无数据
Scan QR Code
1.The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Brain Disease Regional Diagnosis and Treatment Center, Zhengzhou 450000, China
2.Tianjin University of Traditional Chinese Medicine, Tianjin 301600, China
3.Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin 300131, China
4.The First Affiliated Hospital of Zhengzhou University, Department of Geriatrics, Zhengzhou 450052, China
Published Online: 27 September 2024 ,
Received: 09 July 2023 ,
Revised: 29 August 2023 ,
刘梦琳,樊根豪,孟令凯等.依赖于微生物的肠脑通路治疗伴有胃肠道症状抑郁症的新视角:从实验室到临床[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),
Menglin LIU, Genhao FAN, Lingkai MENG, et al. New perspectives on microbiome-dependent gut-brain pathways for the treatment of depression with gastrointestinal symptoms: from bench to bedside. [J/OL]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2024,1-25.
刘梦琳,樊根豪,孟令凯等.依赖于微生物的肠脑通路治疗伴有胃肠道症状抑郁症的新视角:从实验室到临床[J].浙江大学学报(英文版)(B辑:生物医学和生物技术), DOI:10.1631/jzus.B2300343.
Menglin LIU, Genhao FAN, Lingkai MENG, et al. New perspectives on microbiome-dependent gut-brain pathways for the treatment of depression with gastrointestinal symptoms: from bench to bedside. [J/OL]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2024,1-25. DOI: 10.1631/jzus.B2300343.
与普通人群相比,抑郁症患者更易出现慢性胃肠道症状,但这些症状仅被视为抑郁症的躯体症状而缺少特别关注。长期以来,对伴有胃肠道症状的抑郁症患者缺乏适当诊断和有效治疗,因此研究抑郁症与胃肠道疾病间的关联对临床治疗极为重要。越来越多的证据表明,抑郁症与消化道中的微生物群密切相关,而微生物群-肠-脑轴则为抑郁症与胃肠道疾病之间的关联开创了一个新的视角。识别和治疗胃肠道疾病可能预防抑郁症的发作,也可能改善难治性抑郁症的治疗效果。目前抑郁症和微生物相关的肠-脑轴的研究缺乏对胃肠道功能的关注。本综述结合临床前和临床证据,归纳了微生物调控的肠-脑轴在情绪和胃肠道功能中的作用,并总结了潜在治疗策略,为抑郁症伴胃肠道症状的病理机制研究和诊治提供参考。
Patients with depression are more likely to have chronic gastrointestinal (GI) symptoms than the general population
but such symptoms are considered only somatic symptoms of depression and lack special attention. There is a chronic lack of appropriate diagnosis and effective treatment for patients with depression accompanied by GI symptoms
and studying the association between depression and GI disorders (GIDs) is extremely important for clinical management. There is growing evidence that depression is closely related to the microbiota present in the GI tract
and the microbiota-gut-brain axis (MGBA) is creating a new perspective on the association between depression and GIDs. Identifying and treating GIDs would provide a key opportunity to prevent episodes of depression and may also improve the outcome of refractory depression. Current studies on depression and the microbially related gut-brain axis (GBA) lack a focus on GI function. In this review
we combine preclinical and clinical evidence to summarize the roles of the microbially regulated GBA in emotions and GI function
and summarize potential therapeutic strategies to provide a reference for the study of the pathomechanism and treatment of depression in combination with GI symptoms.
抑郁症胃肠道疾病肠-脑轴病理机制治疗
DepressionGastrointestinal disordersGut-brain axisPathomechanismTreatment
Abbasi SH, Hosseini F, Modabbernia A, et al., 2012. Effect of celecoxib add-on treatment on symptoms and serum IL-6 concentrations in patients with major depressive disorder: randomized double-blind placebo-controlled study. J Affect Disord, 141(2-3):308-314. https://doi.org/10.1016/j.jad.2012.03.033https://doi.org/10.1016/j.jad.2012.03.033
Abildgaard A, Elfving B, Hokland M, et al., 2017. Probiotic treatment reduces depressive-like behaviour in rats independently of diet. Psychoneuroendocrinology, 79:40-48. https://doi.org/10.1016/j.psyneuen.2017.02.014https://doi.org/10.1016/j.psyneuen.2017.02.014
Agrawal L, Korkutata M, Vimal SK, et al., 2020. Therapeutic potential of serotonin 4 receptor for chronic depression and its associated comorbidity in the gut. Neuropharmacology, 166:107969. https://doi.org/10.1016/j.neuropharm.2020.107969https://doi.org/10.1016/j.neuropharm.2020.107969
Aguado A, del Álamo MG, 2020. Gastrointestinal comorbidity and symptoms associated with depression in patients aged over 60 years. Med Fam SEMERGEN, 46(1):27-32. https://doi.org/10.1016/j.semerg.2019.03.003https://doi.org/10.1016/j.semerg.2019.03.003
Agus A, Planchais J, Sokol H, 2018. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe, 23(6):716-724. https://doi.org/10.1016/j.chom.2018.05.003https://doi.org/10.1016/j.chom.2018.05.003
Alexeev EE, Lanis JM, Kao DJ, et al., 2018. Microbiota-derived indole metabolites promote human and murine intestinal homeostasis through regulation of interleukin-10 receptor. Am J Pathol, 188(5):1183-1194. https://doi.org/10.1016/j.ajpath.2018.01.011https://doi.org/10.1016/j.ajpath.2018.01.011
Allen AP, Hutch W, Borre YE, et al., 2016. Bifidobacterium longum 1714 as a translational psychobiotic: modulation of stress, electrophysiology and neurocognition in healthy volunteers. Transl Psychiatry, 6(11):e939. https://doi.org/10.1038/tp.2016.191https://doi.org/10.1038/tp.2016.191
Arpaia N, Campbell C, Fan XY, et al., 2013. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature, 504(7480):451-455. https://doi.org/10.1038/nature12726https://doi.org/10.1038/nature12726
Avramidou M, Angst F, Angst J, et al., 2018. Epidemiology of gastrointestinal symptoms in young and middle-aged Swiss adults: prevalences and comorbidities in a longitudinal population cohort over 28 years. BMC Gastroenterol, 18:21. https://doi.org/10.1186/s12876-018-0749-3https://doi.org/10.1186/s12876-018-0749-3
Barandouzi ZA, Starkweather AR, Henderson WA, et al., 2020. Altered composition of gut microbiota in depression: a systematic review. Front Psychiatry, 11:541. https://doi.org/10.3389/fpsyt.2020.00541https://doi.org/10.3389/fpsyt.2020.00541
Barbara G, Feinle-Bisset C, Ghoshal UC, et al., 2016. The intestinal microenvironment and functional gastrointestinal disorders. Gastroenterology, 150(6):1305-1318.e8. https://doi.org/10.1053/j.gastro.2016.02.028https://doi.org/10.1053/j.gastro.2016.02.028
Barrett E, Ross RP, O'Toole PW, et al., 2012. γ-Aminobutyric acid production by culturable bacteria from the human intestine. J Appl Microbiol, 113(2):411-417. https://doi.org/10.1111/j.1365-2672.2012.05344.xhttps://doi.org/10.1111/j.1365-2672.2012.05344.x
Belkaid Y, Hand TW, 2014. Role of the microbiota in immunity and inflammation. Cell, 157(1):121-141. https://doi.org/10.1016/j.cell.2014.03.011https://doi.org/10.1016/j.cell.2014.03.011
Belkaid Y, Harrison OJ, 2017. Homeostatic immunity and the microbiota. Immunity, 46(4):562-576. https://doi.org/10.1016/j.immuni.2017.04.008https://doi.org/10.1016/j.immuni.2017.04.008
Bertollo AG, Grolli RE, Plissari ME, et al., 2020. Stress and serum cortisol levels in major depressive disorder: a cross-sectional study. AIMS Neurosci, 7(4):459-469. https://doi.org/10.3934/Neuroscience.2020028https://doi.org/10.3934/Neuroscience.2020028
Beyak MJ, 2010. Visceral afferents—determinants and modulation of excitability. Auton Neurosci, 153(1-2):69-78. https://doi.org/10.1016/j.autneu.2009.07.019https://doi.org/10.1016/j.autneu.2009.07.019
Bian XC, Patel B, Dai XL, et al., 2007. High mucosal serotonin availability in neonatal guinea pig ileum is associated with low serotonin transporter expression. Gastroenterology, 132(7):2438-2447. https://doi.org/10.1053/j.gastro.2007.03.103https://doi.org/10.1053/j.gastro.2007.03.103
Bjørklund G, Pivina L, Dadar M, et al., 2020. Gastrointestinal alterations in autism spectrum disorder: what do we know? Neurosci Biobehav Rev, 118:111-120. https://doi.org/10.1016/j.neubiorev.2020.06.033https://doi.org/10.1016/j.neubiorev.2020.06.033
Bjurstöm H, Wang JY, Ericsson I, et al., 2008. GABA, a natural immunomodulator of T lymphocytes. J Neuroimmunol, 205(1-2):44-50. https://doi.org/10.1016/j.jneuroim.2008.08.017https://doi.org/10.1016/j.jneuroim.2008.08.017
Blacher E, Levy M, Tatirovsky E, et al., 2017. Microbiome-modulated metabolites at the interface of host immunity. J Immunol, 198(2):572-580. https://doi.org/10.4049/jimmunol.1601247https://doi.org/10.4049/jimmunol.1601247
Boller T, Felix G, 2009. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol, 60:379-406. https://doi.org/10.1146/annurev.arplant.57.032905.105346https://doi.org/10.1146/annurev.arplant.57.032905.105346
Bolte LA, Vich Vila A, Imhann F, et al., 2021. Long-term dietary patterns are associated with pro-inflammatory and anti-inflammatory features of the gut microbiome. Gut, 70(7):1287-1298. https://doi.org/10.1136/gutjnl-2020-322670https://doi.org/10.1136/gutjnl-2020-322670
Bonaz B, Sinniger V, Pellissier S, 2017. The vagus nerve in the neuro-immune axis: implications in the pathology of the gastrointestinal tract. Front Immunol, 8:1452. https://doi.org/10.3389/fimmu.2017.01452https://doi.org/10.3389/fimmu.2017.01452
Bonaz B, Bazin T, Pellissier S, 2018. The vagus nerve at the interface of the microbiota-gut-brain axis. Front Neurosci, 12:49. https://doi.org/10.3389/fnins.2018.00049https://doi.org/10.3389/fnins.2018.00049
Braniste V, Al-Asmakh M, Kowal C, et al., 2014. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med, 6(263):263ra158. https://doi.org/10.1126/scitranslmed.3009759https://doi.org/10.1126/scitranslmed.3009759
Bravo JA, Forsythe P, Chew MV, et al., 2011. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci USA, 108(38):16050-16055. https://doi.org/10.1073/pnas.1102999108https://doi.org/10.1073/pnas.1102999108
Brigitta B, 2002. Pathophysiology of depression and mechanisms of treatment. Dialogues Clin Neurosci, 4(1):7-20. https://doi.org/10.31887/DCNS.2002.4.1/bbondyhttps://doi.org/10.31887/DCNS.2002.4.1/bbondy
Britanova L, Diefenbach A, 2017. Interplay of innate lymphoid cells and the microbiota. Immunol Rev, 279(1):36-51. https://doi.org/10.1111/imr.12580https://doi.org/10.1111/imr.12580
Britton GJ, Contijoch EJ, Mogno I, et al., 2019. Microbiotas from humans with inflammatory bowel disease alter the balance of gut Th17 and RORγt+ regulatory T cells and exacerbate colitis in mice. Immunity, 50(1):212-224.e4. https://doi.org/10.1016/j.immuni.2018.12.015https://doi.org/10.1016/j.immuni.2018.12.015
Bromet E, Andrade LH, Hwang I, et al., 2011. Cross-national epidemiology of DSM-IV major depressive episode. BMC Med, 9(1):90. https://doi.org/10.1186/1741-7015-9-90https://doi.org/10.1186/1741-7015-9-90
Brun P, Giron MC, Qesari M, et al., 2013. Toll-like receptor 2 regulates intestinal inflammation by controlling integrity of the enteric nervous system. Gastroenterology, 145(6):1323-1333. https://doi.org/10.1053/j.gastro.2013.08.047https://doi.org/10.1053/j.gastro.2013.08.047
Cani PD, Everard A, Duparc T, 2013. Gut microbiota, enteroendocrine functions and metabolism. Curr Opin Pharmacol, 13(6):935-940. https://doi.org/10.1016/j.coph.2013.09.008https://doi.org/10.1016/j.coph.2013.09.008
Cantarero-Prieto D, Moreno-Mencia P, 2022. The effects of gastrointestinal disturbances on the onset of depression and anxiety. PLoS ONE, 17(1):e0262712. https://doi.org/10.1371/journal.pone.0262712https://doi.org/10.1371/journal.pone.0262712
Cao C, Liu MQ, Qu SC, et al., 2020. Chinese medicine formula Kai-Xin-San ameliorates depression-like behaviours in chronic unpredictable mild stressed mice by regulating gut microbiota-inflammation-stress system. J Ethnopharmacol, 261:113055. https://doi.org/10.1016/j.jep.2020.113055https://doi.org/10.1016/j.jep.2020.113055
Carlessi AS, Borba LA, Zugno AI, et al., 2021. Gut microbiota-brain axis in depression: the role of neuroinflammation. Eur J Neurosci, 53(1):222-235. https://doi.org/10.1111/ejn.14631https://doi.org/10.1111/ejn.14631
Chahwan B, Kwan S, Isik A, et al., 2019. Gut feelings: a randomised, triple-blind, placebo-controlled trial of probiotics for depressive symptoms. J Affect Disord, 253:317-326. https://doi.org/10.1016/j.jad.2019.04.097https://doi.org/10.1016/j.jad.2019.04.097
Chen DZ, Zhang YL, Huang T, et al., 2023. Depression and risk of gastrointestinal disorders: a comprehensive two-sample Mendelian randomization study of European ancestry. Psychol Med, 53(15):7309-7321. https://doi.org/10.1017/s0033291723000867https://doi.org/10.1017/s0033291723000867
Cheng D, Chang HS, Ma SY, et al., 2018. Tiansi Liquid modulates gut microbiota composition and tryptophan‒kynurenine metabolism in rats with hydrocortisone-induced depression. Molecules, 23(11):2832. https://doi.org/10.3390/molecules23112832https://doi.org/10.3390/molecules23112832
Cheng SP, Li M, Zhang QY, et al., 2021. Efficacy and safety of Shugan Jieyu capsules in the adjuvant treatment of functional dyspepsia with anxiety and depression: a meta-analysis. China Pharm, 30(14):94-102 (in Chinese). https://doi.org/10.3969/j.issn.1006-4931.2021.14.026https://doi.org/10.3969/j.issn.1006-4931.2021.14.026
Chiocchetti R, Mazzuoli G, Albanese V, et al., 2008. Anatomical evidence for ileal Peyer’s patches innervation by enteric nervous system: a potential route for prion neuroinvasion? Cell Tissue Res, 332(2):185-194. https://doi.org/10.1007/s00441-008-0583-yhttps://doi.org/10.1007/s00441-008-0583-y
Chu AL, Stochl J, Lewis G, et al., 2019. Longitudinal association between inflammatory markers and specific symptoms of depression in a prospective birth cohort. Brain Behav Immun, 76:74-81. https://doi.org/10.1016/j.bbi.2018.11.007https://doi.org/10.1016/j.bbi.2018.11.007
Craig CF, Filippone RT, Stavely R, et al., 2022. Neuroinflammation as an etiological trigger for depression comorbid with inflammatory bowel disease. J Neuroinflammation, 19:4. https://doi.org/10.1186/s12974-021-02354-1https://doi.org/10.1186/s12974-021-02354-1
Cryan JF, O'Riordan KJ, Cowan CSM, et al., 2019. The microbiota-gut-brain axis. Physiol Rev, 99(4):1877-2013. https://doi.org/10.1152/physrev.00018.2018https://doi.org/10.1152/physrev.00018.2018
Dai HQ, Han JJ, Wang T, et al., 2023. Recent advances in gut microbiota-associated natural products: structures, bioactivities, and mechanisms. Nat Prod Rep, 40(6):1078-1093. https://doi.org/10.1039/d2np00075jhttps://doi.org/10.1039/d2np00075j
Dalile B, van Oudenhove L, Vervliet B, et al., 2019. The role of short-chain fatty acids in microbiota-gut-brain communication. Nat Rev Gastroenterol Hepatol, 16(8):461-478. https://doi.org/10.1038/s41575-019-0157-3https://doi.org/10.1038/s41575-019-0157-3
Dantzer R, 2017. Role of the kynurenine metabolism pathway in inflammation-induced depression: preclinical approaches. In: Dantzer R, Capuron L (Eds.), Inflammation-Associated Depression: Evidence, Mechanisms and Implications. Springer, Cham, p.117-138. https://doi.org/10.1007/7854_2016_6https://doi.org/10.1007/7854_2016_6
Dao VH, Hoang LB, Trinh TO, et al., 2021. Psychobiotics for patients with chronic gastrointestinal disorders having anxiety or depression symptoms. J Multidiscip Healthc, 14:1395-1402. https://doi.org/10.2147/jmdh.S312316https://doi.org/10.2147/jmdh.S312316
David LA, Maurice CF, Carmody RN, et al., 2014. Diet rapidly and reproducibly alters the human gut microbiome. Nature, 505(7484):559-563. https://doi.org/10.1038/nature12820https://doi.org/10.1038/nature12820
de Kruijff I, Choenni V, Groeneweg JT, et al., 2019. Gastrointestinal symptoms in infants of mothers with a psychiatric history and the role of depression and bonding. J Pediatr Gastroenterol Nutr, 69(6):662-667. https://doi.org/10.1097/mpg.0000000000002484https://doi.org/10.1097/mpg.0000000000002484
de Punder K, Pruimboom L, 2015. Stress induces endotoxemia and low-grade inflammation by increasing barrier permeability. Front Immunol, 6:223. https://doi.org/10.3389/fimmu.2015.00223https://doi.org/10.3389/fimmu.2015.00223
de Weerth C, 2017. Do bacteria shape our development? Crosstalk between intestinal microbiota and HPA axis. Neurosci Biobehav Rev, 83:458-471. https://doi.org/10.1016/j.neubiorev.2017.09.016https://doi.org/10.1016/j.neubiorev.2017.09.016
Dehhaghi M, Kazemi Shariat Panahi H, Guillemin GJ, 2019. Microorganisms, tryptophan metabolism, and kynurenine pathway: a complex interconnected loop influencing human health status. Int J Tryptophan Res, 12:1178646919852996. https://doi.org/10.1177/1178646919852996https://doi.org/10.1177/1178646919852996
Dinan TG, Cryan JF, 2012. Regulation of the stress response by the gut microbiota: implications for psychoneuroendocrinology. Psychoneuroendocrinology, 37(9):1369-1378. https://doi.org/10.1016/j.psyneuen.2012.03.007https://doi.org/10.1016/j.psyneuen.2012.03.007
Dinan TG, Cryan JF, 2017. The microbiome-gut-brain axis in health and disease. Gastroenterol Clin North Am, 46(1):77-89. https://doi.org/10.1016/j.gtc.2016.09.007https://doi.org/10.1016/j.gtc.2016.09.007
Dockray GJ, 2013. Enteroendocrine cell signalling via the vagus nerve. Curr Opin Pharmacol, 13(6):954-958. https://doi.org/10.1016/j.coph.2013.09.007https://doi.org/10.1016/j.coph.2013.09.007
Du Y, Gao XR, Peng L, et al., 2020. Crosstalk between the microbiota-gut-brain axis and depression. Heliyon, 6(6):e04097. https://doi.org/10.1016/j.heliyon.2020.e04097https://doi.org/10.1016/j.heliyon.2020.e04097
Egerod KL, Engelstoft MS, Grunddal KV, et al., 2012. A major lineage of enteroendocrine cells coexpress CCK, secretin, GIP, GLP-1, PYY, and neurotensin but not somatostatin. Endocrinology, 153(12):5782-5795. https://doi.org/10.1210/en.2012-1595https://doi.org/10.1210/en.2012-1595
Erny D, Hrabě de Angelis AL, Jaitin D, et al., 2015. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci, 18(7):965-977. https://doi.org/10.1038/nn.4030https://doi.org/10.1038/nn.4030
Fan CQ, Li Y, Lan T, et al., 2022. Microglia secrete miR-146a-5p-containing exosomes to regulate neurogenesis in depression. Mol Ther, 30(3):1300-1314. https://doi.org/10.1016/j.ymthe.2021.11.006https://doi.org/10.1016/j.ymthe.2021.11.006
Fan L, Peng Y, Wang JW, et al., 2021. Total glycosides from stems of Cistanche tubulosa alleviate depression-like behaviors: bidirectional interaction of the phytochemicals and gut microbiota. Phytomedicine, 83:153471. https://doi.org/10.1016/j.phymed.2021.153471https://doi.org/10.1016/j.phymed.2021.153471
Fang K, Li HR, Chen XX, et al., 2020. Quercetin alleviates LPS-induced depression-like behavior in rats via regulating BDNF-related imbalance of Copine 6 and TREM1/2 in the hippocampus and PFC. Front Pharmacol, 10:1544. https://doi.org/10.3389/fphar.2019.01544https://doi.org/10.3389/fphar.2019.01544
Farzi A, Fröhlich EE, Holzer P, 2018. Gut microbiota and the neuroendocrine system. Neurotherapeutics, 15(1):5-22. https://doi.org/10.1007/s13311-017-0600-5https://doi.org/10.1007/s13311-017-0600-5
Feng B, La JH, Schwartz ES, et al., 2012. Irritable bowel syndrome: methods, mechanisms, and pathophysiology. Neural and neuro-immune mechanisms of visceral hypersensitivity in irritable bowel syndrome. Am J Physiol Gastrointest Liver Physiol, 302(10):G1085-G1098. https://doi.org/10.1152/ajpgi.00542.2011https://doi.org/10.1152/ajpgi.00542.2011
Fleshner M, Frank M, Maier SF, 2017. Danger signals and inflammasomes: stress-evoked sterile inflammation in mood disorders. Neuropsychopharmacology, 42(1):36-45. https://doi.org/10.1038/npp.2016.125https://doi.org/10.1038/npp.2016.125
Foster JA, Rinaman L, Cryan JF, 2017. Stress & the gut-brain axis: regulation by the microbiome. Neurobiol Stress, 7:124-136. https://doi.org/10.1016/j.ynstr.2017.03.001https://doi.org/10.1016/j.ynstr.2017.03.001
Fothergill LJ, Furness JB, 2018. Diversity of enteroendocrine cells investigated at cellular and subcellular levels: the need for a new classification scheme. Histochem Cell Biol, 150(6):693-702. https://doi.org/10.1007/s00418-018-1746-xhttps://doi.org/10.1007/s00418-018-1746-x
Furness JB, 2012. The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol, 9(5):286-294. https://doi.org/10.1038/nrgastro.2012.32https://doi.org/10.1038/nrgastro.2012.32
Gao J, Xu K, Liu HN, et al., 2018. Impact of the gut microbiota on intestinal immunity mediated by tryptophan metabolism. Front Cell Infect Microbiol, 8:13. https://doi.org/10.3389/fcimb.2018.00013https://doi.org/10.3389/fcimb.2018.00013
Gao LB, Huang SH, Tang K, et al., 2020. Advances in traditional Chinese medicine research of depression based on microbiota-gut-brain axis. Microbiol China, 47(8):2582-2596 (in Chinese). https://doi.org/10.13344/j.microbiol.china.200150https://doi.org/10.13344/j.microbiol.china.200150
Gao LJ, Liu L, Li LL, et al., 2019. Exploration of the theory of the spleen and stomach as the foundation of the acquired body based on the microbiota-gut-brain axis. Lishizhen Med Mater Med Res, 30(6):1449-1450 (in Chinese). https://doi.org/10.3969/j.issn.1008-0805.2019.06.060https://doi.org/10.3969/j.issn.1008-0805.2019.06.060
Gershon MD, 2013. 5-Hydroxytryptamine (serotonin) in the gastrointestinal tract. Curr Opin Endocrinol Diabetes Obes, 20(1):14-21. https://doi.org/10.1097/MED.0b013e32835bc703https://doi.org/10.1097/MED.0b013e32835bc703
Goh KK, Liu YW, Kuo PH, et al., 2019. Effect of probiotics on depressive symptoms: a meta-analysis of human studies. Psychiatry Res, 282:112568. https://doi.org/10.1016/j.psychres.2019.112568https://doi.org/10.1016/j.psychres.2019.112568
Grasa L, Abecia L, Forcén R, et al., 2015. Antibiotic-induced depletion of murine microbiota induces mild inflammation and changes in Toll-like receptor patterns and intestinal motility. Microb Ecol, 70(3):835-848. https://doi.org/10.1007/s00248-015-0613-8https://doi.org/10.1007/s00248-015-0613-8
Grider JR, Piland BE, 2007. The peristaltic reflex induced by short-chain fatty acids is mediated by sequential release of 5-HT and neuronal CGRP but not BDNF. Am J Physiol Gastrointest Liver Physiol, 292(1):G429-G437. https://doi.org/10.1152/ajpgi.00376.2006https://doi.org/10.1152/ajpgi.00376.2006
Gunawardene AR, Corfe BM, Staton CA, 2011. Classification and functions of enteroendocrine cells of the lower gastrointestinal tract. Int J Exp Pathol, 92(4):219-231. https://doi.org/10.1111/j.1365-2613.2011.00767.xhttps://doi.org/10.1111/j.1365-2613.2011.00767.x
Halestrap AP, 2013. The SLC16 gene family‒structure, role and regulation in health and disease. Mol Aspects Med, 34(2-3):337-349. https://doi.org/10.1016/j.mam.2012.05.003https://doi.org/10.1016/j.mam.2012.05.003
Hao WZ, Ma QY, Tao G, et al., 2021. Oral coniferyl ferulate attenuated depression symptoms in mice via reshaping gut microbiota and microbial metabolism. Food Funct, 12(24):12550-12564. https://doi.org/10.1039/d1fo02655khttps://doi.org/10.1039/d1fo02655k
Heiman ML, Greenway FL, 2016. A healthy gastrointestinal microbiome is dependent on dietary diversity. Mol Metab, 5(5):317-320. https://doi.org/10.1016/j.molmet.2016.02.005https://doi.org/10.1016/j.molmet.2016.02.005
Heiss CN, Olofsson LE, 2019. The role of the gut microbiota in development, function and disorders of the central nervous system and the enteric nervous system. J Neuroendocrinol, 31(5):e12684. https://doi.org/10.1111/jne.12684https://doi.org/10.1111/jne.12684
Ho L, Ono K, Tsuji M, et al., 2018. Protective roles of intestinal microbiota derived short chain fatty acids in Alzheimer’s disease-type beta-amyloid neuropathological mechanisms. Expert Rev Neurother, 18(1):83-90. https://doi.org/10.1080/14737175.2018.1400909https://doi.org/10.1080/14737175.2018.1400909
Holscher HD, 2017. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes, 8(2):172-184. https://doi.org/10.1080/19490976.2017.1290756https://doi.org/10.1080/19490976.2017.1290756
Hong M, Zheng J, Ding ZY, et al., 2013. Imbalance between Th17 and Treg cells may play an important role in the development of chronic unpredictable mild stress-induced depression in mice. Neuroimmunomodulation, 20(1):39-50. https://doi.org/10.1159/000343100https://doi.org/10.1159/000343100
Hou LW, Yang L, Zhu CT, et al., 2023. Cuscutae semen alleviates CUS-induced depression-like behaviors in mice via the gut microbiota-neuroinflammation axis. Front Pharmacol, 14:1107781. https://doi.org/10.3389/fphar.2023.1107781https://doi.org/10.3389/fphar.2023.1107781
Huang J, Cai YY, Su YS, et al., 2021. Gastrointestinal symptoms during depressive episodes in 3256 patients with major depressive disorders: findings from the NSSD. J Affect Disord, 286:27-32. https://doi.org/10.1016/j.jad.2021.02.039https://doi.org/10.1016/j.jad.2021.02.039
Huang J, Cai YY, Wu ZG, et al., 2022. Associations between gastrointestinal symptoms, medication use, and spontaneous drug discontinuation in patients with major depressive disorder in China. J Affect Disord, 319:462-468. https://doi.org/10.1016/j.jad.2022.08.116https://doi.org/10.1016/j.jad.2022.08.116
Huang YJ, Choong LXC, Panyod S, et al., 2021. Gastrodia elata Blume water extract modulates neurotransmitters and alters the gut microbiota in a mild social defeat stress-induced depression mouse model. Phytother Res, 35(9):5133-5142. https://doi.org/10.1002/ptr.7091https://doi.org/10.1002/ptr.7091
Hubbard TD, Murray IA, Perdew GH, 2015. Indole and tryptophan metabolism: endogenous and dietary routes to Ah receptor activation. Drug Metab Dispos, 43(10):1522-1535. https://doi.org/10.1124/dmd.115.064246https://doi.org/10.1124/dmd.115.064246
Husi H, 2004. NMDA receptors, neural pathways, and protein interaction databases. Int Rev Neurobiol, 61:49-77. https://doi.org/10.1016/s0074-7742(04)61003-8https://doi.org/10.1016/s0074-7742(04)61003-8
Ignácio ZM, da Silva RS, Plissari ME, et al., 2019. Physical exercise and neuroinflammation in major depressive disorder. Mol Neurobiol, 56(12):8323-8335. https://doi.org/10.1007/s12035-019-01670-1https://doi.org/10.1007/s12035-019-01670-1
Jeon SW, Kim YK, 2017. Inflammation-induced depression: its pathophysiology and therapeutic implications. J Neuroimmunol, 313:92-98. https://doi.org/10.1016/j.jneuroim.2017.10.016https://doi.org/10.1016/j.jneuroim.2017.10.016
Johnson KVA, Steenbergen L, 2022. Do common antibiotic treatments influence emotional processing? Physiol Behav, 255:113900. https://doi.org/10.1016/j.physbeh.2022.113900https://doi.org/10.1016/j.physbeh.2022.113900
Jones MP, Tack J, van Oudenhove L, et al., 2017. Mood and anxiety disorders precede development of functional gastrointestinal disorders in patients but not in the population. Clin Gastroenterol Hepatol, 15(7):1014-1020.e4. https://doi.org/10.1016/j.cgh.2016.12.032https://doi.org/10.1016/j.cgh.2016.12.032
Joseph DN, Whirledge S, 2017. Stress and the HPA axis: balancing homeostasis and fertility. Int J Mol Sci, 18(10):2224. https://doi.org/10.3390/ijms18102224https://doi.org/10.3390/ijms18102224
Jürgens B, Hainz U, Fuchs D, et al., 2009. Interferon-γ-triggered indoleamine 2,3-dioxygenase competence in human monocyte-derived dendritic cells induces regulatory activity in allogeneic T cells. Blood, 114(15):3235-3243. https://doi.org/10.1182/blood-2008-12-195073https://doi.org/10.1182/blood-2008-12-195073
Kawai T, Akira S, 2011. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity, 34(5):637-650. https://doi.org/10.1016/j.immuni.2011.05.006https://doi.org/10.1016/j.immuni.2011.05.006
Kelly JR, Borre Y, O'Brien C, et al., 2016. Transferring the blues: depression-associated gut microbiota induces neurobehavioural changes in the rat. J Psychiatr Res, 82:109-118. https://doi.org/10.1016/j.jpsychires.2016.07.019https://doi.org/10.1016/j.jpsychires.2016.07.019
Kennedy PJ, Cryan JF, Dinan TG, et al., 2017. Kynurenine pathway metabolism and the microbiota-gut-brain axis. Neuropharmacology, 112:399-412. https://doi.org/10.1016/j.neuropharm.2016.07.002https://doi.org/10.1016/j.neuropharm.2016.07.002
Kessler RC, Bromet EJ, 2013. The epidemiology of depression across cultures. Annu Rev Public Health, 34:119-138. https://doi.org/10.1146/annurev-publhealth-031912-114409https://doi.org/10.1146/annurev-publhealth-031912-114409
Khandaker GM, Zammit S, Burgess S, et al., 2018. Association between a functional interleukin 6 receptor genetic variant and risk of depression and psychosis in a population-based birth cohort. Brain Behav Immun, 69:264-272. https://doi.org/10.1016/j.bbi.2017.11.020https://doi.org/10.1016/j.bbi.2017.11.020
Ko CY, Lin HTV, Tsai GJ, 2013. Gamma-aminobutyric acid production in black soybean milk by Lactobacillus brevis FPA 3709 and the antidepressant effect of the fermented product on a forced swimming rat model. Process Biochem, 48(4):559-568. https://doi.org/10.1016/j.procbio.2013.02.021https://doi.org/10.1016/j.procbio.2013.02.021
Koh A, de Vadder F, Kovatcheva-Datchary P, et al., 2016. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell, 165(6):1332-1345. https://doi.org/10.1016/j.cell.2016.05.041https://doi.org/10.1016/j.cell.2016.05.041
Köhler CA, Freitas TH, Maes M, et al., 2017. Peripheral cytokine and chemokine alterations in depression: a meta-analysis of 82 studies. Acta Psychiatr Scand, 135(5):373-387. https://doi.org/10.1111/acps.12698https://doi.org/10.1111/acps.12698
Koloski NA, Jones M, Kalantar J, et al., 2012. The brain-gut pathway in functional gastrointestinal disorders is bidirectional: a 12-year prospective population-based study. Gut, 61(9):1284-1290. https://doi.org/10.1136/gutjnl-2011-300474https://doi.org/10.1136/gutjnl-2011-300474
Koloski NA, Jones M, Talley NJ, 2016. Evidence that independent gut-to-brain and brain-to-gut pathways operate in the irritable bowel syndrome and functional dyspepsia: a 1-year population-based prospective study. Aliment Pharmacol Ther, 44(6):592-600. https://doi.org/10.1111/apt.13738https://doi.org/10.1111/apt.13738
Koopman M, el Aidy S, 2017. Depressed gut? The microbiota-diet-inflammation trialogue in depression. Curr Opin Psychiatry, 30(5):369-377. https://doi.org/10.1097/yco.0000000000000350https://doi.org/10.1097/yco.0000000000000350
Kronsten VT, Tranah TH, Pariante C, et al., 2022. Gut-derived systemic inflammation as a driver of depression in chronic liver disease. J Hepatol, 76(3):665-680. https://doi.org/10.1016/j.jhep.2021.11.008https://doi.org/10.1016/j.jhep.2021.11.008
Lach G, Schellekens H, Dinan TG, et al., 2018. Anxiety, depression, and the microbiome: a role for gut peptides. Neurotherapeutics, 15(1):36-59. https://doi.org/10.1007/s13311-017-0585-0https://doi.org/10.1007/s13311-017-0585-0
Lamas B, Richard ML, Leducq V, et al., 2016. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat Med, 22(6):598-605. https://doi.org/10.1038/nm.4102https://doi.org/10.1038/nm.4102
Lamas B, Hernandez-Galan L, Galipeau HJ, et al., 2020. Aryl hydrocarbon receptor ligand production by the gut microbiota is decreased in celiac disease leading to intestinal inflammation. Sci Transl Med, 12(566):eaba0624. https://doi.org/10.1126/scitranslmed.aba0624https://doi.org/10.1126/scitranslmed.aba0624
Laroute V, Beaufrand C, Gomes P, et al., 2022. Lactococcus lactis NCDO2118 exerts visceral antinociceptive properties in rat via GABA production in the gastro-intestinal tract. eLife, 11:e77100. https://doi.org/10.7554/eLife.77100https://doi.org/10.7554/eLife.77100
Lerner A, Neidhöfer S, Matthias T, 2017. The gut microbiome feelings of the brain: a perspective for non-microbiologists. Microorganisms, 5(4):66. https://doi.org/10.3390/microorganisms5040066https://doi.org/10.3390/microorganisms5040066
Li HN, Xiang YJ, Zhu ZM, et al., 2021. Rifaximin-mediated gut microbiota regulation modulates the function of microglia and protects against CUMS-induced depression-like behaviors in adolescent rat. J Neuroinflammation, 18:254. https://doi.org/10.1186/s12974-021-02303-yhttps://doi.org/10.1186/s12974-021-02303-y
Li JN, Li YN, Duan WZ, et al., 2022. Shugan granule contributes to the improvement of depression-like behaviors in chronic restraint stress-stimulated rats by altering gut microbiota. CNS Neurosci Ther, 28(9):1409-1424. https://doi.org/10.1111/cns.13881https://doi.org/10.1111/cns.13881
Li WF, Ali T, Zheng CY, et al., 2021. Fluoxetine regulates eEF2 activity (phosphorylation) via HDAC1 inhibitory mechanism in an LPS-induced mouse model of depression. J Neuroinflammation, 18:38. https://doi.org/10.1186/s12974-021-02091-5https://doi.org/10.1186/s12974-021-02091-5
Li YY, Hao YL, Fan F, et al., 2018. The role of microbiome in insomnia, circadian disturbance and depression. Front Psychiatry, 9:669. https://doi.org/10.3389/fpsyt.2018.00669https://doi.org/10.3389/fpsyt.2018.00669
Liang S, Wu XL, Hu X, et al., 2018. Recognizing depression from the microbiota-gut-brain axis. Int J Mol Sci, 19(6):1592. https://doi.org/10.3390/ijms19061592https://doi.org/10.3390/ijms19061592
Lin SS, Li QQ, Jiang SS, et al., 2021. Crocetin ameliorates chronic restraint stress-induced depression-like behaviors in mice by regulating MEK/ERK pathways and gut microbiota. J Ethnopharmacol, 268:113608. https://doi.org/10.1016/j.jep.2020.113608https://doi.org/10.1016/j.jep.2020.113608
Liu RT, Walsh RFL, Sheehan AE, 2019. Prebiotics and probiotics for depression and anxiety: a systematic review and meta-analysis of controlled clinical trials. Neurosci Biobehav Rev, 102:13-23. https://doi.org/10.1016/j.neubiorev.2019.03.023https://doi.org/10.1016/j.neubiorev.2019.03.023
Liu YN, Xu FH, Liu S, et al., 2020. Significance of gastrointestinal tract in the therapeutic mechanisms of exercise in depression: synchronism between brain and intestine through GBA. Prog Neuro-Psychopharmacol Biol Psychiatry, 103:109971. https://doi.org/10.1016/j.pnpbp.2020.109971https://doi.org/10.1016/j.pnpbp.2020.109971
Liu YX, Zhang L, Wang XQ, et al., 2016. Similar fecal microbiota signatures in patients with diarrhea-predominant irritable bowel syndrome and patients with depression. Clin Gastroenterol Hepatol, 14(11):1602-1611.e5. https://doi.org/10.1016/j.cgh.2016.05.033https://doi.org/10.1016/j.cgh.2016.05.033
Luo M, Zhuang XJ, Tian ZY, et al., 2021. Alterations in short-chain fatty acids and serotonin in irritable bowel syndrome: a systematic review and meta-analysis. BMC Gastroenterol, 21:14. https://doi.org/10.1186/s12876-020-01577-5https://doi.org/10.1186/s12876-020-01577-5
Lurie I, Yang YX, Haynes K, et al., 2015. Antibiotic exposure and the risk for depression, anxiety, or psychosis: a nested case-control study. J Clin Psychiatry, 76(11):1522-1528. https://doi.org/10.4088/JCP.15m09961https://doi.org/10.4088/JCP.15m09961
Lyte M, 2011. Probiotics function mechanistically as delivery vehicles for neuroactive compounds: microbial endocrinology in the design and use of probiotics. Bioessays, 33(8):574-581. https://doi.org/10.1002/bies.201100024https://doi.org/10.1002/bies.201100024
Lyte M, 2014. Microbial endocrinology: host-microbiota neuroendocrine interactions influencing brain and behavior. Gut Microbes, 5(3):381-389. https://doi.org/10.4161/gmic.28682https://doi.org/10.4161/gmic.28682
Ma C, Yuan D, Renaud SJ, et al., 2022. Chaihu-shugan-san alleviates depression-like behavior in mice exposed to chronic unpredictable stress by altering the gut microbiota and levels of the bile acids hyocholic acid and 7-ketoDCA. Front Pharmacol, 13:1040591. https://doi.org/10.3389/fphar.2022.1040591https://doi.org/10.3389/fphar.2022.1040591
Ma J, Shah AM, Wang ZS, et al., 2021. Dietary supplementation with glutamine improves gastrointestinal barrier function and promotes compensatory growth of growth-retarded yaks. Animal, 15(2):100108. https://doi.org/10.1016/j.animal.2020.100108https://doi.org/10.1016/j.animal.2020.100108
Ma QQ, Xing CS, Long WY, et al., 2019. Impact of microbiota on central nervous system and neurological diseases: the gut-brain axis. J Neuroinflammation, 16:53. https://doi.org/10.1186/s12974-019-1434-3https://doi.org/10.1186/s12974-019-1434-3
Maguen S, Madden E, Cohen B, et al., 2014. Association of mental health problems with gastrointestinal disorders in Iraq and Afghanistan veterans. Depress Anxiety, 31(2):160-165. https://doi.org/10.1002/da.22072https://doi.org/10.1002/da.22072
Makris AP, Karianaki M, Tsamis KI, et al., 2021. The role of the gut-brain axis in depression: endocrine, neural, and immune pathways. Hormones, 20(1):1-12. https://doi.org/10.1007/s42000-020-00236-4https://doi.org/10.1007/s42000-020-00236-4
Malhi GS, Mann JJ, 2018. Depression. Lancet, 392(10161):2299-2312. https://doi.org/10.1016/S0140-6736(18)31948-2https://doi.org/10.1016/S0140-6736(18)31948-2
Man SM, 2018. Inflammasomes in the gastrointestinal tract: infection, cancer and gut microbiota homeostasis. Nat Rev Gastroenterol Hepatol, 15(12):721-737. https://doi.org/10.1038/s41575-018-0054-1https://doi.org/10.1038/s41575-018-0054-1
Marathe CS, Rayner CK, Jones KL, et al., 2011. Effects of GLP-1 and incretin-based therapies on gastrointestinal motor function. Exp Diabetes Res, 2011:279530. https://doi.org/10.1155/2011/279530https://doi.org/10.1155/2011/279530
Mars RAT, Yang Y, Ward T, et al., 2020. Longitudinal multi-omics reveals subset-specific mechanisms underlying irritable bowel syndrome. Cell, 182(6):1460-1473.e17. https://doi.org/10.1016/j.cell.2020.08.007https://doi.org/10.1016/j.cell.2020.08.007
Martínez-López M, Iborra S, Conde-Garrosa R, et al., 2019. Microbiota sensing by Mincle-Syk axis in dendritic cells regulates interleukin-17 and -22 production and promotes intestinal barrier integrity. Immunity, 50(2):446-461.e9. https://doi.org/10.1016/j.immuni.2018.12.020https://doi.org/10.1016/j.immuni.2018.12.020
Mawe GM, Hoffman JM, 2013. Serotonin signalling in the gut-functions, dysfunctions and therapeutic targets. Nat Rev Gastroenterol Hepatol, 10(8):473-486. https://doi.org/10.1038/nrgastro.2013.105https://doi.org/10.1038/nrgastro.2013.105
Maynard CL, Elson CO, Hatton RD, et al., 2012. Reciprocal interactions of the intestinal microbiota and immune system. Nature, 489(7415):231-241. https://doi.org/10.1038/nature11551https://doi.org/10.1038/nature11551
McGaughey KD, Yilmaz-Swenson T, Elsayed NM, et al., 2019. Relative abundance of Akkermansia spp. and other bacterial phylotypes correlates with anxiety- and depressive-like behavior following social defeat in mice. Sci Rep, 9:3281. https://doi.org/10.1038/s41598-019-40140-5https://doi.org/10.1038/s41598-019-40140-5
McVey Neufeld KA, Bienenstock J, Bharwani A, et al., 2019. Oral selective serotonin reuptake inhibitors activate vagus nerve dependent gut-brain signalling. Sci Rep, 9:14290. https://doi.org/10.1038/s41598-019-50807-8https://doi.org/10.1038/s41598-019-50807-8
Medina-Rodriguez EM, Cheng YY, Michalek SM, et al., 2020. Toll-like receptor 2 (TLR2)-deficiency impairs male mouse recovery from a depression-like state. Brain Behav Immun, 89:51-58. https://doi.org/10.1016/j.bbi.2020.05.068https://doi.org/10.1016/j.bbi.2020.05.068
Medzhitov R, 2007. Recognition of microorganisms and activation of the immune response. Nature, 449(7164):819-826. https://doi.org/10.1038/nature06246https://doi.org/10.1038/nature06246
Messaoud A, Mensi R, Douki W, et al., 2019. Reduced peripheral availability of tryptophan and increased activation of the kynurenine pathway and cortisol correlate with major depression and suicide. World J Biol Psychiatry, 20(9):703-711. https://doi.org/10.1080/15622975.2018.1468031https://doi.org/10.1080/15622975.2018.1468031
Miller AH, Maletic V, Raison CL, 2009. Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry, 65(9):732-741. https://doi.org/10.1016/j.biopsych.2008.11.029https://doi.org/10.1016/j.biopsych.2008.11.029
Misiak B, Łoniewski I, Marlicz W, et al., 2020. The HPA axis dysregulation in severe mental illness: can we shift the blame to gut microbiota? Prog Neuro-Psychopharmacol Biol Psychiatry, 102:109951. https://doi.org/10.1016/j.pnpbp.2020.109951https://doi.org/10.1016/j.pnpbp.2020.109951
Mittal R, Debs LH, Patel AP, et al., 2017. Neurotransmitters: the critical modulators regulating gut-brain axis. J Cell Physiol, 232(9):2359-2372. https://doi.org/10.1002/jcp.25518https://doi.org/10.1002/jcp.25518
Mörkl S, Butler MI, Holl A, et al., 2020. Probiotics and the microbiota-gut-brain axis:focus on psychiatry. Curr Nutr Rep, 9(3):171-182. https://doi.org/10.1007/s13668-020-00313-5https://doi.org/10.1007/s13668-020-00313-5
Mortha A, Chudnovskiy A, Hashimoto D, et al., 2014. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis. Science, 343(6178):1249288. https://doi.org/10.1126/science.1249288https://doi.org/10.1126/science.1249288
Müller B, Rasmusson AJ, Just D, et al., 2021. Fecal short-chain fatty acid ratios as related to gastrointestinal and depressive symptoms in young adults. Psychosom Med, 83(7):693-699. https://doi.org/10.1097/psy.0000000000000965https://doi.org/10.1097/psy.0000000000000965
Murakami T, Kamada K, Mizushima K, et al., 2017. Changes in intestinal motility and gut microbiota composition in a rat stress model. Digestion, 95(1):55-60. https://doi.org/10.1159/000452364https://doi.org/10.1159/000452364
Musil R, Schwarz MJ, Riedel M, et al., 2011. Elevated macrophage migration inhibitory factor and decreased transforming growth factor-beta levels in major depression ‒ no influence of celecoxib treatment. J Affect Disord, 134(1-3):217-225. https://doi.org/10.1016/j.jad.2011.05.047https://doi.org/10.1016/j.jad.2011.05.047
Na KS, Lee KJ, Lee JS, et al., 2014. Efficacy of adjunctive celecoxib treatment for patients with major depressive disorder: a meta-analysis. Prog Neuro-Psychopharmacol Biol Psychiatry, 48:79-85. https://doi.org/10.1016/j.pnpbp.2013.09.006https://doi.org/10.1016/j.pnpbp.2013.09.006
Natividad JM, Pinto-Sanchez MI, Galipeau HJ, et al., 2015. Ecobiotherapy rich in firmicutes decreases susceptibility to colitis in a humanized gnotobiotic mouse model. Inflamm Bowel Dis, 21(8):1883-1893. https://doi.org/10.1097/mib.0000000000000422https://doi.org/10.1097/mib.0000000000000422
Ng QX, Peters C, Ho CYX, et al., 2018. A meta-analysis of the use of probiotics to alleviate depressive symptoms. J Affect Disord, 228:13-19. https://doi.org/10.1016/j.jad.2017.11.063https://doi.org/10.1016/j.jad.2017.11.063
Nie X, Kitaoka S, Tanaka K, et al., 2018. The innate immune receptors TLR2/4 mediate repeated social defeat stress-induced social avoidance through prefrontal microglial activation. Neuron, 99(3):464-479.e7. https://doi.org/10.1016/j.neuron.2018.06.035https://doi.org/10.1016/j.neuron.2018.06.035
Niesler B, Kuerten S, Demir IE, et al., 2021. Disorders of the enteric nervous system ‒ a holistic view. Nat Rev Gastroenterol Hepatol, 18(6):393-410. https://doi.org/10.1038/s41575-020-00385-2https://doi.org/10.1038/s41575-020-00385-2
Obata Y, Castaño Á, Boeing S, et al., 2020. Neuronal programming by microbiota regulates intestinal physiology. Nature, 578(7794):284-289. https://doi.org/10.1038/s41586-020-1975-8https://doi.org/10.1038/s41586-020-1975-8
Oliva V, Lippi M, Paci R, et al., 2021. Gastrointestinal side effects associated with antidepressant treatments in patients with major depressive disorder: a systematic review and meta-analysis. Prog Neuro-Psychopharmacol Biol Psychiatry, 109:110266. https://doi.org/10.1016/j.pnpbp.2021.110266https://doi.org/10.1016/j.pnpbp.2021.110266
Onaga T, Zabielski R, Kato S, 2002. Multiple regulation of peptide YY secretion in the digestive tract. Peptides, 23(2):279-290. https://doi.org/10.1016/s0196-9781(01)00609-xhttps://doi.org/10.1016/s0196-9781(01)00609-x
Orel R, Kamhi Trop T, 2014. Intestinal microbiota, probiotics and prebiotics in inflammatory bowel disease. World J Gastroenterol, 20(33):11505-11524. https://doi.org/10.3748/wjg.v20.i33.11505https://doi.org/10.3748/wjg.v20.i33.11505
Pan Y, Chen XY, Zhang QY, et al., 2014. Microglial NLRP3 inflammasome activation mediates IL-1β-related inflammation in prefrontal cortex of depressive rats. Brain Behav Immun, 41:90-100. https://doi.org/10.1016/j.bbi.2014.04.007https://doi.org/10.1016/j.bbi.2014.04.007
Pearson-Leary J, Zhao CY, Bittinger K, et al., 2020. The gut microbiome regulates the increases in depressive-type behaviors and in inflammatory processes in the ventral hippocampus of stress vulnerable rats. Mol Psychiatry, 25(5):1068-1079. https://doi.org/10.1038/s41380-019-0380-xhttps://doi.org/10.1038/s41380-019-0380-x
Peirce JM, Alviña K, 2019. The role of inflammation and the gut microbiome in depression and anxiety. J Neurosci Res, 97(10):1223-1241. https://doi.org/10.1002/jnr.24476https://doi.org/10.1002/jnr.24476
Psichas A, Sleeth ML, Murphy KG, et al., 2015. The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents. Int J Obes, 39(3):424-429. https://doi.org/10.1038/ijo.2014.153https://doi.org/10.1038/ijo.2014.153
Qiu J, Liu RJ, Ma YY, et al., 2020. Lipopolysaccharide-induced depression-like behaviors is ameliorated by sodium butyrate via inhibiting neuroinflammation and oxido-nitrosative stress. Pharmacology, 105(9-10):550-560. https://doi.org/10.1159/000505132https://doi.org/10.1159/000505132
Quigley EMM, 2019. Prebiotics and probiotics in digestive health. Clin Gastroenterol Hepatol, 17(2):333-344. https://doi.org/10.1016/j.cgh.2018.09.028https://doi.org/10.1016/j.cgh.2018.09.028
Raison CL, Dantzer R, Kelley KW, et al., 2010. CSF concentrations of brain tryptophan and kynurenines during immune stimulation with IFN-α: relationship to CNS immune responses and depression. Mol Psychiatry, 15(4):393-403. https://doi.org/10.1038/mp.2009.116https://doi.org/10.1038/mp.2009.116
Rathinam VAK, Fitzgerald KA, 2016. Inflammasome complexes: emerging mechanisms and effector functions. Cell, 165(4):792-800. https://doi.org/10.1016/j.cell.2016.03.046https://doi.org/10.1016/j.cell.2016.03.046
Raybould HE, 2010. Gut chemosensing: interactions between gut endocrine cells and visceral afferents. Auton Neurosci, 153(1-2):41-46. https://doi.org/10.1016/j.autneu.2009.07.007https://doi.org/10.1016/j.autneu.2009.07.007
Riley DR, Sieber KB, Robinson KM, et al., 2013. Bacteria-human somatic cell lateral gene transfer is enriched in cancer samples. PLoS Comput Biol, 9(6):e1003107. https://doi.org/10.1371/journal.pcbi.1003107https://doi.org/10.1371/journal.pcbi.1003107
Rodiño-Janeiro BK, Alonso-Cotoner C, Pigrau M, et al., 2015. Role of corticotropin-releasing factor in gastrointestinal permeability. J Neurogastroenterol Motil, 21(1):33-50. https://doi.org/10.5056/jnm14084https://doi.org/10.5056/jnm14084
Rothhammer V, Mascanfroni ID, Bunse L, et al., 2016. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat Med, 22(6):586-597. https://doi.org/10.1038/nm.4106https://doi.org/10.1038/nm.4106
Rothschild D, Weissbrod O, Barkan E, et al., 2018. Environment dominates over host genetics in shaping human gut microbiota. Nature, 555(7695):210-215. https://doi.org/10.1038/nature25973https://doi.org/10.1038/nature25973
Ruan XX, Chen J, Sun YH, et al., 2023. Depression and 24 gastrointestinal diseases: a Mendelian randomization study. Transl Psychiatry, 13(1):146. https://doi.org/10.1038/s41398-023-02459-6https://doi.org/10.1038/s41398-023-02459-6
Saha M, Mamun AA, Begum K, et al., 2021. Depression among patients presenting with gastrointestinal symptoms: prevalence and associated factors. Mymensingh Med J, 30(2):415-419.
Salter MW, Stevens B, 2017. Microglia emerge as central players in brain disease. Nat Med, 23(9):1018-1027. https://doi.org/10.1038/nm.4397https://doi.org/10.1038/nm.4397
Sanada K, Nakajima S, Kurokawa S, et al., 2020. Gut microbiota and major depressive disorder: a systematic review and meta-analysis. J Affect Disord, 266:1-13. https://doi.org/10.1016/j.jad.2020.01.102https://doi.org/10.1016/j.jad.2020.01.102
Savitz J, Drevets WC, Wurfel BE, et al., 2015. Reduction of kynurenic acid to quinolinic acid ratio in both the depressed and remitted phases of major depressive disorder. Brain Behav Immun, 46:55-59. https://doi.org/10.1016/j.bbi.2015.02.007https://doi.org/10.1016/j.bbi.2015.02.007
Schmidt B, Mulder IE, Musk CC, et al., 2011. Establishment of normal gut microbiota is compromised under excessive hygiene conditions. PLoS ONE, 6(12):e28284. https://doi.org/10.1371/journal.pone.0028284https://doi.org/10.1371/journal.pone.0028284
Sharbafchi MR, Afshar H, Adhamian P, et al., 2020. Effects of venlafaxine on gastrointestinal symptoms, depression, anxiety, stress, and quality of life in patients with the moderate-to-severe irritable bowel syndrome. J Res Med Sci, 25(1):115. https://doi.org/10.4103/jrms.JRMS_699_19https://doi.org/10.4103/jrms.JRMS_699_19
Shen W, Tao YL, Zheng F, et al., 2023. The alteration of gut microbiota in venlafaxine-ameliorated chronic unpredictable mild stress-induced depression in mice. Behav Brain Res, 446:114399. https://doi.org/10.1016/j.bbr.2023.114399https://doi.org/10.1016/j.bbr.2023.114399
Shin YJ, Lee DY, Kim JY, et al., 2023. Effect of fermented red ginseng on gut microbiota dysbiosis- or immobilization stress-induced anxiety, depression, and colitis in mice. J Ginseng Res, 47(2):255-264. https://doi.org/10.1016/j.jgr.2022.08.004https://doi.org/10.1016/j.jgr.2022.08.004
Simon E, Călinoiu LF, Mitrea L, et al., 2021. Probiotics, prebiotics, and synbiotics: implications and beneficial effects against irritable bowel syndrome. Nutrients, 13(6):2112. https://doi.org/10.3390/nu13062112https://doi.org/10.3390/nu13062112
Simpson CA, Mu A, Haslam N, et al., 2020. Feeling down? A systematic review of the gut microbiota in anxiety/depression and irritable bowel syndrome. J Affect Disord, 266:429-446. https://doi.org/10.1016/j.jad.2020.01.124https://doi.org/10.1016/j.jad.2020.01.124
Skonieczna-Żydecka K, Grochans E, Maciejewska D, et al., 2018. Faecal short chain fatty acids profile is changed in polish depressive women. Nutrients, 10(12):1939. https://doi.org/10.3390/nu10121939https://doi.org/10.3390/nu10121939
Slyepchenko A, Maes M, Jacka FN, et al., 2017. Gut microbiota, bacterial translocation, and interactions with diet: pathophysiological links between major depressive disorder and non-communicable medical comorbidities. Psychother Psychosom, 86(1):31-46. https://doi.org/10.1159/000448957https://doi.org/10.1159/000448957
Smith K, 2014. Mental health: a world of depression. Nature, 515(7526):180-181. https://doi.org/10.1038/515180ahttps://doi.org/10.1038/515180a
Söderquist F, Syk M, Just D, et al., 2020. A cross-sectional study of gastrointestinal symptoms, depressive symptoms and trait anxiety in young adults. BMC Psychiatry, 20:535. https://doi.org/10.1186/s12888-020-02940-2https://doi.org/10.1186/s12888-020-02940-2
Song XJ, Wang WH, Ding SS, et al., 2021. Puerarin ameliorates depression-like behaviors of with chronic unpredictable mild stress mice by remodeling their gut microbiota. J Affect Disord, 290:353-363. https://doi.org/10.1016/j.jad.2021.04.037https://doi.org/10.1016/j.jad.2021.04.037
Spencer NJ, Hu HZ, 2020. Enteric nervous system: sensory transduction, neural circuits and gastrointestinal motility. Nat Rev Gastroenterol Hepatol, 17(6):338-351. https://doi.org/10.1038/s41575-020-0271-2https://doi.org/10.1038/s41575-020-0271-2
Stilling RM, Dinan TG, Cryan JF, 2014. Microbial genes, brain & behaviour-epigenetic regulation of the gut-brain axis. Genes Brain Behav, 13(1):69-86. https://doi.org/10.1111/gbb.12109https://doi.org/10.1111/gbb.12109
Suda K, Matsuda K, 2022. How microbes affect depression: underlying mechanisms via the gut-brain axis and the modulating role of probiotics. Int J Mol Sci, 23(3):1172. https://doi.org/10.3390/ijms23031172https://doi.org/10.3390/ijms23031172
Sui SJ, Tian ZB, Wang QC, et al., 2018. Clostridium butyricum promotes intestinal motility by regulation of TLR2 in interstitial cells of Cajal. Eur Rev Med Pharmacol Sci, 22(14):4730-4738. https://doi.org/10.26355/eurrev_201807_15533https://doi.org/10.26355/eurrev_201807_15533
Sun LJ, Li JN, Nie YZ, 2020. Gut hormones in microbiota-gut-brain cross-talk. Chin Med J, 133(7):826-833. https://doi.org/10.1097/cm9.0000000000000706https://doi.org/10.1097/cm9.0000000000000706
Takada M, Nishida K, Kataoka-Kato A, et al., 2016. Probiotic Lactobacillus casei strain shirota relieves stress-associated symptoms by modulating the gut-brain interaction in human and animal models. Neurogastroenterol Motil, 28(7):1027-1036. https://doi.org/10.1111/nmo.12804https://doi.org/10.1111/nmo.12804
Tan JX, Li XX, Zhu Y, et al., 2022. Antidepressant Shugan Jieyu capsule alters gut microbiota and intestinal microbiome function in rats with chronic unpredictable mild stress-induced depression. Front Pharmacol, 13:828595. https://doi.org/10.3389/fphar.2022.828595https://doi.org/10.3389/fphar.2022.828595
Tang XH, Zhang GF, Xu N, et al., 2020. Extrasynaptic CaMKIIα is involved in the antidepressant effects of ketamine by downregulating GluN2B receptors in an LPS-induced depression model. J Neuroinflammation, 17:181. https://doi.org/10.1186/s12974-020-01843-zhttps://doi.org/10.1186/s12974-020-01843-z
Thaiss CA, Zmora N, Levy M, et al., 2016. The microbiome and innate immunity. Nature, 535(7610):65-74. https://doi.org/10.1038/nature18847https://doi.org/10.1038/nature18847
Tian PJ, O'Riordan KJ, Lee YK, et al., 2020. Towards a psychobiotic therapy for depression: Bifidobacterium breve CCFM1025 reverses chronic stress-induced depressive symptoms and gut microbial abnormalities in mice. Neurobiol Stress, 12:100216. https://doi.org/10.1016/j.ynstr.2020.100216https://doi.org/10.1016/j.ynstr.2020.100216
Tian PJ, Zou RY, Wang LY, et al., 2023. Multi-probiotics ameliorate major depressive disorder and accompanying gastrointestinal syndromes via serotonergic system regulation. J Adv Res, 45:117-125. https://doi.org/10.1016/j.jare.2022.05.003https://doi.org/10.1016/j.jare.2022.05.003
Troubat R, Barone P, Leman S, et al., 2021. Neuroinflammation and depression: a review. Eur J Neurosci, 53(1):151-171. https://doi.org/10.1111/ejn.14720https://doi.org/10.1111/ejn.14720
Vainchtein ID, Chin G, Cho FS, et al., 2018. Astrocyte-derived interleukin-33 promotes microglial synapse engulfment and neural circuit development. Science, 359(6381):1269-1273. https://doi.org/10.1126/science.aal3589https://doi.org/10.1126/science.aal3589
Valles-Colomer M, Falony G, Darzi Y, et al., 2019. The neuroactive potential of the human gut microbiota in quality of life and depression. Nat Microbiol, 4(4):623-632. https://doi.org/10.1038/s41564-018-0337-xhttps://doi.org/10.1038/s41564-018-0337-x
Vicentini FA, Mathews AJ, Pittman QJ, et al., 2021. Behavioural adaptations after antibiotic treatment in male mice are reversed by activation of the aryl hydrocarbon receptor. Brain Behav Immun, 98:317-329. https://doi.org/10.1016/j.bbi.2021.08.228https://doi.org/10.1016/j.bbi.2021.08.228
Villageliú D, Lyte M, 2018. Dopamine production in Enterococcus faecium: a microbial endocrinology-based mechanism for the selection of probiotics based on neurochemical-producing potential. PLoS ONE, 13(11):e0207038. https://doi.org/10.1371/journal.pone.0207038https://doi.org/10.1371/journal.pone.0207038
Vlainić JV, Šuran J, Vlainić T, et al., 2016. Probiotics as an adjuvant therapy in major depressive disorder. Curr Neuropharmacol, 14(8):952-958. https://doi.org/10.2174/1570159x14666160526120928https://doi.org/10.2174/1570159x14666160526120928
Waclawiková B, Bullock A, Schwalbe M, et al., 2021. Gut bacteria-derived 5-hydroxyindole is a potent stimulant of intestinal motility via its action on L-type calcium channels. PLoS Biol, 19(1):e3001070. https://doi.org/10.1371/journal.pbio.3001070https://doi.org/10.1371/journal.pbio.3001070
Wall R, Cryan JF, Ross RP, et al., 2014. Bacterial neuroactive compounds produced by psychobiotics. In: Lyte M, Cryan JF (Eds.), Microbial Endocrinology: The Microbiota-Gut-Brain Axis in Health and Disease. Springer, New York, p.221-239. https://doi.org/10.1007/978-1-4939-0897-4_10https://doi.org/10.1007/978-1-4939-0897-4_10
Wang F, Jing S, Cao HY, 2019. Clinical study on “strengthening the spleen, regulating the liver and resolving stagnation formula” combined with mesalazine in the treatment of ulcerative colitis combined with depression in 30 cases. Jiangsu J Tradit Chin Med, 51(12):40-43 (in Chinese). https://doi.org/10.3969/j.issn.1672-397X.2019.12.014https://doi.org/10.3969/j.issn.1672-397X.2019.12.014
Wang Q, McLoughlin RM, Cobb BA, et al., 2006. A bacterial carbohydrate links innate and adaptive responses through Toll-like receptor 2. J Exp Med, 203(13):2853-2863. https://doi.org/10.1084/jem.20062008https://doi.org/10.1084/jem.20062008
Wen Y, Liu CJ, Liao J, et al., 2019. Incidence and risk factors of depressive symptoms in 4 years of follow-up among mid-aged and elderly community-dwelling Chinese adults: findings from the China Health and Retirement Longitudinal study. BMJ Open, 9(9):e029529. https://doi.org/10.1136/bmjopen-2019-029529https://doi.org/10.1136/bmjopen-2019-029529
Werbner M, Barsheshet Y, Werbner N, et al., 2019. Social-stress-responsive microbiota induces stimulation of self-reactive effector T helper cells. mSystems, 4(4):e00292-18. https://doi.org/10.1128/mSystems.00292-18https://doi.org/10.1128/mSystems.00292-18
Westfall S, Pasinetti GM, 2019. The gut microbiota links dietary polyphenols with management of psychiatric mood disorders. Front Neurosci, 13:1196. https://doi.org/10.3389/fnins.2019.01196https://doi.org/10.3389/fnins.2019.01196
Westfall S, Caracci F, Zhao DY, et al., 2021. Microbiota metabolites modulate the T helper 17 to regulatory T cell (Th17/Treg) imbalance promoting resilience to stress-induced anxiety- and depressive-like behaviors. Brain Behav Immun, 91:350-368. https://doi.org/10.1016/j.bbi.2020.10.013https://doi.org/10.1016/j.bbi.2020.10.013
Wichmann A, Allahyar A, Greiner TU, et al., 2013. Microbial modulation of energy availability in the colon regulates intestinal transit. Cell Host Microbe, 14(5):582-590. https://doi.org/10.1016/j.chom.2013.09.012https://doi.org/10.1016/j.chom.2013.09.012
Willing BP, Russell SL, Finlay BB, 2011. Shifting the balance: antibiotic effects on host-microbiota mutualism. Nat Rev Microbiol, 9(4):233-243. https://doi.org/10.1038/nrmicro2536https://doi.org/10.1038/nrmicro2536
Winter G, Hart RA, Charlesworth RPG, et al., 2018. Gut microbiome and depression: what we know and what we need to know. Rev Neurosci, 29(6):629-643. https://doi.org/10.1515/revneuro-2017-0072https://doi.org/10.1515/revneuro-2017-0072
Wlodarska M, Luo CW, Kolde R, et al., 2017. Indoleacrylic acid produced by commensal Peptostreptococcus species suppresses inflammation. Cell Host Microbe, 22(1):25-37.e6. https://doi.org/10.1016/j.chom.2017.06.007https://doi.org/10.1016/j.chom.2017.06.007
Wong ML, Inserra A, Lewis MD, et al., 2016. Inflammasome signaling affects anxiety- and depressive-like behavior and gut microbiome composition. Mol Psychiatry, 21(6):797-805. https://doi.org/10.1038/mp.2016.46https://doi.org/10.1038/mp.2016.46
Wu SC, Cao ZS, Chang KM, et al., 2017. Intestinal microbial dysbiosis aggravates the progression of Alzheimer’s disease in Drosophila. Nat Commun, 8:24. https://doi.org/10.1038/s41467-017-00040-6https://doi.org/10.1038/s41467-017-00040-6
Yamawaki Y, Yoshioka N, Nozaki K, et al., 2018. Sodium butyrate abolishes lipopolysaccharide-induced depression-like behaviors and hippocampal microglial activation in mice. Brain Res, 1680:13-38. https://doi.org/10.1016/j.brainres.2017.12.004https://doi.org/10.1016/j.brainres.2017.12.004
Yan MQ, Fu XY, Ou YP, et al., 2022. Multiple-network alterations in major depressive disorder with gastrointestinal symptoms at rest revealed by global functional connectivity analysis. Front Neurosci, 16:897707. https://doi.org/10.3389/fnins.2022.897707https://doi.org/10.3389/fnins.2022.897707
Yanagi S, Sato T, Kangawa K, et al., 2018. The homeostatic force of ghrelin. Cell Metab, 27(4):786-804. https://doi.org/10.1016/j.cmet.2018.02.008https://doi.org/10.1016/j.cmet.2018.02.008
Yang JQ, Zhang ZY, Xie ZR, et al., 2022. Metformin modulates microbiota-derived inosine and ameliorates methamphetamine-induced anxiety and depression-like withdrawal symptoms in mice. Biomed Pharmacother, 149:112837. https://doi.org/10.1016/j.biopha.2022.112837https://doi.org/10.1016/j.biopha.2022.112837
Yang Y, Wang HN, Kouadir M, et al., 2019. Recent advances in the mechanisms of NLRP3 inflammasome activation and its inhibitors. Cell Death Dis, 10(2):128. https://doi.org/10.1038/s41419-019-1413-8https://doi.org/10.1038/s41419-019-1413-8
Ye LH, Bae M, Cassilly CD, et al., 2021. Enteroendocrine cells sense bacterial tryptophan catabolites to activate enteric and vagal neuronal pathways. Cell Host Microbe, 29(2):179-196.e9. https://doi.org/10.1016/j.chom.2020.11.011https://doi.org/10.1016/j.chom.2020.11.011
Yeung AWS, Terentis AC, King NJC, et al., 2015. Role of indoleamine 2,3-dioxygenase in health and disease. Clin Sci (Lond), 129(7):601-672. https://doi.org/10.1042/cs20140392https://doi.org/10.1042/cs20140392
Yoo JW, Shin YJ, Ma XY, et al., 2022. The alleviation of gut microbiota-induced depression and colitis in mice by anti-inflammatory probiotics NK151, NK173, and NK175. Nutrients, 14(10):2080. https://doi.org/10.3390/nu14102080https://doi.org/10.3390/nu14102080
Zhang JC, Yao W, Dong C, et al., 2017. Blockade of interleukin-6 receptor in the periphery promotes rapid and sustained antidepressant actions: a possible role of gut-microbiota-brain axis. Transl Psychiatry, 7(5):e1138. https://doi.org/10.1038/tp.2017.112https://doi.org/10.1038/tp.2017.112
Zhang T, Linghu T, Zhang X, et al., 2018. Advances in neurobiological mechanisms of comorbid depression and gastrointestinal disease. Acta Physiol Sin, 70(1):71-78 (in Chinese). https://doi.org/10.13294/j.aps.2018.0004https://doi.org/10.13294/j.aps.2018.0004
Zhang YY, Fan QL, Hou YL, et al., 2022. Bacteroides species differentially modulate depression-like behavior via gut-brain metabolic signaling. Brain Behav Immun, 102:11-22. https://doi.org/10.1016/j.bbi.2022.02.007https://doi.org/10.1016/j.bbi.2022.02.007
Zhang ZW, Gao CS, Zhang H, et al., 2022. Morinda officinalis oligosaccharides increase serotonin in the brain and ameliorate depression via promoting 5-hydroxytryptophan production in the gut microbiota. Acta Pharm Sin B, 12(8):3298-3312. https://doi.org/10.1016/j.apsb.2022.02.032https://doi.org/10.1016/j.apsb.2022.02.032
Zhang ZW, Han P, Fu J, et al., 2023. Gut microbiota-based metabolites of Xiaoyao Pills (a typical Traditional Chinese medicine) ameliorate depression by inhibiting fatty acid amide hydrolase levels in brain. J Ethnopharmacol, 313:116555. https://doi.org/10.1016/j.jep.2023.116555https://doi.org/10.1016/j.jep.2023.116555
Zheng ZP, Tang JY, Hu YN, et al., 2022. Role of gut microbiota-derived signals in the regulation of gastrointestinal motility. Front Med, 9:961703. https://doi.org/10.3389/fmed.2022.961703https://doi.org/10.3389/fmed.2022.961703
Zhou FN, Jiang H, Kong N, et al., 2022. Electroacupuncture attenuated anxiety and depression-like behavior via inhibition of hippocampal inflammatory response and metabolic disorders in TNBS-induced IBD rats. Oxid Med Cell Longev, 2022:8295580. https://doi.org/10.1155/2022/8295580https://doi.org/10.1155/2022/8295580
Zhou L, Chu C, Teng F, et al., 2019. Innate lymphoid cells support regulatory T cells in the intestine through interleukin-2. Nature, 568(7752):405-409. https://doi.org/10.1038/s41586-019-1082-xhttps://doi.org/10.1038/s41586-019-1082-x
Zhu XQ, Han Y, Du J, et al., 2017. Microbiota-gut-brain axis and the central nervous system. Oncotarget, 8(32):53829-53838. https://doi.org/10.18632/oncotarget.17754https://doi.org/10.18632/oncotarget.17754
Zhuang M, Shang WT, Ma QC, et al., 2019. Abundance of probiotics and butyrate-production microbiome manages constipation via short-chain fatty acids production and hormones secretion. Mol Nutr Food Res, 63(23):1801187. https://doi.org/10.1002/mnfr.201801187https://doi.org/10.1002/mnfr.201801187
Zvolensky M, Jardin C, Farris SG, et al., 2018. Gut interpretations: how difficulties in emotion regulation may help explain the relation of visceral sensitivity with depression and anxiety among young adults with gastrointestinal symptoms. Psychol Health Med, 23(7):840-845. https://doi.org/10.1080/13548506.2018.1455984https://doi.org/10.1080/13548506.2018.1455984
0
Views
20
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution