无数据
Scan for full text
School of Basic Medicine Sciences, Weifang Medical University, Weifang 261053, China
卢怡睿,冉雨桐,李宏等.微肽:起源、鉴定及其在代谢相关疾病中的作用[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2023,24(12):1106-1122.
Yirui LU, Yutong RAN, Hong LI, et al. Micropeptides: origins, identification, and potential role in metabolism-related diseases. [J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology) 24(12):1106-1122(2023)
卢怡睿,冉雨桐,李宏等.微肽:起源、鉴定及其在代谢相关疾病中的作用[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2023,24(12):1106-1122. DOI: 10.1631/jzus.B2300128.
Yirui LU, Yutong RAN, Hong LI, et al. Micropeptides: origins, identification, and potential role in metabolism-related diseases. [J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology) 24(12):1106-1122(2023) DOI: 10.1631/jzus.B2300128.
随着现代测序和生物信息学技术的进展,曾被认为不具有编码功能的基因组已被证实能编码功能性小多肽——微肽(miPs)。尽管miPs的鉴定和分析仍较困难,但miPs已进入了许多研究者的视野。越来越多的miPs被发现在能量代谢、免疫调节和肿瘤生长发育中发挥重要作用。有研究表明,在代谢相关疾病中,miPs可调节糖脂代谢和线粒体功能。本文对miPs来源、鉴定及在代谢相关疾病中的作用和意义进行综述,以期揭示其潜在的临床价值。
With the development of modern sequencing techniques and bioinformatics, genomes that were once thought to be noncoding have been found to encode abundant functional micropeptides (miPs), a kind of small polypeptides. Although miPs are difficult to analyze and identify, a number of studies have begun to focus on them. More and more miPs have been revealed as essential for energy metabolism homeostasis, immune regulation, and tumor growth and development. Many reports have shown that miPs are especially essential for regulating glucose and lipid metabolism and regulating mitochondrial function. MiPs are also involved in the progression of related diseases. This paper reviews the sources and identification of miPs, as well as the functional significance of miPs for metabolism-related diseases, with the aim of revealing their potential clinical applications.
能量代谢微肽线粒体非编码RNA(ncRNA)小开放阅读框(sORF)
Energy metabolismMicropeptidesMitochondriaNoncoding RNA (ncRNA)Small open reading frame (sORF)
Adams BD, Parsons C, Walker L, et al., 2017. Targeting noncoding RNAs in disease. J Clin Invest, 127(3):761-771. https://doi.org/10.1172/JCI84424https://doi.org/10.1172/JCI84424
Akimoto C, Sakashita E, Kasashima K, et al., 2013. Translational repression of the McKusick-Kaufman syndrome transcript by unique upstream open reading frames encoding mitochondrial proteins with alternative polyadenylation sites. Biochim Biophys Acta, 1830(3):2728-2738. https://doi.org/10.1016/j.bbagen.2012.12.010https://doi.org/10.1016/j.bbagen.2012.12.010
Anderson DM, Anderson KM, Chang CL, et al., 2015. A micropeptide encoded by a putative long noncoding RNA regulates muscle performance. Cell, 160(4):595-606. https://doi.org/10.1016/j.cell.2015.01.009https://doi.org/10.1016/j.cell.2015.01.009
Andjus S, Morillon A, Wery M, 2021. From yeast to mammals, the nonsense-mediated mRNA decay as a master regulator of long non-coding RNAs functional trajectory. Non-Coding RNA, 7(3):44. https://doi.org/10.3390/ncrna7030044https://doi.org/10.3390/ncrna7030044
Aspden JL, Eyre-Walker YC, Phillips RJ, et al., 2014. Extensive translation of small Open Reading Frames revealed by Poly-Ribo-Seq. Elife, 3:e03528. https://doi.org/10.7554/eLife.03528https://doi.org/10.7554/eLife.03528
Bal NC, Maurya SK, Sopariwala DH, et al., 2012. Sarcolipin is a newly identified regulator of muscle-based thermogenesis in mammals. Nat Med, 18(10):1575-1579. https://doi.org/10.1038/nm.2897https://doi.org/10.1038/nm.2897
Bazzini AA, Johnstone TG, Christiano R, et al., 2014. Identification of small ORFs in vertebrates using ribosome footprinting and evolutionary conservation. EMBO J, 33(9):981-993. https://doi.org/10.1002/embj.201488411https://doi.org/10.1002/embj.201488411
Bhati KK, Blaakmeer A, Paredes EB, et al., 2018. Approaches to identify and characterize microproteins and their potential uses in biotechnology. Cell Mol Life Sci, 75(14):2529-2536. https://doi.org/10.1007/s00018-018-2818-8https://doi.org/10.1007/s00018-018-2818-8
Bhatta A, Atianand M, Jiang ZZ, et al., 2020. A mitochondrial micropeptide is required for activation of the Nlrp3 inflammasome. J Immunol, 204(2):428-437. https://doi.org/10.4049/jimmunol.1900791https://doi.org/10.4049/jimmunol.1900791
Boguszewska K, Szewczuk M, Kaźmierczak-Barańska J, et al., 2020. The similarities between human mitochondria and bacteria in the context of structure, genome, and base excision repair system. Molecules, 25(12):2857. https://doi.org/10.3390/molecules25122857https://doi.org/10.3390/molecules25122857
Branca RMM, Orre LM, Johansson HJ, et al., 2014. HiRIEF LC-MS enables deep proteome coverage and unbiased proteogenomics. Nat Methods, 11(1):59-62. https://doi.org/10.1038/nmeth.2732https://doi.org/10.1038/nmeth.2732
Cao XW, Khitun A, Na Z, et al., 2020. Comparative proteomic profiling of unannotated microproteins and alternative proteins in human cell lines. J Proteome Res, 19(8):3418-3426. https://doi.org/10.1021/acs.jproteome.0c00254https://doi.org/10.1021/acs.jproteome.0c00254
Cataldo LR, Fernández-Verdejo R, Santos JL, et al., 2018. Plasma MOTS-c levels are associated with insulin sensitivity in lean but not in obese individuals. J Investig Med, 66(6):1019-1022. https://doi.org/10.1136/jim-2017-000681https://doi.org/10.1136/jim-2017-000681
Chen J, Brunner AD, Cogan JZ, et al., 2020. Pervasive functional translation of noncanonical human open reading frames. Science, 367(6482):1140-1146. https://doi.org/10.1126/science.aay0262https://doi.org/10.1126/science.aay0262
Chen XP, Han P, Zhou T, et al., 2016. CircRNADb: a comprehensive database for human circular RNAs with protein-coding annotations. Sci Rep, 6:34985. https://doi.org/10.1038/srep34985https://doi.org/10.1038/srep34985
Chen Y, Ho L, Tergaonkar V, 2021. sORF-Encoded MicroPeptides: new players in inflammation, metabolism, and precision medicine. Cancer Lett, 500:263-270. https://doi.org/10.1016/j.canlet.2020.10.038https://doi.org/10.1016/j.canlet.2020.10.038
Chng SC, Ho L, Tian J, et al., 2013. ELABELA: a hormone essential for heart development signals via the apelin receptor. Dev Cell, 27(6):672-680. https://doi.org/10.1016/j.devcel.2013.11.002https://doi.org/10.1016/j.devcel.2013.11.002
Chothani SP, Adami E, Widjaja AA, et al., 2022. A high-resolution map of human RNA translation. Mol Cell, 82(15):2885-2899.e8. https://doi.org/10.1016/j.molcel.2022.06.023https://doi.org/10.1016/j.molcel.2022.06.023
Chugunova A, Loseva E, Mazin P, et al., 2019. LINC00116 codes for a mitochondrial peptide linking respiration and lipid metabolism. Proc Natl Acad Sci USA, 116(11):4940-4945. https://doi.org/10.1073/pnas.1809105116https://doi.org/10.1073/pnas.1809105116
Cobb LJ, Lee C, Xiao JL, et al., 2016. Naturally occurring mitochondrial-derived peptides are age-dependent regulators of apoptosis, insulin sensitivity, and inflammatory markers. Aging, 8(4):796-809. https://doi.org/10.18632/aging.100943https://doi.org/10.18632/aging.100943
Dangelmaier EA, Li XL, Hartford CCR, et al., 2022. An evolutionarily conserved AU-rich element in the 3' untranslated region of a transcript misannotated as a long noncoding RNA regulates RNA stability. Mol Cell Biol, 42(4):e00505-21. https://doi.org/10.1128/mcb.00505-21https://doi.org/10.1128/mcb.00505-21
Dragomir MP, Manyam GC, Ott LF, et al., 2020. FuncPEP: a database of functional peptides encoded by non-coding RNAs. Non-Coding RNA, 6(4):41. https://doi.org/10.3390/ncrna6040041https://doi.org/10.3390/ncrna6040041
Du CQ, Zhang C, Wu W, et al., 2018. Circulating MOTS-c levels are decreased in obese male children and adolescents and associated with insulin resistance. Pediatr Diabetes, 19(6):1058-1064. https://doi.org/10.1111/pedi.12685https://doi.org/10.1111/pedi.12685
The ENCODE Project Consortium, 2007. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature, 447(7146):799-816. https://doi.org/10.1038/nature05874https://doi.org/10.1038/nature05874
Fabre B, Combier JP, Plaza S, 2021. Recent advances in mass spectrometry-based peptidomics workflows to identify short-open-reading-frame-encoded peptides and explore their functions. Curr Opin Chem Biol, 60:122-130. https://doi.org/10.1016/j.cbpa.2020.12.002https://doi.org/10.1016/j.cbpa.2020.12.002
Ference BA, Ginsberg HN, Graham I, et al., 2017. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J, 38(32):2459-2472. https://doi.org/10.1093/eurheartj/ehx144https://doi.org/10.1093/eurheartj/ehx144
Friesen M, Warren CR, Yu HJ, et al., 2020. Mitoregulin controls β-oxidation in human and mouse adipocytes. Stem Cell Rep, 14(4):590-602. https://doi.org/10.1016/j.stemcr.2020.03.002https://doi.org/10.1016/j.stemcr.2020.03.002
Fung G, Shi J, Deng H, et al., 2015. Cytoplasmic translocation, aggregation, and cleavage of TDP-43 by enteroviral proteases modulate viral pathogenesis. Cell Death Differ, 22(12):2087-2097. https://doi.org/10.1038/cdd.2015.58https://doi.org/10.1038/cdd.2015.58
Gammage PA, Moraes CT, Minczuk M, 2018. Mitochondrial genome engineering: the revolution may not be CRISPR-ized. Trends Genet, 34(2):101-110. https://doi.org/10.1016/j.tig.2017.11.001https://doi.org/10.1016/j.tig.2017.11.001
Ge QW, Jia DJC, Cen D, et al., 2021. Micropeptide ASAP encoded by LINC00467 promotes colorectal cancer progression by directly modulating ATP synthase activity. J Clin Invest, 131(22):e152911. https://doi.org/10.1172/JCI152911https://doi.org/10.1172/JCI152911
Guo BB, Wu SQ, Zhu X, et al., 2020. Micropeptide CIP2A-BP encoded by LINC00665 inhibits triple-negative breast cancer progression. EMBO J, 39(1):e102190. https://doi.org/10.15252/embj.2019102190https://doi.org/10.15252/embj.2019102190
Gustafsson CM, Falkenberg M, Larsson NG, 2016. Maintenance and expression of mammalian mitochondrial DNA. Annu Rev Biochem, 85:133-160. https://doi.org/10.1146/annurev-biochem-060815-014402https://doi.org/10.1146/annurev-biochem-060815-014402
Hartford CCR, Lal A, 2020. When long noncoding becomes protein coding. Mol Cell Biol, 40(6):e00528-19. https://doi.org/10.1128/MCB.00528-19https://doi.org/10.1128/MCB.00528-19
Hashimoto Y, Niikura T, Tajima H, et al., 2001. A rescue factor abolishing neuronal cell death by a wide spectrum of familial Alzheimer’s disease genes and Aβ. Proc Natl Acad Sci USA, 98(11):6336-6341. https://doi.org/10.1073/pnas.101133498https://doi.org/10.1073/pnas.101133498
Huang JZ, Chen M, Chen D, et al., 2017. A peptide encoded by a putative lncRNA HOXB-AS3 suppresses colon cancer growth. Mol Cell, 68(1):171-184.e6. https://doi.org/10.1016/j.molcel.2017.09.015https://doi.org/10.1016/j.molcel.2017.09.015
Hussain SRA, Yalvac ME, Khoo B, et al., 2021. Adapting CRISPR/Cas9 system for targeting mitochondrial genome. Front Genet, 12:627050. https://doi.org/10.3389/fgene.2021.627050https://doi.org/10.3389/fgene.2021.627050
Ingolia NT, Ghaemmaghami S, Newman JRS, et al., 2009. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science, 324(5924):218-223. https://doi.org/10.1126/science.1168978https://doi.org/10.1126/science.1168978
Ingolia NT, Brar GA, Stern-Ginossar N, et al., 2014. Ribosome profiling reveals pervasive translation outside of annotated protein-coding genes. Cell Rep, 8(5):1365-1379. https://doi.org/10.1016/j.celrep.2014.07.045https://doi.org/10.1016/j.celrep.2014.07.045
Ji Z, Song RS, Regev A, et al., 2015. Many lncRNAs, 5'UTRs, and pseudogenes are translated and some are likely to express functional proteins. Elife, 4:e08890. https://doi.org/10.7554/eLife.08890https://doi.org/10.7554/eLife.08890
Johnstone TG, Bazzini AA, Giraldez AJ, 2016. Upstream ORFs are prevalent translational repressors in vertebrates. EMBO J, 35(7):706-723. https://doi.org/10.15252/embj.201592759https://doi.org/10.15252/embj.201592759
Kamps R, Szklarczyk R, Theunissen TE, et al., 2018. Genetic defects in mtDNA-encoded protein translation cause pediatric, mitochondrial cardiomyopathy with early-onset brain disease. Eur J Hum Genet, 26(4):537-551. https://doi.org/10.1038/s41431-017-0058-2https://doi.org/10.1038/s41431-017-0058-2
Kang M, Tang B, Li JX, et al., 2020. Identification of miPEP133 as a novel tumor-suppressor microprotein encoded by miR-34a pri-miRNA. Mol Cancer, 19:143. https://doi.org/10.1186/s12943-020-01248-9https://doi.org/10.1186/s12943-020-01248-9
Kapusta A, Kronenberg Z, Lynch VJ, et al., 2013. Transposable elements are major contributors to the origin, diversification, and regulation of vertebrate long noncoding RNAs. PLoS Genet, 9(4):e1003470. https://doi.org/10.1371/journal.pgen.1003470https://doi.org/10.1371/journal.pgen.1003470
Kearse MG, Wilusz JE, 2017. Non-AUG translation: a new start for protein synthesis in eukaryotes. Genes Dev, 31(17):1717-1731. https://doi.org/10.1101/gad.305250.117https://doi.org/10.1101/gad.305250.117
Khitun A, Slavoff SA, 2019. Proteomic detection and validation of translated small open reading frames. Curr Protoc Chem Biol, 11(4):e77. https://doi.org/10.1002/cpch.77https://doi.org/10.1002/cpch.77
Khitun A, Ness TJ, Slavoff SA, 2019. Small open reading frames and cellular stress responses. Mol Omics, 15(2):108-116. https://doi.org/10.1039/c8mo00283ehttps://doi.org/10.1039/c8mo00283e
Kuliawat R, Klein L, Gong ZW, et al., 2013. Potent humanin analog increases glucose-stimulated insulin secretion through enhanced metabolism in the β cell. FASEB J, 27(12):4890-4898. https://doi.org/10.1096/fj.13-231092https://doi.org/10.1096/fj.13-231092
Kustatscher G, Grabowski P, Schrader TA, et al., 2019. Co-regulation map of the human proteome enables identification of protein functions. Nat Biotechnol, 37(11):1361-1371. https://doi.org/10.1038/s41587-019-0298-5https://doi.org/10.1038/s41587-019-0298-5
Kuwahara K, 2021. The natriuretic peptide system in heart failure: diagnostic and therapeutic implications. Pharmacol Ther, 227:107863. https://doi.org/10.1016/j.pharmthera.2021.107863https://doi.org/10.1016/j.pharmthera.2021.107863
Lauressergues D, Couzigou JM, Clemente HS, et al., 2015. Primary transcripts of microRNAs encode regulatory peptides. Nature, 520(7545):90-93. https://doi.org/10.1038/nature14346https://doi.org/10.1038/nature14346
Lee C, Zeng J, Drew BG, et al., 2015. The mitochondrial-derived peptide MOTS-c promotes metabolic homeostasis and reduces obesity and insulin resistance. Cell Metab, 21(3):443-454. https://doi.org/10.1016/j.cmet.2015.02.009https://doi.org/10.1016/j.cmet.2015.02.009
Li QY, Lu HY, Hu GY, et al., 2019. Earlier changes in mice after D-galactose treatment were improved by mitochondria derived small peptide MOTS-c. Biochem Biophys Res Commun, 513(2):439-445. https://doi.org/10.1016/j.bbrc.2019.03.194https://doi.org/10.1016/j.bbrc.2019.03.194
Liang S, Bellato HM, Lorent J, et al., 2018. Polysome-profiling in small tissue samples. Nucleic Acids Res, 46(1):e3. https://doi.org/10.1093/nar/gkx940https://doi.org/10.1093/nar/gkx940
Lu HY, Wei M, Zhai Y, et al., 2019. MOTS-c peptide regulates adipose homeostasis to prevent ovariectomy-induced metabolic dysfunction. J Mol Med, 97(4):473-485. https://doi.org/10.1007/s00109-018-01738-whttps://doi.org/10.1007/s00109-018-01738-w
Lubec G, Afjehi-Sadat L, 2007. Limitations and pitfalls in protein identification by mass spectrometry. Chem Rev, 107(8):3568-3584. https://doi.org/10.1021/cr068213fhttps://doi.org/10.1021/cr068213f
Ma J, Diedrich JK, Jungreis I, et al., 2016. Improved identification and analysis of small open reading frame encoded polypeptides. Anal Chem, 88(7):3967-3975. https://doi.org/10.1021/acs.analchem.6b00191https://doi.org/10.1021/acs.analchem.6b00191
Ma Z, Song JJ, Martin S, et al., 2021. The Elabela-APJ axis: a promising therapeutic target for heart failure. Heart Fail Rev, 26(5):1249-1258. https://doi.org/10.1007/s10741-020-09957-5https://doi.org/10.1007/s10741-020-09957-5
Mackowiak SD, Zauber H, Bielow C, et al., 2015. Extensive identification and analysis of conserved small ORFs in animals. Genome Biol, 16:179. https://doi.org/10.1186/s13059-015-0742-xhttps://doi.org/10.1186/s13059-015-0742-x
Magny EG, Pueyo JI, Pearl FMG, et al., 2013. Conserved regulation of cardiac calcium uptake by peptides encoded in small open reading frames. Science, 341(6150):1116-1120. https://doi.org/10.1126/science.1238802https://doi.org/10.1126/science.1238802
Makarewich CA, Olson EN, 2017. Mining for micropeptides. Trends Cell Biol, 27(9):685-696. https://doi.org/10.1016/j.tcb.2017.04.006https://doi.org/10.1016/j.tcb.2017.04.006
Makarewich CA, Baskin KK, Munir AZ, et al., 2018. MOXI is a mitochondrial micropeptide that enhances fatty acid β-oxidation. Cell Rep, 23(13):3701-3709. https://doi.org/10.1016/j.celrep.2018.05.058https://doi.org/10.1016/j.celrep.2018.05.058
Makarewich CA, Munir AZ, Bezprozvannaya S, et al., 2022. The cardiac-enriched microprotein mitolamban regulates mitochondrial respiratory complex assembly and function in mice. Proc Natl Acad Sci USA, 119(6):e2120476119. https://doi.org/10.1073/pnas.2120476119https://doi.org/10.1073/pnas.2120476119
Masvidal L, Hulea L, Furic L, et al., 2017. mTOR-sensitive translation: cleared fog reveals more trees. RNA Biol, 14(10):1299-1305. https://doi.org/10.1080/15476286.2017.1290041https://doi.org/10.1080/15476286.2017.1290041
Matsumoto A, Pasut A, Matsumoto M, et al., 2017. mTORC1 and muscle regeneration are regulated by the LINC00961-encoded SPAR polypeptide. Nature, 541(7636):228-232. https://doi.org/10.1038/nature21034https://doi.org/10.1038/nature21034
Merry TL, Chan A, Woodhead JST, et al., 2020. Mitochondrial-derived peptides in energy metabolism. Am J Physiol Endocrinol Metab, 319(4):E659-E666. https://doi.org/10.1152/ajpendo.00249.2020https://doi.org/10.1152/ajpendo.00249.2020
Miller B, Kim SJ, Kumagai H, et al., 2022a. Mitochondria-derived peptides in aging and healthspan. J Clin Invest, 132(9):e158449. https://doi.org/10.1172/JCI158449https://doi.org/10.1172/JCI158449
Miller B, Kim SJ, Mehta HH, et al., 2022b. Mitochondrial DNA variation in Alzheimer’s disease reveals a unique microprotein called SHMOOSE. Mol Psychiatry, 28(4):1813-1826. https://doi.org/10.1038/s41380-022-01769-3https://doi.org/10.1038/s41380-022-01769-3
Muzumdar RH, Huffman DM, Atzmon G, et al., 2009. Humanin: a novel central regulator of peripheral insulin action. PLoS ONE, 4(7):e6334. https://doi.org/10.1371/journal.pone.0006334https://doi.org/10.1371/journal.pone.0006334
Nishikimi T, Nakagawa Y, Minamino N, et al., 2015. Pro-B-type natriuretic peptide is cleaved intracellularly: impact of distance between O-glycosylation and cleavage sites. Am J Physiol Regul Integr Comp Physiol, 309(6):R639-R649. https://doi.org/10.1152/ajpregu.00074.2015https://doi.org/10.1152/ajpregu.00074.2015
Niu LM, Lou FZ, Sun Y, et al., 2020. A micropeptide encoded by lncRNA MIR155HG suppresses autoimmune inflammation via modulating antigen presentation. Sci Adv, 6(21):eaaz2059. https://doi.org/10.1126/sciadv.aaz2059https://doi.org/10.1126/sciadv.aaz2059
Ouspenskaia T, Law T, Clauser KR, et al., 2022. Unannotated proteins expand the MHC-I-restricted immunopeptidome in cancer. Nat Biotechnol, 40(2):209-217. https://doi.org/10.1038/s41587-021-01021-3https://doi.org/10.1038/s41587-021-01021-3
Pan JF, Wang RJ, Shang FZ, et al., 2022. Functional micropeptides encoded by long non-coding RNAs: a comprehensive review. Front Mol Biosci, 9:817517. https://doi.org/10.3389/fmolb.2022.817517https://doi.org/10.3389/fmolb.2022.817517
Patraquim P, Mumtaz MAS, Pueyo JI, et al., 2020. Developmental regulation of canonical and small ORF translation from mRNAs. Genome Biol, 21:128. https://doi.org/10.1186/s13059-020-02011-5https://doi.org/10.1186/s13059-020-02011-5
Pauli A, Norris ML, Valen E, et al., 2014. Toddler: an embryonic signal that promotes cell movement via Apelin receptors. Science, 343(6172):1248636. https://doi.org/10.1126/science.1248636https://doi.org/10.1126/science.1248636
Polenkowski M, Burbano de Lara S, Allister AB, et al., 2021. Identification of novel micropeptides derived from hepatocellular carcinoma-specific long noncoding RNA. Int J Mol Sci, 23(1):58. https://doi.org/10.3390/ijms23010058https://doi.org/10.3390/ijms23010058
Potenza MA, Sgarra L, Desantis V, et al., 2021. Diabetes and Alzheimer’s disease: might mitochondrial dysfunction help deciphering the common path? Antioxidants, 10(8):1257. https://doi.org/10.3390/antiox10081257https://doi.org/10.3390/antiox10081257
Prats AC, David F, Diallo LH, et al., 2020. Circular RNA, the key for translation. Int J Mol Sci, 21(22):8591. https://doi.org/10.3390/ijms21228591https://doi.org/10.3390/ijms21228591
Primeau JO, Armanious GP, Fisher ME, et al., 2018. The SarcoEndoplasmic reticulum calcium ATPase. In: Harris JR, Boekema EJ (Eds.), Membrane Protein Complexes: Structure and Function. Springer, Singapore, p.229-258. https://doi.org/10.1007/978-981-10-7757-9_8https://doi.org/10.1007/978-981-10-7757-9_8
Qu L, He XY, Tang Q, et al., 2022. Iron metabolism, ferroptosis, and lncRNA in cancer: knowns and unknowns. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 23(10):844-862. https://doi.org/10.1631/jzus.B2200194https://doi.org/10.1631/jzus.B2200194
Ramzy A, Kieffer TJ, 2022. Altered islet prohormone processing: a cause or consequence of diabetes? Physiol Rev, 102(1):155-208. https://doi.org/10.1152/physrev.00008.2021https://doi.org/10.1152/physrev.00008.2021
Ran FA, Hsu PD, Wright J, et al., 2013. Genome engineering using the CRISPR-Cas9 system. Nat Protoc, 8(11):2281-2308. https://doi.org/10.1038/nprot.2013.143https://doi.org/10.1038/nprot.2013.143
Rathore A, Chu Q, Tan D, et al., 2018. MIEF1 microprotein regulates mitochondrial translation. Biochemistry, 57(38):5564-5575. https://doi.org/10.1021/acs.biochem.8b00726https://doi.org/10.1021/acs.biochem.8b00726
Rinn JL, Chang HY, 2012. Genome regulation by long noncoding RNAs. Annu Rev Biochem, 81:145-166. https://doi.org/10.1146/annurev-biochem-051410-092902https://doi.org/10.1146/annurev-biochem-051410-092902
Rothzerg E, Xu JK, Wood D, 2022. Identification of differentially expressed intronic transcripts in osteosarcoma. Non-Coding RNA, 8(6):73. https://doi.org/10.3390/ncrna8060073https://doi.org/10.3390/ncrna8060073
Ruiz-Orera J, Albà MM, 2019. Translation of small open reading frames: roles in regulation and evolutionary innovation. Trends Genet, 35(3):186-198. https://doi.org/10.1016/j.tig.2018.12.003https://doi.org/10.1016/j.tig.2018.12.003
Sato T, Sato C, Kadowaki A, et al., 2017. ELABELA-APJ axis protects from pressure overload heart failure and angiotensin II-induced cardiac damage. Cardiovasc Res, 113(7):760-769. https://doi.org/10.1093/cvr/cvx061https://doi.org/10.1093/cvr/cvx061
Schindewolf C, Braun S, Domdey H, 1996. In vitro generation of a circular exon from a linear pre-mRNA transcript. Nucleic Acids Res, 24(7):1260-1266. https://doi.org/10.1093/nar/24.7.1260https://doi.org/10.1093/nar/24.7.1260
Sinha T, Panigrahi C, Das D, et al., 2022. Circular RNA translation, a path to hidden proteome. Wiley Interdiscip Rev RNA, 13(1):e1685. https://doi.org/10.1002/wrna.1685https://doi.org/10.1002/wrna.1685
Starck SR, Tsai JC, Chen KL, et al., 2016. Translation from the 5' untranslated region shapes the integrated stress response. Science, 351(6272):aad3867. https://doi.org/10.1126/science.aad3867https://doi.org/10.1126/science.aad3867
Staudt AC, Wenkel S, 2011. Regulation of protein function by ‘microProteins’. EMBO Rep, 12(1):35-42. https://doi.org/10.1038/embor.2010.196https://doi.org/10.1038/embor.2010.196
Stein CS, Jadiya P, Zhang XM, et al., 2018. Mitoregulin: a lncRNA-encoded microprotein that supports mitochondrial supercomplexes and respiratory efficiency. Cell Rep, 23(13):3710-3720.e8. https://doi.org/10.1016/j.celrep.2018.06.002https://doi.org/10.1016/j.celrep.2018.06.002
Tezze C, Romanello V, Desbats MA, et al., 2017. Age-associated loss of OPA1 in muscle impacts muscle mass, metabolic homeostasis, systemic inflammation, and epithelial senescence. Cell Metab, 25(6):1374-1389.e6. https://doi.org/10.1016/j.cmet.2017.04.021https://doi.org/10.1016/j.cmet.2017.04.021
Tharakan R, Sawa A, 2021. Minireview: novel micropeptide discovery by proteomics and deep sequencing methods. Front Genet, 12:651485. https://doi.org/10.3389/fgene.2021.651485https://doi.org/10.3389/fgene.2021.651485
Tumminia A, Vinciguerra F, Parisi M, et al., 2018. Type 2 diabetes mellitus and Alzheimer’s disease: role of insulin signalling and therapeutic implications. Int J Mol Sci, 19(11):3306. https://doi.org/10.3390/ijms19113306https://doi.org/10.3390/ijms19113306
Ulitsky I, Bartel DP, 2013. lincRNAs: genomics, evolution, and mechanisms. Cell, 154(1):26-46. https://doi.org/10.1016/j.cell.2013.06.020https://doi.org/10.1016/j.cell.2013.06.020
van Heesch S, Witte F, Schneider-Lunitz V, et al., 2019. The translational landscape of the human heart. Cell, 178(1):242-260.e29. https://doi.org/10.1016/j.cell.2019.05.010https://doi.org/10.1016/j.cell.2019.05.010
Vitorino R, Guedes S, Amado F, et al., 2021. The role of micropeptides in biology. Cell Mol Life Sci, 78(7):3285-3298. https://doi.org/10.1007/s00018-020-03740-3https://doi.org/10.1007/s00018-020-03740-3
Vizioli MG, Liu TH, Miller KN, et al., 2020. Mitochondria-to-nucleus retrograde signaling drives formation of cytoplasmic chromatin and inflammation in senescence. Genes Dev, 34(5-6):428-445. https://doi.org/10.1101/gad.331272.119https://doi.org/10.1101/gad.331272.119
Wai T, García-Prieto J, Baker MJ, et al., 2015. Imbalanced OPA1 processing and mitochondrial fragmentation cause heart failure in mice. Science, 350(6265):aad0116. https://doi.org/10.1126/science.aad0116https://doi.org/10.1126/science.aad0116
Wang JZ, Zhu S, Meng N, et al., 2019. ncRNA-encoded peptides or proteins and cancer. Mol Ther, 27(10):1718-1725. https://doi.org/10.1016/j.ymthe.2019.09.001https://doi.org/10.1016/j.ymthe.2019.09.001
Wang S, Mao CB, Liu SR, 2019. Peptides encoded by noncoding genes: challenges and perspectives. Signal Transduct Target Ther, 4:57. https://doi.org/10.1038/s41392-019-0092-3https://doi.org/10.1038/s41392-019-0092-3
Wilson BA, Masel J, 2011. Putatively noncoding transcripts show extensive association with ribosomes. Genome Biol Evol, 3:1245-1252. https://doi.org/10.1093/gbe/evr099https://doi.org/10.1093/gbe/evr099
Winter J, Jung S, Keller S, et al., 2009. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol, 11(3):228-234. https://doi.org/10.1038/ncb0309-228https://doi.org/10.1038/ncb0309-228
Wong J, Zhang JC, Yanagawa B, et al., 2012. Cleavage of serum response factor mediated by enteroviral protease 2A contributes to impaired cardiac function. Cell Res, 22(2):360-371. https://doi.org/10.1038/cr.2011.114https://doi.org/10.1038/cr.2011.114
Wu WY, Ji PF, Zhao FQ, 2020. CircAtlas: an integrated resource of one million highly accurate circular RNAs from 1070 vertebrate transcriptomes. Genome Biol, 21:101. https://doi.org/10.1186/s13059-020-02018-yhttps://doi.org/10.1186/s13059-020-02018-y
Wu Y, Sun LK, Zhuang ZD, et al., 2022. Mitochondrial-derived peptides in diabetes and its complications. Front Endocrinol, 12:808120. https://doi.org/10.3389/fendo.2021.808120https://doi.org/10.3389/fendo.2021.808120
Xu K, Jin XY, Luo Y, et al., 2023. Spatial transcriptome analysis of long non-coding RNAs reveals tissue specificity and functional roles in cancer. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 24(1):15-31. https://doi.org/10.1631/jzus.B2200206https://doi.org/10.1631/jzus.B2200206
Xu YT, Zhang L, Ocansey DKW, et al., 2022. HucMSC-Ex alleviates inflammatory bowel disease via the lnc78583-mediated miR3202/HOXB13 pathway. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 23(5):423-431. https://doi.org/10.1631/jzus.B2100793https://doi.org/10.1631/jzus.B2100793
Yang JE, Zhong WJ, Li JF, et al., 2023. LINC00998-encoded micropeptide SMIM30 promotes the G1/S transition of cell cycle by regulating cytosolic calcium level. Mol Oncol, 17(5):901-916. https://doi.org/10.1002/1878-0261.13358https://doi.org/10.1002/1878-0261.13358
Yang YB, Gao XY, Zhang ML, et al., 2018. Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis. J Natl Cancer Inst, 110(3):304-315. https://doi.org/10.1093/jnci/djx166https://doi.org/10.1093/jnci/djx166
Yao J, Irwin RW, Zhao LQ, et al., 2009. Mitochondrial bioenergetic deficit precedes Alzheimer’s pathology in female mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA, 106(34):14670-14675. https://doi.org/10.1073/pnas.0903563106https://doi.org/10.1073/pnas.0903563106
Zárate SC, Traetta ME, Codagnone MG, et al., 2019. Humanin, a mitochondrial-derived peptide released by astrocytes, prevents synapse loss in hippocampal neurons. Front Aging Neurosci, 11:123. https://doi.org/10.3389/fnagi.2019.00123https://doi.org/10.3389/fnagi.2019.00123
Zhang S, Reljić B, Liang C, et al., 2020. Mitochondrial peptide BRAWNIN is essential for vertebrate respiratory complex III assembly. Nat Commun, 11:1312. https://doi.org/10.1038/s41467-020-14999-2https://doi.org/10.1038/s41467-020-14999-2
Zhang Y, Huang NQ, Yan F, et al., 2018. Diabetes mellitus and Alzheimer’s disease: GSK-3β as a potential link. Behav Brain Res, 339:57-65. https://doi.org/10.1016/j.bbr.2017.11.015https://doi.org/10.1016/j.bbr.2017.11.015
Zhu LF, Xu L, Wang CG, et al., 2021. T6SS translocates a micropeptide to suppress STING-mediated innate immunity by sequestering manganese. Proc Natl Acad Sci USA, 118(42):e2103526118. https://doi.org/10.1073/pnas.2103526118https://doi.org/10.1073/pnas.2103526118
0
Views
2
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution