无数据
Scan for full text
1.Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
2.Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou 310022, China
3.Shanxi Medical University, Jinzhong 030600, China
杨秋辉,傅烨钦,王嘉萱等.LncRNA在三阴性乳腺癌诊断和预后中的作用[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2023,24(12):1123-1140.
Qiuhui YANG, Yeqin FU, Jiaxuan WANG, et al. Roles of lncRNA in the diagnosis and prognosis of triple-negative breast cancer. [J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology) 24(12):1123-1140(2023)
杨秋辉,傅烨钦,王嘉萱等.LncRNA在三阴性乳腺癌诊断和预后中的作用[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2023,24(12):1123-1140. DOI: 10.1631/jzus.B2300067.
Qiuhui YANG, Yeqin FU, Jiaxuan WANG, et al. Roles of lncRNA in the diagnosis and prognosis of triple-negative breast cancer. [J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology) 24(12):1123-1140(2023) DOI: 10.1631/jzus.B2300067.
乳腺癌是一种严重危害女性生命的恶性肿瘤。乳腺癌患者的预后因分子类型而异,与其它亚型相比,三阴性乳腺癌(TNBC)因其恶性程度高、侵袭性强、进展快、易复发、易远处转移、预后差和死亡率高而成为近年来的研究热点。许多研究发现,长链非编码RNAs(lncRNAs)在TNBC的发生、增殖、迁移、复发和化疗耐药性等方面起着重要作用。一些lncRNAs有望成为TNBC诊断和预后判断的生物学标志物,甚至成为治疗的新靶点。本文在PubMed文献检索的基础上,总结了lncRNAs在TNBC中的研究进展,并讨论了它们在TNBC诊断、预后和化疗中的作用,希望为未来的研究提供帮助。
Breast cancer is a malignant tumor that seriously endangers women’s lives. The prognosis of breast cancer patients differs among molecular types. Compared with other subtypes, triple-negative breast cancer (TNBC) has been a research hotspot in recent years because of its high degree of malignancy, strong invasiveness, rapid progression, easy of recurrence, distant metastasis, poor prognosis, and high mortality. Many studies have found that long non-coding RNA (lncRNA) plays an important role in the occurrence, proliferation, migration, recurrence, chemotherapy resistance, and other characteristics of TNBC. Some lncRNAs are expected to become biomarkers in the diagnosis and prognosis of TNBC, and even new targets for its treatment. Based on a PubMed literature search, this review summarizes the progress in research on lncRNAs in TNBC and discusses their roles in TNBC diagnosis, prognosis, and chemotherapy with the hope of providing help for future research.
三阴性乳腺癌(TNBC)长链非编码RNA(lncRNA)诊断预后化疗耐药
Triple-negative breast cancer (TNBC)Long non-coding RNA (lncRNA)DiagnosisPrognosisChemotherapy resistance
Abramson VG, Lehmann BD, Ballinger TJ, et al., 2015. Subtyping of triple-negative breast cancer: implications for therapy. Cancer, 121(1):8-16. https://doi.org/10.1002/cncr.28914https://doi.org/10.1002/cncr.28914
Beltrán-Anaya FO, Romero-Córdoba S, Rebollar-Vega R, et al., 2019. Expression of long non-coding RNA ENSG00000226738 (LncKLHDC7B) is enriched in the immunomodulatory triple-negative breast cancer subtype and its alteration promotes cell migration, invasion, and resistance to cell death. Mol Oncol, 13(4):909-927. https://doi.org/10.1002/1878-0261.12446https://doi.org/10.1002/1878-0261.12446
Borri F, Granaglia A, 2021. Pathology of triple negative breast cancer. Semin Cancer Biol, 72:136-145. https://doi.org/10.1016/j.semcancer.2020.06.005https://doi.org/10.1016/j.semcancer.2020.06.005
Cao W, Chen HD, Yu YW, et al., 2021. Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020. Chin Med J, 134(7):783-791. https://doi.org/10.1097/cm9.0000000000001474https://doi.org/10.1097/cm9.0000000000001474
Carey L, Winer E, Viale G, et al., 2010. Triple-negative breast cancer: disease entity or title of convenience? Nat Rev Clin Oncol, 7(12):683-692. https://doi.org/10.1038/nrclinonc.2010.154https://doi.org/10.1038/nrclinonc.2010.154
Chen WQ, Zheng RS, Zhang SW, et al., 2017. Cancer incidence and mortality in China, 2013. Cancer Lett, 401:63-71. https://doi.org/10.1016/j.canlet.2017.04.024https://doi.org/10.1016/j.canlet.2017.04.024
Djebali S, Davis CA, Merkel A, et al., 2012. Landscape of transcription in human cells. Nature, 489(7414):101-108. https://doi.org/10.1038/nature11233https://doi.org/10.1038/nature11233
Fan HJ, Yuan J, Li XY, et al., 2020. LncRNA LINC00173 enhances triple-negative breast cancer progression by suppressing miR-490-3p expression. Biomed Pharmacother, 125:109987. https://doi.org/10.1016/j.biopha.2020.109987https://doi.org/10.1016/j.biopha.2020.109987
Feng LL, Shen FR, Zhou JH, et al., 2019. Expression of the lncRNA ZFAS1 in cervical cancer and its correlation with prognosis and chemosensitivity. Gene, 696:105-112. https://doi.org/10.1016/j.gene.2019.01.025https://doi.org/10.1016/j.gene.2019.01.025
Foulkes WD, Smith IE, Reis-Filho JS, 2010. Triple-negative breast cancer. N Engl J Med, 363(20):1938-1948. https://doi.org/10.1056/NEJMra1001389https://doi.org/10.1056/NEJMra1001389
Fu J, Dong GJ, Shi H, et al., 2019. LncRNA MIR503HG inhibits cell migration and invasion via miR-103/OLFM4 axis in triple negative breast cancer. J Cell Mol Med, 23(7):4738-4745. https://doi.org/10.1111/jcmm.14344https://doi.org/10.1111/jcmm.14344
Fu PF, Zheng X, Fan X, et al., 2019. Role of cytoplasmic lncRNAs in regulating cancer signaling pathways. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 20(1):1-8. https://doi.org/10.1631/jzus.B1800254https://doi.org/10.1631/jzus.B1800254
Ghafouri-Fard S, Fathi M, Zhai TY, et al., 2021. LncRNAs: novel biomarkers for pancreatic cancer. Biomolecules, 11(11):1665. https://doi.org/10.3390/biom11111665https://doi.org/10.3390/biom11111665
Giza DE, Vasilescu C, Calin GA, 2014. MicroRNAs and ceRNAs: therapeutic implications of RNA networks. Expert Opin Biol Ther, 14(9):1285-1293. https://doi.org/10.1517/14712598.2014.920812https://doi.org/10.1517/14712598.2014.920812
Han JG, Han BJ, Wu XY, et al., 2018. Knockdown of lncRNA H19 restores chemo-sensitivity in paclitaxel-resistant triple-negative breast cancer through triggering apoptosis and regulating Akt signaling pathway. Toxicol Appl Pharmacol, 359:55-61. https://doi.org/10.1016/j.taap.2018.09.018https://doi.org/10.1016/j.taap.2018.09.018
Hatem R, el Botty R, Chateau-Joubert S, et al., 2016. Targeting mTOR pathway inhibits tumor growth in different molecular subtypes of triple-negative breast cancers. Oncotarget, 7(30):48206-48219. https://doi.org/10.18632/oncotarget.10195https://doi.org/10.18632/oncotarget.10195
He YY, Xiao B, Lei T, et al., 2023. LncRNA T376626 is a promising serum biomarker and promotes proliferation, migration, and invasion via binding to LAMC2 in triple-negative breast cancer. Gene, 860:147227. https://doi.org/10.1016/j.gene.2023.147227https://doi.org/10.1016/j.gene.2023.147227
Herman AB, Tsitsipatis D, Gorospe M, 2022. Integrated lncRNA function upon genomic and epigenomic regulation. Mol Cell, 82(12):2252-2266. https://doi.org/10.1016/j.molcel.2022.05.027https://doi.org/10.1016/j.molcel.2022.05.027
Hu QS, Ye YQ, Chan LC, et al., 2019. Oncogenic lncRNA downregulates cancer cell antigen presentation and intrinsic tumor suppression. Nat Immunol, 20(7):835-851. https://doi.org/10.1038/s41590-019-0400-7https://doi.org/10.1038/s41590-019-0400-7
Hu Y, He Y, Luo N, et al., 2023. A feedback loop between lncRNA MALAT1 and DNMT1 promotes triple-negative breast cancer stemness and tumorigenesis. Cancer Biol Ther, 24(1):2235768. https://doi.org/10.1080/15384047.2023.2235768https://doi.org/10.1080/15384047.2023.2235768
Jiang XG, 2014. Harnessing the immune system for the treatment of breast cancer. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 15(1):1-15. https://doi.org/10.1631/jzus.B1300264https://doi.org/10.1631/jzus.B1300264
Jiang YZ, Liu YR, Xu XE, et al., 2016. Transcriptome analysis of triple-negative breast cancer reveals an integrated mRNA-lncRNA signature with predictive and prognostic value. Cancer Res, 76(8):2105-2114. https://doi.org/10.1158/0008-5472.Can-15-3284https://doi.org/10.1158/0008-5472.Can-15-3284
Kaushik AC, Mehmood A, Wang XG, et al., 2021. Globally ncRNAs expression profiling of TNBC and screening of functional lncRNA. Front Bioeng Biotechnol, 8:523127. https://doi.org/10.3389/fbioe.2020.523127https://doi.org/10.3389/fbioe.2020.523127
Knutsen E, Harris AL, Perander M, 2022. Expression and functions of long non-coding RNA NEAT1 and isoforms in breast cancer. Br J Cancer, 126(4):551-561. https://doi.org/10.1038/s41416-021-01588-3https://doi.org/10.1038/s41416-021-01588-3
Kotterman MA, Schaffer DV, 2014. Engineering adeno-associated viruses for clinical gene therapy. Nat Rev Genet, 15(7):445-451. https://doi.org/10.1038/nrg3742https://doi.org/10.1038/nrg3742
Kumar P, Aggarwal R, 2016. An overview of triple-negative breast cancer. Arch Gynecol Obstet, 293(2):247-269. https://doi.org/10.1007/s00404-015-3859-yhttps://doi.org/10.1007/s00404-015-3859-y
Kumar V, Westra HJ, Karjalainen J, et al., 2013. Human disease-associated genetic variation impacts large intergenic non-coding RNA expression. PLoS Genet, 9(1):e1003201. https://doi.org/10.1371/journal.pgen.1003201https://doi.org/10.1371/journal.pgen.1003201
Kuschel A, Simon P, Tug S, 2012. Functional regulation of HIF-1α under normoxia—is there more than post-translational regulation? J Cell Physiol, 227(2):514-524. https://doi.org/10.1002/jcp.22798https://doi.org/10.1002/jcp.22798
Lan FM, Zhang XD, Li HB, et al., 2021. Serum exosomal lncRNA XIST is a potential non-invasive biomarker to diagnose recurrence of triple-negative breast cancer. J Cell Mol Med, 25(16):7602-7607. https://doi.org/10.1111/jcmm.16009https://doi.org/10.1111/jcmm.16009
Lehmann BD, Bauer JA, Chen X, et al., 2011. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest, 121(7):2750-2767. https://doi.org/10.1172/jci45014https://doi.org/10.1172/jci45014
Li PP, Li RG, Huang YQ, et al., 2021. LncRNA OTUD6B-AS1 promotes paclitaxel resistance in triple negative breast cancer by regulation of miR-26a-5p/MTDH pathway-mediated autophagy and genomic instability. Aging, 13(21):24171-24191. https://doi.org/10.18632/aging.203672https://doi.org/10.18632/aging.203672
Lin AF, Li CL, Xing Z, et al., 2016. The LINK-A lncRNA activates normoxic HIF1α signalling in triple-negative breast cancer. Nat Cell Biol, 18(2):213-224. https://doi.org/10.1038/ncb3295https://doi.org/10.1038/ncb3295
Lin JG, Shi ZH, Yu ZY, et al., 2018. LncRNA HIF1A-AS2 positively affects the progression and EMT formation of colorectal cancer through regulating miR-129-5p and DNMT3A. Biomed Pharmacother, 98:433-439. https://doi.org/10.1016/j.biopha.2017.12.058https://doi.org/10.1016/j.biopha.2017.12.058
Liu AN, Qu HJ, Gong WJ, et al., 2019. LncRNA AWPPH and miRNA-21 regulates cancer cell proliferation and chemosensitivity in triple-negative breast cancer by interacting with each other. J Cell Biochem, 120(9):14860-14866. https://doi.org/10.1002/jcb.28747https://doi.org/10.1002/jcb.28747
Liu M, Xing LQ, Liu YJ, 2017. A three-long noncoding RNA signature as a diagnostic biomarker for differentiating between triple-negative and non-triple-negative breast cancers. Medicine, 96(9):e6222. https://doi.org/10.1097/md.0000000000006222https://doi.org/10.1097/md.0000000000006222
Liu XH, Sun M, Nie FQ, et al., 2014. Lnc RNA HOTAIR functions as a competing endogenous RNA to regulate HER2 expression by sponging miR-331-3p in gastric cancer. Mol Cancer, 13:92. https://doi.org/10.1186/1476-4598-13-92https://doi.org/10.1186/1476-4598-13-92
Long Q, Li H, Fan Y, et al., 2020. Overexpression of lncRNA TATDN1 promotes cancer cell proliferation in triple negative breast cancer by regulating miR-26b methylation. Cancer Manag Res, 12:11403-11410. https://doi.org/10.2147/cmar.S258191https://doi.org/10.2147/cmar.S258191
Lu SX, Han L, Hu XY, et al., 2021. N6-methyladenosine reader IMP2 stabilizes the ZFAS1/OLA1 axis and activates the Warburg effect: implication in colorectal cancer. J Hematol Oncol, 14:188. https://doi.org/10.1186/s13045-021-01204-0https://doi.org/10.1186/s13045-021-01204-0
Manjunath M, Choudhary B, 2021. Triple-negative breast cancer: a run-through of features, classification and current therapies (Review). Oncol Lett, 22:512. https://doi.org/10.3892/ol.2021.12773https://doi.org/10.3892/ol.2021.12773
Manoochehri M, Borhani N, Gerhäuser C, et al., 2023. DNA methylation biomarkers for noninvasive detection of triple-negative breast cancer using liquid biopsy. Int J Cancer, 152(5):1025-1035. https://doi.org/10.1002/ijc.34337https://doi.org/10.1002/ijc.34337
Mittendorf EA, Zhang H, Barrios CH, et al., 2020. Neoadjuvant atezolizumab in combination with sequential nab-paclitaxel and anthracycline-based chemotherapy versus placebo and chemotherapy in patients with early-stage triple-negative breast cancer (IMpassion031): a randomised, double-blind, phase 3 trial. Lancet, 396(10257):1090-1100. https://doi.org/10.1016/s0140-6736(20)31953-xhttps://doi.org/10.1016/s0140-6736(20)31953-x
Mou EX, Wang H, 2019. LncRNA LUCAT1 facilitates tumorigenesis and metastasis of triple-negative breast cancer through modulating miR-5702. Biosci Rep, 39(9):BSR20190489. https://doi.org/10.1042/bsr20190489https://doi.org/10.1042/bsr20190489
Nedeljković M, Damjanović A, 2019. Mechanisms of chemotherapy resistance in triple-negative breast cancer—how we can rise to the challenge. Cells, 8(9):957. https://doi.org/10.3390/cells8090957https://doi.org/10.3390/cells8090957
Nitzan M, Steiman-Shimony A, Altuvia Y, et al., 2014. Interactions between distant ceRNAs in regulatory networks. Biophys J, 106(10):2254-2266. https://doi.org/10.1016/j.bpj.2014.03.040https://doi.org/10.1016/j.bpj.2014.03.040
Paci P, Colombo T, Farina L, 2014. Computational analysis identifies a sponge interaction network between long non-coding RNAs and messenger RNAs in human breast cancer. BMC Syst Biol, 8:83. https://doi.org/10.1186/1752-0509-8-83https://doi.org/10.1186/1752-0509-8-83
Ping J, Huang SY, Wu J, et al., 2021. Association between lincRNA expression and overall survival for patients with triple-negative breast cancer. Breast Cancer Res Treat, 186(3):769-777. https://doi.org/10.1007/s10549-020-06021-6https://doi.org/10.1007/s10549-020-06021-6
Prat A, Pineda E, Adamo B, et al., 2015. Clinical implications of the intrinsic molecular subtypes of breast cancer. Breast, 24(Suppl 2):S26-S35. https://doi.org/10.1016/j.breast.2015.07.008https://doi.org/10.1016/j.breast.2015.07.008
Qu L, He XY, Tang Q, et al., 2022. Iron metabolism, ferroptosis, and lncRNA in cancer: knowns and unknowns. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 23(10):844-862. https://doi.org/10.1631/jzus.B2200194https://doi.org/10.1631/jzus.B2200194
Rao M, Xu S, Zhang Y, et al., 2021. Long non-coding RNA ZFAS1 promotes pancreatic cancer proliferation and metastasis by sponging miR-497-5p to regulate HMGA2 expression. Cell Death Dis, 12(10):859. https://doi.org/10.1038/s41419-021-04123-7https://doi.org/10.1038/s41419-021-04123-7
Samir A, Tawab RA, el Tayebi HM, 2021. Long non-coding RNAs XIST and MALAT1 hijack the PD-L1 regulatory signaling pathway in breast cancer subtypes. Oncol Lett, 22(2):593. https://doi.org/10.3892/ol.2021.12854https://doi.org/10.3892/ol.2021.12854
Santamaría G, Bargalló X, Ganau S, et al., 2019. Multiparametric MR imaging to assess response following neoadjuvant systemic treatment in various breast cancer subtypes: comparison between different definitions of pathologic complete response. Eur J Radiol, 117:132-139. https://doi.org/10.1016/j.ejrad.2019.06.009https://doi.org/10.1016/j.ejrad.2019.06.009
Semenza GL, 2003. Targeting HIF-1 for cancer therapy. Nat Rev Cancer, 3(10):721-732. https://doi.org/10.1038/nrc1187https://doi.org/10.1038/nrc1187
Shao XC, Zheng XH, Ma D, et al., 2021. Inhibition of lncRNA-NEAT1 sensitizes 5-Fu resistant cervical cancer cells through de-repressing the microRNA-34a/LDHA axis. Biosci Rep, 41(7):BSR20200533. https://doi.org/10.1042/bsr20200533https://doi.org/10.1042/bsr20200533
Sharma U, Barwal TS, Khandelwal A, et al., 2021. LncRNA ZFAS1 inhibits triple-negative breast cancer by targeting STAT3. Biochimie, 182:99-107. https://doi.org/10.1016/j.biochi.2020.12.026https://doi.org/10.1016/j.biochi.2020.12.026
Shen XK, Xie BJ, Ma ZS, et al., 2015. Identification of novel long non-coding RNAs in triple-negative breast cancer. Oncotarget, 6(25):21730-21739. https://doi.org/10.18632/oncotarget.4419https://doi.org/10.18632/oncotarget.4419
Sheng XN, Dai HJ, Du YY, et al., 2021. LncRNA CARMN overexpression promotes prognosis and chemosensitivity of triple negative breast cancer via acting as miR143-3p host gene and inhibiting DNA replication. J Exp Clin Cancer Res, 40:205. https://doi.org/10.1186/s13046-021-02015-4https://doi.org/10.1186/s13046-021-02015-4
Shi F, Xiao F, Ding P, et al., 2016. Long noncoding RNA highly up-regulated in liver cancer predicts unfavorable outcome and regulates metastasis by MMPs in triple-negative breast cancer. Arch Med Res, 47(6):446-453. https://doi.org/10.1016/j.arcmed.2016.11.001https://doi.org/10.1016/j.arcmed.2016.11.001
Shin VY, Chen JW, Cheuk IWY, et al., 2019. Long non-coding RNA NEAT1 confers oncogenic role in triple-negative breast cancer through modulating chemoresistance and cancer stemness. Cell Death Dis, 10(4):270. https://doi.org/10.1038/s41419-019-1513-5https://doi.org/10.1038/s41419-019-1513-5
Singh DD, Lee HJ, Yadav DK, 2023. Recent clinical advances on long non-coding RNAs in triple-negative breast cancer. Cells, 12(4):674. https://doi.org/10.3390/cells12040674https://doi.org/10.3390/cells12040674
Song X, Liu ZY, Yu ZY, 2019. LncRNA NEF is downregulated in triple negative breast cancer and correlated with poor prognosis. Acta Biochim Biophys Sin, 51(4):386-392. https://doi.org/10.1093/abbs/gmz021https://doi.org/10.1093/abbs/gmz021
Sun J, Li XH, Yu EQ, et al., 2021. A novel tumor suppressor ASMTL-AS1 regulates the miR-1228-3p/SOX17/β-catenin axis in triple-negative breast cancer. Diagn Pathol, 16:45. https://doi.org/10.1186/s13000-021-01105-3https://doi.org/10.1186/s13000-021-01105-3
Sun WD, Zu SL, Shao GF, et al., 2021. Long non-coding DANCR targets miR-185-5p to upregulate LIM and SH3 protein 1 promoting prostate cancer via the FAK/PI3K/AKT/GSK3Β/snail pathway. J Gene Med, 23(7):e3344. https://doi.org/10.1002/jgm.3344https://doi.org/10.1002/jgm.3344
Swellam M, el Magdoub HM, Shawki MA, et al., 2021. Clinical impact of LncRNA XIST and LncRNA NEAT1 for diagnosis of high-risk group breast cancer patients. Curr Probl Cancer, 45(5):100709. https://doi.org/10.1016/j.currproblcancer.2021.100709https://doi.org/10.1016/j.currproblcancer.2021.100709
Tang JM, Zhong GS, Zhang HB, et al., 2018. LncRNA DANCR upregulates PI3K/AKT signaling through activating serine phosphorylation of RXRA. Cell Death Dis, 9(12):1167. https://doi.org/10.1038/s41419-018-1220-7https://doi.org/10.1038/s41419-018-1220-7
Tang TL, Cheng YG, She Q, et al., 2018. Long non-coding RNA TUG1 sponges miR-197 to enhance cisplatin sensitivity in triple negative breast cancer. Biomed Pharmacother, 107:338-346. https://doi.org/10.1016/j.biopha.2018.07.076https://doi.org/10.1016/j.biopha.2018.07.076
Tao WY, Wang CY, Zhu BF, et al., 2019. LncRNA DANCR contributes to tumor progression via targetting miR-216a-5p in breast cancer: lncRNA DANCR contributes to tumor progression. Biosci Rep, 39(4):BSR20181618. https://doi.org/10.1042/bsr20181618https://doi.org/10.1042/bsr20181618
Vtorushin S, Dulesova A, Krakhmal N, 2022. Luminal androgen receptor (LAR) subtype of triple-negative breast cancer: molecular, morphological, and clinical features. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 23(8):617-624. https://doi.org/10.1631/jzus.B2200113https://doi.org/10.1631/jzus.B2200113
Wan WJ, Ao X, Chen Q, et al., 2022. METTL3/IGF2BP3 axis inhibits tumor immune surveillance by upregulating N6-methyladenosine modification of PD-L1 mRNA in breast cancer. Mol Cancer, 21:60. https://doi.org/10.1186/s12943-021-01447-yhttps://doi.org/10.1186/s12943-021-01447-y
Wang L, Liu DQ, Wu XR, et al., 2018. Long non-coding RNA (LncRNA) RMST in triple-negative breast cancer (TNBC): expression analysis and biological roles research. J Cell Physiol, 233(10):6603-6612. https://doi.org/10.1002/jcp.26311https://doi.org/10.1002/jcp.26311
Wang N, Hou MS, Zhan Y, et al., 2019. LncRNA PTCSC3 inhibits triple-negative breast cancer cell proliferation by downregulating lncRNA H19. J Cell Biochem, 120(9):15083-15088. https://doi.org/10.1002/jcb.28769https://doi.org/10.1002/jcb.28769
Wang PS, Chou CH, Lin CH, et al., 2018. A novel long non-coding RNA linc-ZNF469-3 promotes lung metastasis through miR-574-5p-ZEB1 axis in triple negative breast cancer. Oncogene, 37(34):4662-4678. https://doi.org/10.1038/s41388-018-0293-1https://doi.org/10.1038/s41388-018-0293-1
Wang R, Huang ZM, Qian CW, et al., 2020. LncRNA WEE2-AS1 promotes proliferation and inhibits apoptosis in triple negative breast cancer cells via regulating miR-32-5p/TOB1 axis. Biochem Biophys Res Commun, 526(4):1005-1012. https://doi.org/10.1016/j.bbrc.2020.01.170https://doi.org/10.1016/j.bbrc.2020.01.170
Wang SW, Ke H, Zhang HL, et al., 2018. LncRNA MIR100HG promotes cell proliferation in triple-negative breast cancer through triplex formation with p27 loci. Cell Death Dis, 9(8):805. https://doi.org/10.1038/s41419-018-0869-2https://doi.org/10.1038/s41419-018-0869-2
Wang YF, Zhang GC, Han J, 2019. HIF1A-AS2 predicts poor prognosis and regulates cell migration and invasion in triple-negative breast cancer. J Cell Biochem, 120(6):10513-10518. https://doi.org/10.1002/jcb.28337https://doi.org/10.1002/jcb.28337
Wong CCL, Gilkes DM, Zhang HF, et al., 2011. Hypoxia-inducible factor 1 is a master regulator of breast cancer metastatic niche formation. Proc Natl Acad Sci USA, 108(39):16369-16374. https://doi.org/10.1073/pnas.1113483108https://doi.org/10.1073/pnas.1113483108
Xu J, Wu KJ, Jia QJ, et al., 2020. Roles of miRNA and lncRNA in triple-negative breast cancer. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 21(9):673-689. https://doi.org/10.1631/jzus.B1900709https://doi.org/10.1631/jzus.B1900709
Yang J, Meng XL, Yu Y, et al., 2019. LncRNA POU3F3 promotes proliferation and inhibits apoptosis of cancer cells in triple-negative breast cancer by inactivating caspase 9. Biosci Biotechnol Biochem, 83(6):1117-1123. https://doi.org/10.1080/09168451.2019.1588097https://doi.org/10.1080/09168451.2019.1588097
Yang X, Zhang S, He CY, et al., 2020. METTL14 suppresses proliferation and metastasis of colorectal cancer by down-regulating oncogenic long non-coding RNA XIST. Mol Cancer, 19:46. https://doi.org/10.1186/s12943-020-1146-4https://doi.org/10.1186/s12943-020-1146-4
Youness RA, Hafez HM, Khallaf E, et al., 2019. The long noncoding RNA sONE represses triple-negative breast cancer aggressiveness through inducing the expression of miR-34a, miR-15a, miR-16, and let-7a. J Cell Physiol, 234(11):20286-20297. https://doi.org/10.1002/jcp.28629https://doi.org/10.1002/jcp.28629
Yu CC, Li Y, Chen GP, et al., 2022. Bioactive constituents of animal-derived traditional Chinese medicinal materials for breast cancer: opportunities and challenges. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 23(7):547-563. https://doi.org/10.1631/jzus.B2101019https://doi.org/10.1631/jzus.B2101019
Zaheer S, Shah N, Maqbool SA, et al., 2019. Estimates of past and future time trends in age-specific breast cancer incidence among women in Karachi, Pakistan: 2004–2025. BMC Public Health, 19:1001. https://doi.org/10.1186/s12889-019-7330-zhttps://doi.org/10.1186/s12889-019-7330-z
Zhang GX, Li HL, Sun RM, et al., 2019. Long non-coding RNA ZEB2-AS1 promotes the proliferation, metastasis and epithelial mesenchymal transition in triple-negative breast cancer by epigenetically activating ZEB2. J Cell Mol Med, 23(5):3271-3279. https://doi.org/10.1111/jcmm.14213https://doi.org/10.1111/jcmm.14213
Zhang KM, Liu P, Tang HL, et al., 2018. AFAP1-AS1 promotes epithelial-mesenchymal transition and tumorigenesis through Wnt/β-catenin signaling pathway in triple-negative breast cancer. Front Pharmacol, 9:1248. https://doi.org/10.3389/fphar.2018.01248https://doi.org/10.3389/fphar.2018.01248
Zhang M, Weng WW, Zhang QY, et al., 2018. The lncRNA NEAT1 activates Wnt/β-catenin signaling and promotes colorectal cancer progression via interacting with DDX5. J Hematol Oncol, 11:113. https://doi.org/10.1186/s13045-018-0656-7https://doi.org/10.1186/s13045-018-0656-7
Zhang YD, Zhang HW, Kang HQ, et al., 2019. Knockdown of long non-coding RNA HOST2 inhibits the proliferation of triple negative breast cancer via regulation of the let-7b/CDK6 axis. Int J Mol Med, 43(2):1049-1057. https://doi.org/10.3892/ijmm.2018.3995https://doi.org/10.3892/ijmm.2018.3995
Zhao S, Zuo WJ, Shao ZM, et al., 2020. Molecular subtypes and precision treatment of triple-negative breast cancer. Ann Transl Med, 8(7):499. https://doi.org/10.21037/atm.2020.03.194https://doi.org/10.21037/atm.2020.03.194
Zheng BH, He ZX, Zhang J, et al., 2021. The biological function of TUSC7/miR-1224-3p axis in triple-negative breast cancer. Cancer Manag Res, 13:5763-5774. https://doi.org/10.2147/cmar.S305865https://doi.org/10.2147/cmar.S305865
Zheng SP, Li MQ, Miao KK, et al., 2020. LncRNA GAS5-promoted apoptosis in triple-negative breast cancer by targeting miR-378a-5p/SUFU signaling. J Cell Biochem, 121(3):2225-2235. https://doi.org/10.1002/jcb.29445https://doi.org/10.1002/jcb.29445
Zheng SQ, Yang L, Zou YT, et al., 2020. Long non-coding RNA HUMT hypomethylation promotes lymphangiogenesis and metastasis via activating FOXK1 transcription in triple-negative breast cancer. J Hematol Oncol, 13:17. https://doi.org/10.1186/s13045-020-00852-yhttps://doi.org/10.1186/s13045-020-00852-y
Zhu H, Zheng T, Yu J, et al., 2018. LncRNA XIST accelerates cervical cancer progression via upregulating Fus through competitively binding with miR-200a. Biomed Pharmacother, 105:789-797. https://doi.org/10.1016/j.biopha.2018.05.053https://doi.org/10.1016/j.biopha.2018.05.053
Zhu YM, Jin L, Shi RH, et al., 2022. The long noncoding RNA glycoLINC assembles a lower glycolytic metabolon to promote glycolysis. Mol Cell, 82(3):542-554.e6. https://doi.org/10.1016/j.molcel.2021.11.017https://doi.org/10.1016/j.molcel.2021.11.017
Zuo YG, Li Y, Zhou ZY, et al., 2017. Long non-coding RNA MALAT1 promotes proliferation and invasion via targeting miR-129-5p in triple-negative breast cancer. Biomed Pharmacother, 95:922-928. https://doi.org/10.1016/j.biopha.2017.09.005https://doi.org/10.1016/j.biopha.2017.09.005
0
Views
14
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution