无数据
Scan for full text
1.Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
2.Zhejiang University School of Medicine, Hangzhou 310058, China
Published: 15 August 2024 ,
Received: 10 May 2023 ,
Revised: 17 October 2023 ,
张芩梦,宋璐瑶,傅梦蝶等.光遗传学在口腔和颌面部研究中的应用[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2024,25(08):656-671.
Qinmeng ZHANG, Luyao SONG, Mengdie FU, et al. Optogenetics in oral and craniofacial research. [J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology) 25(8):656-671(2024)
张芩梦,宋璐瑶,傅梦蝶等.光遗传学在口腔和颌面部研究中的应用[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2024,25(08):656-671. DOI: 10.1631/jzus.B2300322.
Qinmeng ZHANG, Luyao SONG, Mengdie FU, et al. Optogenetics in oral and craniofacial research. [J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology) 25(8):656-671(2024) DOI: 10.1631/jzus.B2300322.
光遗传学通过光学和基因工程相结合对特定的基因表达和生物功能进行控制,具有精确的时空控制、无创和高效等优点。蛋白质被植入经基因改造的光感传感器后,在光刺激下调节构象的变化。因此,光遗传学技术可在从亚细胞和细胞水平到神经回路和行为模型等不同层面上为口腔生物学研究提供新的见解。本综述介绍了光遗传学的起源和光遗传学方法在口腔颌面研究中的最新进展,着重描述了通道视紫红质(ChR)、古紫质(Arch)和氯视紫红质(NpHR)等光遗传学工具在神经科学基础机制研究中的应用,以及在体内建立不同的口腔行为测试模型(口面部运动、舔舐、进食和饮水),同时回顾了光遗传学在三叉神经痛和颌面蜂窝织炎的临床前研究中的协同和拮抗作用。此外,在转化研究中,光遗传学工具被用于控制牙髓干细胞的神经源性分化。虽然光遗传学工具的应用范围在不断扩大,但其在口腔研究领域的大型动物实验和临床研究中的应用还很有限。光遗传学潜在的应用方向包括探索2019冠状病毒病(COVID-19)患者味觉丧失的治疗策略、研究口腔细菌生物膜、增强颅颌面和牙周组织再生,以及阐明干槽症、口干症和灼口综合征的可能发病机制。
Optogenetics combines optics and genetic engineering to control specific gene expression and biological functions and has the advantages of precise spatiotemporal control
noninvasiveness
and high efficiency. Genetically modified photosensory sensors are engineered into proteins to modulate conformational changes with light stimulation. Therefore
optogenetic techniques can provide new insights into oral biological processes at different levels
ranging from the subcellular and cellular levels to neural circuits and behavioral models. Here
we introduce the origins of optogenetics and highlight the recent progress of optogenetic approaches in oral and craniofacial research
focusing
on the ability to apply optogenetics to the study of basic scientific neural mechanisms and to establish different oral behavioral test models in vivo (orofacial movement
licking
eating
and drinking)
such as channelrhodopsin (ChR)
archaerhodopsin (Arch)
and halorhodopsin from
Natronomonas pharaonis
(NpHR). We also review the synergic and antagonistic effects of optogenetics in preclinical studies of trigeminal neuralgia and maxillofacial cellulitis. In addition
optogenetic tools have been used to control the neurogenic differentiation of dental pulp stem cells in translational studies. Although the scope of optogenetic tools is increasing
there are limited large animal experiments and clinical studies in dental research. Potential future directions include exploring therapeutic strategies for addressing loss of taste in patients with coronavirus disease 2019 (COVID-19)
studying oral bacterial biofilms
enhancing craniomaxillofacial and periodontal tissue regeneration
and elucidating the possible pathogenesis of dry sockets
xerostomia
and burning mouth syndrome.
激光细胞分化细菌毒力神经系统神经生理学行为科学
LasersCell differentiationBacterial virulenceNervous systemNeurophysiologyBehavioral science
AlBassri TK, AlShaibi S, Khan F, et al., 2020. A rare case of cellulitis after tetanus toxoid (TT) vaccination. J Family Med Prim Care, 9(3):1762-1764. https://doi.org/10.4103/jfmpc.jfmpc_1194_19https://doi.org/10.4103/jfmpc.jfmpc_1194_19
Audouard E, Michel F, Pierroz V, et al., 2022. Bioelectronic cell-based device provides a strategy for the treatment of the experimental model of multiple sclerosis. J Control Release, 352:994-1008. https://doi.org/10.1016/j.jconrel.2022.11.008https://doi.org/10.1016/j.jconrel.2022.11.008
Bali B, Gruber-Dujardin E, Kusch K, et al., 2022. Analyzing efficacy, stability, and safety of AAV-mediated optogenetic hearing restoration in mice. Life Sci Alliance, 5(8):e202101338. https://doi.org/10.26508/lsa.202101338https://doi.org/10.26508/lsa.202101338
Bar JK, Lis-Nawara A, Grelewski PG, 2021. Dental pulp stem cell-derived secretome and its regenerative potential. Int J Mol Sci, 22(21):12018. https://doi.org/10.3390/ijms222112018https://doi.org/10.3390/ijms222112018
Benevides ES, Sunshine MD, Rana S, et al., 2022. Optogenetic activation of the diaphragm. Sci Rep, 12:6503. https://doi.org/10.1038/s41598-022-10240-whttps://doi.org/10.1038/s41598-022-10240-w
Berger AA, Winnick A, Carroll AH, et al., 2022. Rimegepant for the treatment of migraine. Health Psychol Res, 10(5):38534. https://doi.org/10.52965/001c.38534https://doi.org/10.52965/001c.38534
Berry A, Han K, Trouillon J, et al., 2018. cAMP and Vfr control exolysin expression and cytotoxicity of Pseudomonas aeruginosa taxonomic outliers. J Bacteriol, 200(12):e00135-18. https://doi.org/10.1128/JB.00135-18https://doi.org/10.1128/JB.00135-18
Botto C, Rucli M, Tekinsoy MD, et al., 2022. Early and late stage gene therapy interventions for inherited retinal degenerations. Prog Retin Eye Res, 86:100975. https://doi.org/10.1016/j.preteyeres.2021.100975https://doi.org/10.1016/j.preteyeres.2021.100975
Cao Y, Pan SW, Yan MY, et al., 2021. Flexible and stretchable polymer optical fibers for chronic brain and vagus nerve optogenetic stimulations in free-behaving animals. BMC Biol, 19:252. https://doi.org/10.1186/s12915-021-01187-xhttps://doi.org/10.1186/s12915-021-01187-x
Chang WP, Pedroni A, Hohendorf V, et al., 2020. Functionally distinct purkinje cell types show temporal precision in encoding locomotion. Proc Natl Acad Sci USA, 117(29):17330-17337. https://doi.org/10.1073/pnas.2005633117https://doi.org/10.1073/pnas.2005633117
Chen LQ, Lv XJ, Guo QH, et al., 2023. Asymmetric activation of microglia in the hippocampus drives anxiodepressive consequences of trigeminal neuralgia in rodents. Br J Pharmacol, 180(8):1090-1113. https://doi.org/10.1111/bph.15994https://doi.org/10.1111/bph.15994
Chen ZR, Zhang ZY, Zhang W, et al., 2021. Direct and indirect pathway neurons in ventrolateral striatum differentially regulate licking movement and nigral responses. Cell Rep, 37(3):109847. https://doi.org/10.1016/j.celrep.2021.109847https://doi.org/10.1016/j.celrep.2021.109847
Cheng XY, Pu L, Fu SW, et al., 2021. Engineering Gac/Rsm signaling cascade for optogenetic induction of the pathogenicity switch in Pseudomonas aeruginosa. ACS Synth Biol, 10(6):1520-1530. https://doi.org/10.1021/acssynbio.1c00075https://doi.org/10.1021/acssynbio.1c00075
Chometton S, Guèvremont G, Seigneur J, et al., 2020. Projections from the nucleus accumbens shell to the ventral pallidum are involved in the control of sucrose intake in adult female rats. Brain Struct Funct, 225(9):2815-2839. https://doi.org/10.1007/s00429-020-02161-zhttps://doi.org/10.1007/s00429-020-02161-z
Chowdhury S, Yamanaka A, 2021. Fiberless optogenetics. In: Yawo H, Kandori H, Koizumi A, et al. (Eds.), Optogenetics: Light-Sensing Proteins and Their Applications in Neuroscience and Beyond, 2nd Ed. Springer, Singapore, p.407-416. https://doi.org/10.1007/978-981-15-8763-4_26https://doi.org/10.1007/978-981-15-8763-4_26
Crawford J, Liu SF, Tao F, 2021. A multidisciplinary approach to simultaneously monitoring real-time neuronal activity and pain behaviors during optogenetic stimulation of brain neurons in freely moving mice. J Pain Res, 14:3503-3509. https://doi.org/10.2147/JPR.S334256https://doi.org/10.2147/JPR.S334256
Dergacheva O, Fleury-Curado T, Polotsky VY, et al., 2020. GABA and glycine neurons from the ventral medullary region inhibit hypoglossal motoneurons. Sleep, 43(6):zsz301. https://doi.org/10.1093/sleep/zsz301https://doi.org/10.1093/sleep/zsz301
Domingos AI, Vaynshteyn J, Voss HU, et al., 2011. Leptin regulates the reward value of nutrient. Nat Neurosci, 14(12):1562-1568. https://doi.org/10.1038/nn.2977https://doi.org/10.1038/nn.2977
Dowdy RAE, Emam HA, Cornelius BW, 2019. Ludwig’s angina: anesthetic management. Anesth Prog, 66(2):103-110. https://doi.org/10.2344/anpr-66-01-13https://doi.org/10.2344/anpr-66-01-13
Elina KC, Oh BH, Islam J, et al., 2021. Activation of CamKIIα expressing neurons on ventrolateral periaqueductal gray improves behavioral hypersensitivity and thalamic discharge in a trigeminal neuralgia rat model. J Headache Pain, 22:47. https://doi.org/10.1186/s10194-021-01257-zhttps://doi.org/10.1186/s10194-021-01257-z
Esmaeili V, Tamura K, Muscinelli SP, et al., 2021. Rapid suppression and sustained activation of distinct cortical regions for a delayed sensory-triggered motor response. Neuron, 109(13):2183-2201. https://doi.org/10.1016/j.neuron.2021.05.005https://doi.org/10.1016/j.neuron.2021.05.005
Falkner AL, Wei DY, Song A, et al., 2020. Hierarchical representations of aggression in a hypothalamic-midbrain circuit. Neuron, 106(4):637-648.e6. https://doi.org/10.1016/j.neuron.2020.02.014https://doi.org/10.1016/j.neuron.2020.02.014
Fenno L, Yizhar O, Deisseroth K, 2011. The development and application of optogenetics. Annu Rev Neurosci, 34:389-412. https://doi.org/10.1146/annurev-neuro-061010-113817https://doi.org/10.1146/annurev-neuro-061010-113817
Gaffield MA, Sauerbrei BA, Christie JM, 2022. Cerebellum encodes and influences the initiation, performance, and termination of discontinuous movements in mice. eLife, 11:e71464. https://doi.org/10.7554/eLife.71464https://doi.org/10.7554/eLife.71464
Gong R, Xu SJ, Hermundstad A, et al., 2020. Hindbrain double-negative feedback mediates palatability-guided food and water consumption. Cell, 182(6):1589-1605.e22. https://doi.org/10.1016/j.cell.2020.07.031https://doi.org/10.1016/j.cell.2020.07.031
Goyer D, Roberts MT, 2020. Long-range channelrhodopsin-assisted circuit mapping of inferior colliculus neurons with blue and red-shifted channelrhodopsins. J Vis Exp, (156):e60760. https://doi.org/10.3791/60760https://doi.org/10.3791/60760
Habibey R, Sharma K, Swiersy A, et al., 2020. Optogenetics for neural transplant manipulation and functional analysis. Biochem Biophys Res Commun, 527(2):343-349. https://doi.org/10.1016/j.bbrc.2020.01.141https://doi.org/10.1016/j.bbrc.2020.01.141
Hardt S, Fischer C, Vogel A, et al., 2019. Distal infraorbital nerve injury: a model for persistent facial pain in mice. PAIN, 160(6):1431-1447. https://doi.org/10.1097/j.pain.0000000000001518https://doi.org/10.1097/j.pain.0000000000001518
Harriott AM, Chung DY, Uner A, et al., 2021. Optogenetic spreading depression elicits trigeminal pain and anxiety behavior. Ann Neurol, 89(1):99-110. https://doi.org/10.1002/ana.25926https://doi.org/10.1002/ana.25926
Hernandez J, Perez L, Soto R, et al., 2021. Nociceptin/orphanin FQ neurons in the arcuate nucleus and ventral tegmental area act via nociceptin opioid peptide receptor signaling to inhibit proopiomelanocortin and A10 dopamine neurons and thereby modulate ingestion of palatable food. Physiol Behav, 228:113183. https://doi.org/10.1016/j.physbeh.2020.113183https://doi.org/10.1016/j.physbeh.2020.113183
Islam J, Kc E, Oh BH, et al., 2020. Optogenetic stimulation of the motor cortex alleviates neuropathic pain in rats of infraorbital nerve injury with/without CGRP knock-down. J Headache Pain, 21:106. https://doi.org/10.1186/s10194-020-01174-7https://doi.org/10.1186/s10194-020-01174-7
Islam J, Kc E, Kim S, et al., 2021. Stimulating GABAergic neurons in the nucleus accumbens core alters the trigeminal neuropathic pain responses in a rat model of infraorbital nerve injury. Int J Mol Sci, 22(16):8421. https://doi.org/10.3390/ijms22168421https://doi.org/10.3390/ijms22168421
Jackman SL, Chen CH, Offermann HL, et al., 2020. Cerebellar purkinje cell activity modulates aggressive behavior. eLife, 9:e53229. https://doi.org/10.7554/eLife.53229https://doi.org/10.7554/eLife.53229
Kc E, Islam J, Kim S, et al., 2022. Pain relief in a trigeminal neuralgia model via optogenetic inhibition on trigeminal ganglion itself with flexible optic fiber cannula. Front Cell Neurosci, 16:880369. https://doi.org/10.3389/fncel.2022.880369https://doi.org/10.3389/fncel.2022.880369
Kim CK, Adhikari A, Deisseroth K, 2017. Integration of optogenetics with complementary methodologies in systems neuroscience. Nat Rev Neurosci, 18(4):222-235. https://doi.org/10.1038/nrn.2017.15https://doi.org/10.1038/nrn.2017.15
Kinsman BJ, Simmonds SS, Browning KN, et al., 2020. Integration of hypernatremia and angiotensin II by the organum vasculosum of the lamina terminalis regulates thirst. J Neurosci, 40(10):2069-2079. https://doi.org/10.1523/JNEUROSCI.2208-19.2020https://doi.org/10.1523/JNEUROSCI.2208-19.2020
Lee J, Sabatini BL, 2021. Striatal indirect pathway mediates exploration via collicular competition. Nature, 599(7886):645-649. https://doi.org/10.1038/s41586-021-04055-4https://doi.org/10.1038/s41586-021-04055-4
Lee S, Augustine V, Zhao Y, et al., 2019. Chemosensory modulation of neural circuits for sodium appetite. Nature, 568(7750):93-97. https://doi.org/10.1038/s41586-019-1053-2https://doi.org/10.1038/s41586-019-1053-2
Li XH, Matsuura T, Xue M, et al., 2021. Oxytocin in the anterior cingulate cortex attenuates neuropathic pain and emotional anxiety by inhibiting presynaptic long-term potentiation. Cell Rep, 36(3):109411. https://doi.org/10.1016/j.celrep.2021.109411https://doi.org/10.1016/j.celrep.2021.109411
Lindner F, Diepold A, 2022. Optogenetics in bacteria ‒ applications and opportunities. FEMS Microbiol Rev, 46(2):fuab055. https://doi.org/10.1093/femsre/fuab055https://doi.org/10.1093/femsre/fuab055
Liu MX, Li Y, Zhong J, et al., 2021. The effect of IL-6/Piezo2 on the trigeminal neuropathic pain. Aging, 13(10):13615-13625. https://doi.org/10.18632/aging.202887https://doi.org/10.18632/aging.202887
Liu RM, Yang J, Yao J, et al., 2022. Optogenetic control of RNA function and metabolism using engineered light-switchable RNA-binding proteins. Nat Biotechnol, 40(5):779-786. https://doi.org/10.1038/s41587-021-01112-1https://doi.org/10.1038/s41587-021-01112-1
Liu SF, Shu H, Crawford J, et al., 2020. Optogenetic activation of dopamine receptor D1 and D2 neurons in anterior cingulate cortex differentially modulates trigeminal neuropathic pain. Mol Neurobiol, 57(10):4060-4068. https://doi.org/10.1007/s12035-020-02020-2https://doi.org/10.1007/s12035-020-02020-2
Ma YP, Hsu G, Zhang FG, 2020. The applicability and efficacy of magnetic resonance-guided high intensity focused ultrasound system in the treatment of primary trigeminal neuralgia. Med Hypotheses, 139:109688. https://doi.org/10.1016/j.mehy.2020.109688https://doi.org/10.1016/j.mehy.2020.109688
Maimon BE, Diaz M, Revol ECM, et al., 2018. Optogenetic peripheral nerve immunogenicity. Sci Rep, 8:14076. https://doi.org/10.1038/s41598-018-32075-0https://doi.org/10.1038/s41598-018-32075-0
Matsuno-Yagi A, Mukohata Y, 1977. Two possible roles of bacteriorhodopsin; a comparative study of strains of Halobacterium halobium differing in pigmentation. Biochem Biophys Res Commun, 78(1):237-243. https://doi.org/10.1016/0006-291x(77)91245-1https://doi.org/10.1016/0006-291x(77)91245-1
Mayrhofer JM, El-Boustani S, Foustoukos G, et al., 2019. Distinct contributions of whisker sensory cortex and tongue-jaw motor cortex in a goal-directed sensorimotor transformation. Neuron, 103(6):1034-1043.e5. https://doi.org/10.1016/j.neuron.2019.07.008https://doi.org/10.1016/j.neuron.2019.07.008
Mercer Lindsay N, Knutsen PM, Lozada AF, et al., 2019. Orofacial movements involve parallel corticobulbar projections from motor cortex to trigeminal premotor nuclei. Neuron, 104(4):765-780.e3. https://doi.org/10.1016/j.neuron.2019.08.032https://doi.org/10.1016/j.neuron.2019.08.032
Mirzapour Delavar H, Karamzadeh A, Pahlavanneshan S, 2016. Shining light on the sprout of life: optogenetics applications in stem cell research and therapy. J Membr Biol, 249(3):215-220. https://doi.org/10.1007/s00232-016-9883-4https://doi.org/10.1007/s00232-016-9883-4
Monakhov MV, Matlashov ME, Colavita M, et al., 2020. Screening and cellular characterization of genetically encoded voltage indicators based on near-infrared fluorescent proteins. ACS Chem Neurosci, 11(21):3523-3531. https://doi.org/10.1021/acschemneuro.0c00046https://doi.org/10.1021/acschemneuro.0c00046
Moreno Morales N, Patel MT, Stewart CJ, et al., 2021. Optogenetic tools for control of public goods in Saccharomyces cerevisiae. mSphere, 6(4):e0058121. https://doi.org/10.1128/mSphere.00581-21https://doi.org/10.1128/mSphere.00581-21
Morreale FE, Kleine S, Leodolter J, et al., 2022. BacPROTACs mediate targeted protein degradation in bacteria. Cell, 185(13):2338-2353.e18. https://doi.org/10.1016/j.cell.2022.05.009https://doi.org/10.1016/j.cell.2022.05.009
Morrissette AE, Chen PH, Bhamani C, et al., 2019. Unilateral optogenetic inhibition and excitation of basal ganglia output affect directional lick choices and movement initiation in mice. Neuroscience, 423:55-65. https://doi.org/10.1016/j.neuroscience.2019.10.031https://doi.org/10.1016/j.neuroscience.2019.10.031
Niyazi M, Zibaii MI, Chavoshinezhad S, et al., 2020. Neurogenic differentiation of human dental pulp stem cells by optogenetics stimulation. J Chem Neuroanat, 109:101821. https://doi.org/10.1016/j.jchemneu.2020.101821https://doi.org/10.1016/j.jchemneu.2020.101821
Ntziachristos V, 2010. Going deeper than microscopy: the optical imaging frontier in biology. Nat Methods, 7(8):603-614. https://doi.org/10.1038/nmeth.1483https://doi.org/10.1038/nmeth.1483
Oda K, Vierock J, Oishi S, et al., 2018. Crystal structure of the red light-activated channelrhodopsin Chrimson. Nat Commun, 9:3949. https://doi.org/10.1038/s41467-018-06421-9https://doi.org/10.1038/s41467-018-06421-9
Oesterhelt D, Stoeckenius W, 1971. Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nat New Biol, 233(39):149-152. https://doi.org/10.1038/newbio233149a0https://doi.org/10.1038/newbio233149a0
Pérez ALA, Piva LC, Fulber JPC, et al., 2022. Optogenetic strategies for the control of gene expression in yeasts. Biotechnol Adv, 54:107839. https://doi.org/10.1016/j.biotechadv.2021.107839https://doi.org/10.1016/j.biotechadv.2021.107839
Pisciotta A, Bertani G, Bertoni L, et al., 2020. Modulation of cell death and promotion of chondrogenic differentiation by Fas/FasL in human dental pulp stem cells (hDPSCs). Front Cell Dev Biol, 8:279. https://doi.org/10.3389/fcell.2020.00279https://doi.org/10.3389/fcell.2020.00279
Prado-Prone G, Silva-Bermudez P, Almaguer-Flores A, et al., 2018. Enhanced antibacterial nanocomposite mats by coaxial electrospinning of polycaprolactone fibers loaded with Zn-based nanoparticles. Nanomedicine, 14(5):1695-1706. https://doi.org/10.1016/j.nano.2018.04.005https://doi.org/10.1016/j.nano.2018.04.005
Raver C, Uddin O, Ji YD, et al., 2020. An amygdalo-parabrachial pathway regulates pain perception and chronic pain. J Neurosci, 40(17):3424-3442. https://doi.org/10.1523/JNEUROSCI.0075-20.2020https://doi.org/10.1523/JNEUROSCI.0075-20.2020
Reshetnikov VV, Smolskaya SV, Feoktistova SG, et al., 2022. Optogenetic approaches in biotechnology and biomaterials. Trends Biotechnol, 40(7):858-874. https://doi.org/10.1016/j.tibtech.2021.12.007https://doi.org/10.1016/j.tibtech.2021.12.007
Sahel JA, Boulanger-Scemama E, Pagot C, et al., 2021. Partial recovery of visual function in a blind patient after optogenetic therapy. Nat Med, 27(7):1223-1229. https://doi.org/10.1038/s41591-021-01351-4https://doi.org/10.1038/s41591-021-01351-4
Sheng HY, Lv SS, Cai YQ, et al., 2020. Activation of ventrolateral orbital cortex improves mouse neuropathic pain-induced anxiodepression. JCI Insight, 5(19):e133625. https://doi.org/10.1172/jci.insight.133625https://doi.org/10.1172/jci.insight.133625
Shirley JL, de Jong YP, Terhorst C, et al., 2020. Immune responses to viral gene therapy vectors. Mol Ther, 28(3):709-722. https://doi.org/10.1016/j.ymthe.2020.01.001https://doi.org/10.1016/j.ymthe.2020.01.001
Sofia Beas B, Gu XL, Leng Y, et al., 2020. A ventrolateral medulla-midline thalamic circuit for hypoglycemic feeding. Nat Commun, 11:6218. https://doi.org/10.1038/s41467-020-19980-7https://doi.org/10.1038/s41467-020-19980-7
Streng ML, Krook-Magnuson E, 2021. The cerebellum and epilepsy. Epilepsy Behav, 121:106909. https://doi.org/10.1016/j.yebeh.2020.106909https://doi.org/10.1016/j.yebeh.2020.106909
Sugai T, Nishie W, 2020. Odontogenic facial cellulitis. BMJ Case Rep, 13(12):e239381. https://doi.org/10.1136/bcr-2020-239381https://doi.org/10.1136/bcr-2020-239381
Torruella-Suárez ML, Vandenberg JR, Cogan ES, et al., 2020. Manipulations of central amygdala neurotensin neurons alter the consumption of ethanol and sweet fluids in mice. J Neurosci, 40(3):632-647. https://doi.org/10.1523/JNEUROSCI.1466-19.2019https://doi.org/10.1523/JNEUROSCI.1466-19.2019
Tremblay S, Acker L, Afraz A, et al., 2020. An open resource for non-human primate optogenetics. Neuron, 108(6):1075-1090.e6. https://doi.org/10.1016/j.neuron.2020.09.027https://doi.org/10.1016/j.neuron.2020.09.027
Tsai AC, Huang ACW, Yu YH, et al., 2020. A wireless magnetic resonance device for optogenetic applications in an animal model. Sensors (Basel), 20(20):5869. https://doi.org/10.3390/s20205869https://doi.org/10.3390/s20205869
Vajtay TJ, Bandi A, Upadhyay A, et al., 2019. Optogenetic and transcriptomic interrogation of enhanced muscle function in the paralyzed mouse whisker pad. J Neurophysiol, 121(4):1491-1500. https://doi.org/10.1152/jn.00837.2018https://doi.org/10.1152/jn.00837.2018
Veres JM, Andrasi T, Nagy-Pal P, et al., 2023. CaMKIIα promoter-controlled circuit manipulations target both pyramidal cells and inhibitory interneurons in cortical networks. eNeuro, 10(4):ENEURO.0070-23.2023. https://doi.org/10.1523/ENEURO.0070-23.2023https://doi.org/10.1523/ENEURO.0070-23.2023
Wood EH, Kreymerman A, Sun Y, et al., 2018. Considerations for ophthalmic applications of optogenetics. Acta Ophthalmol, 96(8):e1037. https://doi.org/10.1111/aos.13779https://doi.org/10.1111/aos.13779
Xia AG, Qian MJ, Wang CC, et al., 2021. Optogenetic modification of Pseudomonas aeruginosa enables controllable twitching motility and host infection. ACS Synth Biol, 10(3):531-541. https://doi.org/10.1021/acssynbio.0c00559https://doi.org/10.1021/acssynbio.0c00559
Yi MH, Liu YU, Umpierre AD, et al., 2021. Optogenetic activation of spinal microglia triggers chronic pain in mice. PLoS Biol, 19(3):e3001154. https://doi.org/10.1371/journal.pbio.3001154https://doi.org/10.1371/journal.pbio.3001154
Yoshii T, Oki C, Watahiki R, et al., 2021. Chemo-optogenetic protein translocation system using a photoactivatable self-localizing ligand. ACS Chem Biol, 16(8):1557-1565. https://doi.org/10.1021/acschembio.1c00416https://doi.org/10.1021/acschembio.1c00416
Zgierski-Johnston CM, Schneider-Warme F, 2021. Observing and manipulating cell-specific cardiac function with light. In: Yawo H, Kandori H, Koizumi A, et al. (Eds.), Optogenetics: Light-Sensing Proteins and Their Applications in Neuroscience and Beyond, 2nd Ed. Springer, Singapore, p.377-388. https://doi.org/10.1007/978-981-15-8763-4_24https://doi.org/10.1007/978-981-15-8763-4_24
Zhang Y, Castro DC, Han Y, et al., 2019. Battery-free, lightweight, injectable microsystem for in vivo wireless pharmacology and optogenetics. Proc Natl Acad Sci USA, 116(43):21427-21437. https://doi.org/10.1073/pnas.1909850116https://doi.org/10.1073/pnas.1909850116
Zheng D, Fu JY, Tang MY, et al., 2022. A deep mesencephalic nucleus circuit regulates licking behavior. Neurosci Bull, 38(6):565-575. https://doi.org/10.1007/s12264-021-00817-2https://doi.org/10.1007/s12264-021-00817-2
Zhou Y, Kong DQ, Wang XY, et al., 2022. A small and highly sensitive red/far-red optogenetic switch for applications in mammals. Nat Biotechnol, 40(2):262-272. https://doi.org/10.1038/s41587-021-01036-whttps://doi.org/10.1038/s41587-021-01036-w
0
Views
17
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution