitin ligase gp78. J Biol Chem, 281(51):39308-39315. https://doi.org/10.1074/jbc.M608999200https://doi.org/10.1074/jbc.M608999200
Lee MJ, Lee BH, Hanna J, et al., 2011. Trimming of ubiquitin chains by proteasome-associated deubiquitinating enzymes. Mol Cell Proteomics, 10(5):R110.003871. https://doi.org/10.1074/mcp.R110.003871https://doi.org/10.1074/mcp.R110.003871
Li GT, Zhou XK, Zhao G, et al., 2005. Multiple modes of interaction of the deglycosylation enzyme, mouse peptide N-glycanase, with the proteasome. Proc Natl Acad Sci USA, 102(44):15809-15814. https://doi.org/10.1073/pnas.0507155102https://doi.org/10.1073/pnas.0507155102
Li GT, Zhao G, Zhou XK, et al., 2006. The AAA ATPase p97 links peptide N-glycanase to the endoplasmic reticulum-associated E3 ligase autocrine motility factor receptor. Proc Natl Acad Sci USA, 103(22):8348-8353. https://doi.org/10.1073/pnas.0602747103https://doi.org/10.1073/pnas.0602747103
Li K, Zhang KN, Wang H, et al., 2021. Hrd1-mediated ACLY ubiquitination alleviate NAFLD in db/db mice. Metabolism, 114:154349. https://doi.org/10.1016/j.metabol.2020.154349https://doi.org/10.1016/j.metabol.2020.154349
Liang JS, Kim T, Fang SY, et al., 2003. Overexpression of the tumor autocrine motility factor receptor gp78, a ubiquitin protein ligase, results in increased ubiquitinylation and decreased secretion of apolipoprotein B100 in HepG2 cells. J Biol Chem, 278(26):23984-23988. https://doi.org/10.1074/jbc.M302683200https://doi.org/10.1074/jbc.M302683200
Lilley BN, Ploegh HL, 2005. Multiprotein complexes that link dislocation, ubiquitination, and extraction of misfolded proteins from the endoplasmic reticulum membrane. Proc Natl Acad Sci USA, 102(40):14296-14301. https://doi.org/10.1073/pnas.0505014102https://doi.org/10.1073/pnas.0505014102
Lippincott-Schwartz J, Bonifacino JS, Yuan LC, et al., 1988. Degradation from the endoplasmic reticulum: disposing of newly synthesized proteins. Cell, 54(2):209-220. https://doi.org/10.1016/0092-8674(88)90553-3https://doi.org/10.1016/0092-8674(88)90553-3
Liu WX, Shang YL, Li W, 2014. gp78 elongates of polyubiquitin chains from the distal end through the cooperation of its G2BR and CUE domains. Sci Rep, 4:7138. https://doi.org/10.1038/srep07138https://doi.org/10.1038/srep07138
Luo WW, Li S, Li C, et al., 2017. iRhom2 is essential for innate immunity to RNA virus by antagonizing ER- and mitochondria-associated degradation of VISA. PLoS Pathog, 13(11):e1006693. https://doi.org/10.1371/journal.ppat.1006693https://doi.org/10.1371/journal.ppat.1006693
Määttänen P, Gehring K, Bergeron JJM, et al., 2010. Protein quality control in the ER: the recognition of misfolded proteins. Semin Cell Dev Biol, 21(5):500-511. https://doi.org/10.1016/j.semcdb.2010.03.006https://doi.org/10.1016/j.semcdb.2010.03.006
McCracken AA, Brodsky JL, 1996. Assembly of ER-associated protein degradation in vitro: dependence on cytosol, calnexin, and ATP. J Cell Biol, 132(3):291-298. https://doi.org/10.1083/jcb.132.3.291https://doi.org/10.1083/jcb.132.3.291
Meyer H, Bug M, Bremer S, 2012. Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system. Nat Cell Biol, 14(2):117-123. https://doi.org/10.1038/ncb2407https://doi.org/10.1038/ncb2407
Miyamoto K, Taguchi Y, Saito K, 2019. Unique RING finger structure from the human HRD1 protein. Protein Sci, 28(2):448-453. https://doi.org/10.1002/pro.3532https://doi.org/10.1002/pro.3532
Mueller B, Lilley BN, Ploegh HL, 2006. SEL1L, the homologue of yeast Hrd3p, is involved in protein dislocation from the mammalian ER. J Cell Biol, 175(2):261-270. https://doi.org/10.1083/jcb.200605196https://doi.org/10.1083/jcb.200605196
Mueller B, Klemm EJ, Spooner E, et al., 2008. SEL1L nucleates a protein complex required for dislocation of misfolded glycoproteins. Proc Natl Acad Sci USA, 105(34):12325-12330. https://doi.org/10.1073/pnas.0805371105https://doi.org/10.1073/pnas.0805371105
Müller JMM, Deinhardt K, Rosewell I, et al., 2007. Targeted deletion of p97 (VCP/CDC48) in mouse results in early embryonic lethality. Biochem Biophys Res Commun, 354(2):459-465. https://doi.org/10.1016/j.bbrc.2006.12.206https://doi.org/10.1016/j.bbrc.2006.12.206
Nabi IR, Raz A, 1987. Cell shape modulation alters glycosylation of a metastatic melanoma cell-surface antigen. Int J Cancer, 40(3):396-402. https://doi.org/10.1002/ijc.2910400319https://doi.org/10.1002/ijc.2910400319
Nadav E, Shmueli A, Barr H, et al., 2003. A novel mammalian endoplasmic reticulum ubiquitin ligase homologous to the yeast Hrd1. Biochem Biophys Res Commun, 303(1):91-97. https://doi.org/10.1016/s0006-291x(03)00279-1https://doi.org/10.1016/s0006-291x(03)00279-1
Nishitoh H, Kadowaki H, Nagai A, et al., 2008. ALS-linked mutant SOD1 induces ER stress- and ASK1-dependent motor neuron death by targeting Derlin-1. Genes Dev, 22(11):1451-1464. https://doi.org/10.1101/gad.1640108https://doi.org/10.1101/gad.1640108
Noble W, Hanger DP, Miller CC, et al., 2013. The importance of tau phosphorylation for neurodegenerative diseases. Front Neurol, 4:83. https://doi.org/10.3389/fneur.2013.00083https://doi.org/10.3389/fneur.2013.00083
Nowakowska-Gołacka J, Czapiewska J, Sominka H, et al., 2021. EDEM1 regulates amyloid precursor protein (APP) metabolism and amyloid-β production. Int J Mol Sci, 23(1):117. https://doi.org/10.3390/ijms23010117https://doi.org/10.3390/ijms23010117
Oda Y, Okada T, Yoshida H, et al., 2006. Derlin-2 and Derlin-3 are regulated by the mammalian unfolded protein response and are required for ER-associated degradation. J Cell Biol, 172(3):383-393. https://doi.org/10.1083/jcb.200507057https://doi.org/10.1083/jcb.200507057
Okuda-Shimizu Y, Hendershot LM, 2007. Characterization of an ERAD pathway for nonglycosylated BiP substrates, which require Herp. Mol Cell, 28(4):544-554. https://doi.org/10.1016/j.molcel.2007.09.012https://doi.org/10.1016/j.molcel.2007.09.012
Pagan J, Seto T, Pagano M, et al., 2013. Role of the ubiquitin proteasome system in the Heart. Circ Res, 112(7):1046-1058. https://doi.org/10.1161/CIRCRESAHA.112.300521https://doi.org/10.1161/CIRCRESAHA.112.300521
Peters OM, Ghasemi M, Brown RH, 2015. Emerging mechanisms of molecular pathology in ALS. J Clin Invest, 125(6):2548. https://doi.org/10.1172/JCI82693https://doi.org/10.1172/JCI82693
Peters SL, Déry MA, Leblanc AC, 2016. Familial prion protein mutants inhibit Hrd1-mediated retrotranslocation of misfolded proteins by depleting misfolded protein sensor BiP. Human Mol Genet, 25(5):976-988. https://doi.org/10.1093/hmg/ddv630https://doi.org/10.1093/hmg/ddv630
Peterson BG, Glaser ML, Rapoport TA, et al., 2019. Cycles of autoubiquitination and deubiquitination regulate the ERAD ubiquitin ligase Hrd1. Elife, 8:e50903. https://doi.org/10.7554/eLife.50903https://doi.org/10.7554/eLife.50903
Pfeffer S, Burbaum L, Unverdorben P, et al., 2015. Structure of the native Sec61 protein-conducting channel. Nat Commun, 6:8403. https://doi.org/10.1038/ncomms9403https://doi.org/10.1038/ncomms9403
Pickart CM, Fushman D, 2004. Polyubiquitin chains: polymeric protein signals. Curr Opin Chem Biol, 8(6):610-616. https://doi.org/10.1016/j.cbpa.2004.09.009https://doi.org/10.1016/j.cbpa.2004.09.009
Ponting CP, 2000. Proteins of the endoplasmic-reticulum-associated degradation pathway: domain detection and function prediction. Biochem J, 351(2):527-535. https://doi.org/10.1042/bj3510527https://doi.org/10.1042/bj3510527
Predmore JM, Wang P, Davis F, et al., 2010. Ubiquitin proteasome dysfunction in human hypertrophic and dilated cardiomyopathies. Circulation, 121(8):997-1004. https://doi.org/10.1161/circulationaha.109.904557https://doi.org/10.1161/circulationaha.109.904557
Preston GM, Brodsky JL, 2017. The evolving role of ubiquitin modification in endoplasmic reticulum-associated degradation. Biochem J, 474(4):445-469. https://doi.org/10.1042/bcj20160582https://doi.org/10.1042/bcj20160582
Printsev I, Curiel D, Carraway KL III, 2017. Membrane protein quantity control at the endoplasmic reticulum. J Membr Biol, 250(4):379-392. https://doi.org/10.1007/s00232-016-9931-0https://doi.org/10.1007/s00232-016-9931-0
Ranek MJ, Terpstra EJM, Li J, et al., 2013. Protein kinase G positively regulates proteasome-mediated degradation of misfolded proteins. Circulation, 128(4):365-376. https://doi.org/10.1161/circulationaha.113.001971https://doi.org/10.1161/circulationaha.113.001971
Reggiori F, Monastyrska I, Verheije MH, et al., 2010. Coronaviruses hijack the LC3-I-positive EDEMosomes, ER-derived vesicles exporting short-lived ERAD regulators, for replication. Cell Host Microbe, 7(6):500-508. https://doi.org/10.1016/j.chom.2010.05.013https://doi.org/10.1016/j.chom.2010.05.013
Reyes-Turcu FE, Ventii KH, Wilkinson KD, 2009. Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu Rev Biochem, 78:363-397. https://doi.org/10.1146/annurev.biochem.78.082307.091526https://doi.org/10.1146/annurev.biochem.78.082307.091526
Roze E, Saudou F, Caboche J, 2008. Pathophysiology of Huntington’s disease: from huntingtin functions to potential treatments. Curr Opin Neurol, 21(4):497-503. https://doi.org/10.1097/WCO.0b013e328304b692https://doi.org/10.1097/WCO.0b013e328304b692
Rutkowski DT, Hegde RS, 2010. Regulation of basal cellular physiology by the homeostatic unfolded protein response. J Cell Biol, 189(5):783-794. https://doi.org/10.1083/jcb.201003138https://doi.org/10.1083/jcb.201003138
Schuberth C, Buchberger A, 2008. UBX domain proteins: major regulators of the AAA ATPase Cdc48/p97. Cell Mol Life Sci, 65(15):2360-2371. https://doi.org/10.1007/s00018-008-8072-8https://doi.org/10.1007/s00018-008-8072-8
Schulze A, Standera S, Buerger E, et al., 2005. The ubiquitin-domain protein HERP forms a complex with components of the endoplasmic reticulum associated degradation pathway. J Mol Biol, 354(5):1021-1027. https://doi.org/10.1016/j.jmb.2005.10.020https://doi.org/10.1016/j.jmb.2005.10.020
Shahheydari H, Ragagnin A, Walker AK, et al., 2017. Protein quality control and the amyotrophic lateral sclerosis/frontotemporal dementia continuum. Front Mol Neurosci, 10:119. https://doi.org/10.3389/fnmol.2017.00119https://doi.org/10.3389/fnmol.2017.00119
Shimizu Y, Okuda-Shimizu Y, Hendershot LM, 2010. Ubiquitylation of an ERAD substrate occurs on multiple types of amino acids. Mol Cell, 40(6):917-926. https://doi.org/10.1016/j.molcel.2010.11.033https://doi.org/10.1016/j.molcel.2010.11.033
Sicking M, Lang S, Bochen F, et al., 2021. Complexity and specificity of Sec61-channelopathies: human diseases affecting gating of the Sec61 complex. Cells, 10(5):1036. https://doi.org/10.3390/cells10051036https://doi.org/10.3390/cells10051036
Smith JL, Anderson CL, Burgess DE, et al., 2016. Molecular pathogenesis of long QT syndrome type 2. J Arrhythm, 32(5):373-380. https://doi.org/10.1016/j.joa.2015.11.009https://doi.org/10.1016/j.joa.2015.11.009
Smith MH, Ploegh HL, Weissman JS, 2011. Road to ruin: targeting proteins for degradation in the endoplasmic reticulum. Science, 334(6059):1086-1090. https://doi.org/10.1126/science.1209235https://doi.org/10.1126/science.1209235
Song BL, Sever N, Debose-Boyd RA, 2005. Gp78, a membrane-anchored ubiquitin ligase, associates with Insig-1 and couples sterol-regulated ubiquitination to degradation of HMG CoA reductase. Mol Cell, 19(6):829-840. https://doi.org/10.1016/j.molcel.2005.08.009https://doi.org/10.1016/j.molcel.2005.08.009
Sowa ME, Bennett EJ, Gygi SP, et al., 2009. Defining the human deubiquitinating enzyme interaction landscape. Cell, 138(2):389-403. https://doi.org/10.1016/j.cell.2009.04.042https://doi.org/10.1016/j.cell.2009.04.042
Sun SY, Shi GJ, Sha HB, et al., 2015. IRE1α is an endogenous substrate of endoplasmic-reticulum-associated degradation. Nat Cell Biol, 17(12):1546-1555. https://doi.org/10.1038/ncb3266https://doi.org/10.1038/ncb3266
Sun ZH, Guerriero CJ, Brodsky JL, 2021. Substrate ubiquitination retains misfolded membrane proteins in the endoplasmic reticulum for degradation. Cell Rep, 36(12):109717. https://doi.org/10.1016/j.celrep.2021.109717https://doi.org/10.1016/j.celrep.2021.109717
Suzuki M, Otsuka T, Ohsaki Y, et al., 2012. Derlin-1 and UBXD8 are engaged in dislocation and degradation of lipidated ApoB-100 at lipid droplets. Mol Biol Cell, 23(5):800-810. https://doi.org/10.1091/mbc.E11-11-0950https://doi.org/10.1091/mbc.E11-11-0950
Tanaka K, 2009. The proteasome: overview of structure and functions. Proc Jpn Acad Ser B Phys Biol Sci, 85(1):12-36. https://doi.org/10.2183/pjab.85.12https://doi.org/10.2183/pjab.85.12
Tabata K, Arakawa M, Ishida K, et al., 2021. Endoplasmic reticulum-associated degradation controls virus protein homeostasis, which is required for flavivirus propagation. J Virol, 95(15):e0223420. https://doi.org/10.1128/JVI.02234-20https://doi.org/10.1128/JVI.02234-20
Tsai B, Ye YH, Rapoport TA, 2002. Retro-translocation of proteins from the endoplasmic reticulum into the cytosol. Nat Rev Mol Cell Biol, 3(4):246-255. https://doi.org/10.1038/nrm780https://doi.org/10.1038/nrm780
Tydlacka S, Wang CE, Wang XJ, et al., 2008. Differential activities of the ubiquitin-proteasome system in neurons versus glia may account for the preferential accumulation of misfolded proteins in neurons. J Neurosci, 28(49):13285-13295. https://doi.org/10.1523/jneurosci.4393-08.2008https://doi.org/10.1523/jneurosci.4393-08.2008
Ushioda R, Hoseki J, Nagata K, 2013. Glycosylation-independent ERAD pathway serves as a backup system under ER stress. Mol Biol Cell, 24(20):3155-3163. https://doi.org/10.1091/mbc.E13-03-0138https://doi.org/10.1091/mbc.E13-03-0138
van den Boom J, Meyer H, 2018. VCP/p97-mediated unfolding as a principle in protein homeostasis and signaling. Mol Cell, 69(2):182-194. https://doi.org/10.1016/j.molcel.2017.10.028https://doi.org/10.1016/j.molcel.2017.10.028
van der Heijden JW, Oerlemans R, Lems WF, et al., 2009. The proteasome inhibitor bortezomib inhibits the release of NFκB-inducible cytokines and induces apoptosis of activated T cells from rheumatoid arthritis patients. Clin Exp Rheumatol, 27(1):92-98.
van Nocker S, Sadis S, Rubin DM, et al., 1996. The multiubiquitin-chain-binding protein Mcb1 is a component of the 26S proteasome in Saccharomyces cerevisiae and plays a nonessential, substrate-specific role in protein turnover. Mol Cell Biol, 16(11):6020-6028. https://doi.org/10.1128/MCB.16.11.6020https://doi.org/10.1128/MCB.16.11.6020
Vasic V, Denkert N, Schmidt CC, et al., 2020. Hrd1 forms the retrotranslocation pore regulated by auto-ubiquitination and binding of misfolded proteins. Nat Cell Biol, 22(3):274-281. https://doi.org/10.1038/s41556-020-0473-4https://doi.org/10.1038/s41556-020-0473-4
Vij N, Fang SY, Zeitlin PL, 2006. Selective inhibition of endoplasmic reticulum-associated degradation rescues ΔF508-cystic fibrosis transmembrane regulator and suppresses interleukin-8 levels: therapeutic implications. J Biol Chem, 281(25):17369-17378. https://doi.org/10.1074/jbc.M600509200https://doi.org/10.1074/jbc.M600509200
Walter P, Ron D, 2011. The unfolded protein response: from stress pathway to homeostatic regulation. Science, 334(6059):1081-1086. https://doi.org/10.1126/science.1209038https://doi.org/10.1126/science.1209038
Wang XL, Herr RA, Chua WJ, et al., 2007. Ubiquitination of serine, threonine, or lysine residues on the cytoplasmic tail can induce ERAD of MHC-I by viral E3 ligase mK3. J Cell Biol, 177(4):613-624. https://doi.org/10.1083/jcb.200611063https://doi.org/10.1083/jcb.200611063
Wang XL, Herr RA, Rabelink M, et al., 2009. Ube2j2 ubiquitinates hydroxylated amino acids on ER-associated degradation substrates. J Cell Biol, 187(5):655-668. https://doi.org/10.1083/jcb.200908036https://doi.org/10.1083/jcb.200908036
Wang Y, Huang XY, Zhou JQ, et al., 2012. Trafficking-deficient G572R-hERG and E637K-hERG activate stress and clearance pathways in endoplasmic reticulum. PLoS ONE, 7(1):e29885. https://doi.org/10.1371/journal.pone.0029885https://doi.org/10.1371/journal.pone.0029885
Wang Y, Ha SW, Zhang TP, et al., 2014. Polyubiquitylation of AMF requires cooperation between the gp78 and TRIM25 ubiquitin ligases. Oncotarget, 5(8):2044-2051. https://doi.org/10.18632/oncotarget.1478https://doi.org/10.18632/oncotarget.1478
Wei JC, Chen L, Li F, et al., 2018. HRD1-ERAD controls production of the hepatokine FGF21 through CREBH polyubiquitination. EMBO J, 37(22):e98942. https://doi.org/10.15252/embj.201898942https://doi.org/10.15252/embj.201898942
Wei XA, Zheng ZY, Feng ZH, et al., 2022. Sigma-1 receptor attenuates osteoclastogenesis by promoting ER-associated degradation of SERCA2. EMBO Mol Med, 14(7):e15373. https://doi.org/10.15252/emmm.202115373https://doi.org/10.15252/emmm.202115373
Wilkinson CRM, Seeger M, Hartmann-Petersen R, et al., 2001. Proteins containing the UBA domain are able to bind to multi-ubiquitin chains. Nat Cell Biol, 3(10):939-943. https://doi.org/10.1038/ncb1001-939https://doi.org/10.1038/ncb1001-939
Xia YX, Yan LH, Huang B, et al., 2014. Pathogenic mutation of UBQLN2 impairs its interaction with UBXD8 and disrupts endoplasmic reticulum-associated protein degradation. J Neurochem, 129(1):99-106. https://doi.org/10.1111/jnc.12606https://doi.org/10.1111/jnc.12606
Xie Y, Avello M, Schirle M, et al., 2013. Deubiquitinase FAM/USP9X interacts with the E3 ubiquitin ligase SMURF1 protein and protects it from ligase activity-dependent self-degradation. J Biol Chem, 288(5):2976-2985. https://doi.org/10.1074/jbc.M112.430066https://doi.org/10.1074/jbc.M112.430066
Xu P, Duong DM, Seyfried NT, et al., 2009. Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell, 137(1):133-145. https://doi.org/10.1016/j.cell.2009.01.041https://doi.org/10.1016/j.cell.2009.01.041
Xu YM, Fang DY, 2020. Endoplasmic reticulum-associated degradation and beyond: the multitasking roles for Hrd1 in immune regulation and autoimmunity. J Autoimmun, 109:102423. https://doi.org/10.1016/j.jaut.2020.102423https://doi.org/10.1016/j.jaut.2020.102423
Xu YM, Zhao F, Qiu Q, et al., 2016. The ER membrane-anchored ubiquitin ligase Hrd1 is a positive regulator of T-cell immunity. Nat Commun, 7:12073. https://doi.org/10.1038/ncomms12073https://doi.org/10.1038/ncomms12073
Yagishita N, Ohneda K, Amano T, et al., 2005. Essential role of Synoviolin in embryogenesis. J Biol Chem, 280(9):7909-7916. https://doi.org/10.1074/jbc.M410863200https://doi.org/10.1074/jbc.M410863200
Yamasaki S, Yagishita N, Tsuchimochi K, et al., 2005. Rheumatoid arthritis as a hyper-endoplasmic reticulum-associated degradation disease. Arthritis Res Ther, 7(5):181. https://doi.org/10.1186/ar1808https://doi.org/10.1186/ar1808
Yamasaki S, Yagishita N, Sasaki T, et al., 2007. Cytoplasmic destruction of p53 by the endoplasmic reticulum-resident ubiquitin ligase ‘Synoviolin’. EMBO J, 26(1):113-122. https://doi.org/10.1038/sj.emboj.7601490https://doi.org/10.1038/sj.emboj.7601490
Yao TT, Cohen RE, 2002. A cryptic protease couples deubiquitination and degradation by the proteasome. Nature, 419(6905):403-407. https://doi.org/10.1038/nature01071https://doi.org/10.1038/nature01071
Yao X, Wu Y, Xiao TF, et al., 2022. T-cell-specific Sel1L deletion exacerbates EAE by promoting Th1/Th17-cell differentiation. Mol Immunol, 149:13-26. https://doi.org/10.1016/j.molimm.2022.06.001https://doi.org/10.1016/j.molimm.2022.06.001
Ye YH, Meyer HH, Rapoport TA, 2001. The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol. Nature, 414(6864):652-656. https://doi.org/10.1038/414652ahttps://doi.org/10.1038/414652a
Ye YH, Shibata Y, Kikkert M, et al., 2005. Recruitment of the p97 ATPase and ubiquitin ligases to the site of retrotranslocation at the endoplasmic reticulum membrane. Proc Natl Acad Sci USA, 102(40):14132-14138. https://doi.org/10.1073/pnas.0505006102https://doi.org/10.1073/pnas.0505006102
Ye YL, Baek SH, Ye YH, et al., 2018. Proteomic characterization of endogenous substrates of mammalian ubiquitin ligase Hrd1. Cell Biosci, 8:46. https://doi.org/10.1186/s13578-018-0245-zhttps://doi.org/10.1186/s13578-018-0245-z
Ying Z, Wang HF, Fan HD, et al., 2009. Gp78, an ER associated E3, promotes SOD1 and ataxin-3 degradation. Hum Mol Genet, 18(22):4268-4281. https://doi.org/10.1093/hmg/ddp380https://doi.org/10.1093/hmg/ddp380
Yoshida Y, Asahina M, Murakami A, et al., 2021. Loss of peptide:N-glycanase causes proteasome dysfunction mediated by a sugar-recognizing ubiquitin ligase. Proc Natl Acad Sci USA, 118(27):e2102902118. https://doi.org/10.1073/pnas.2102902118https://doi.org/10.1073/pnas.2102902118
Younger JM, Ren HY, Chen LL, et al., 2004. A foldable CFTRΔF508 biogenic intermediate accumulates upon inhibition of the Hsc70-CHIP E3 ubiquitin ligase. J Cell Biol, 167(6):1075-1085. https://doi.org/10.1083/jcb.200410065https://doi.org/10.1083/jcb.200410065
Zapun A, Darby NJ, Tessier DC, et al., 1998. Enhanced catalysis of ribonuclease B folding by the interaction of calnexin or calreticulin with ERp57. J Biol Chem, 273(11):6009-6012. https://doi.org/10.1074/jbc.273.11.6009https://doi.org/10.1074/jbc.273.11.6009
Zhang KY, Yang S, Warraich ST, et al., 2014. Ubiquilin 2: a component of the ubiquitin-proteasome system with an emerging role in neurodegeneration. Int J Biochem Cell Biol, 50:123-126. https://doi.org/10.1016/j.biocel.2014.02.018https://doi.org/10.1016/j.biocel.2014.02.018
Zhang RZ, Pan SX, Zheng SY, et al., 2023. Lipid-anchored proteasomes control membrane protein homeostasis. bioRxiv, prepint. https://doi.org/10.1101/2023.05.12.540509https://doi.org/10.1101/2023.05.12.540509
Zhong XY, Shen YX, Ballar P, et al., 2004. AAA ATPase p97/valosin-containing protein interacts with gp78, a ubiquitin ligase for endoplasmic reticulum-associated degradation. J Biol Chem, 279(44):45676-45684. https://doi.org/10.1074/jbc.M409034200https://doi.org/10.1074/jbc.M409034200
Zhou ZS, Torres M, Sha HB, et al., 2020. Endoplasmic reticulum-associated degradation regulates mitochondrial dynamics in brown adipocytes. Science, 368(6486):54-60. https://doi.org/10.1126/science.aay2494https://doi.org/10.1126/science.aay2494
Zhu B, Jiang LL, Huang T, et al., 2017. ER-associated degradation regulates Alzheimer’s amyloid pathology and memory function by modulating γ-secretase activity. Nat Commun, 8:1472. https://doi.org/10.1038/s41467-017-01799-4https://doi.org/10.1038/s41467-017-01799-4
0
Views
11
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution