无数据
Scan for full text
Department of Clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China
Published: 15 June 2024 ,
Published Online: 17 May 2024 ,
Received: 09 January 2023 ,
Revised: 06 June 2023 ,
刘颖,马拥军.宏基因组二代测序技术(mNGS)在感染性疾病中的临床应用[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2024,25(06):471-484.
Ying LIU, Yongjun MA. Clinical applications of metagenomics next-generation sequencing in infectious diseases. [J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology) 25(6):471-484(2024)
刘颖,马拥军.宏基因组二代测序技术(mNGS)在感染性疾病中的临床应用[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2024,25(06):471-484. DOI: 10.1631/jzus.B2300029.
Ying LIU, Yongjun MA. Clinical applications of metagenomics next-generation sequencing in infectious diseases. [J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology) 25(6):471-484(2024) DOI: 10.1631/jzus.B2300029.
传染病对人类健康产生巨大威胁。快速准确地检测出病原体对于传染病的诊断和治疗非常重要。宏基因组二代测序技术(mNGS)能无差别检测样本中所有的核酸(DNA和RNA)。随着测序和生物信息学技术的发展,mNGS正从实验室研究向临床应用迈进,为病原体检测开辟了新的途径。大量研究表明,mNGS在感染性疾病的临床应用中具有良好的潜力,尤其适用于难检测、罕见和新型病原。但是,mNGS在临床应用中仍存在一些问题:(1)缺乏通用的、可验证的工作流程和质量保证;(2)对高宿主背景和低生物量的样本不敏感;(3)缺乏对海量数据分析和报告解读的标准化指导。因此,全面了解这项新技术将有助于促进mNGS在感染性疾病中的临床应用。本文简要综述了二代测序技术的发展历史、主流测序平台和mNGS工作流程,并讨论了mNGS在感染性疾病中的临床应用及该技术的优缺点。
Infectious diseases are a great threat to human health. Rapid and accurate detection of pathogens is important in the diagnosis and treatment of infectious diseases. Metagenomics next-generation sequencing (mNGS) is an unbiased and comprehensive approach for detecting all RNA and DNA in a sample. With the development of sequencing and bioinformatics technologies
mNGS is moving from research to clinical application
which opens a new avenue for pathogen detection. Numerous studies have revealed good potential for the clinical application of mNGS in infectious diseases
especially in difficult-to-detect
rare
and novel pathogens. However
there are several hurdles in the clinical application of mNGS
such as: (1) lack of universal workflow validation and quality assurance; (2) insensitivity to high-host background and low-biomass samples; and (3) lack of standardized instructions for mass data analysis and report interpretation. Therefore
a complete understanding of this new technology will help promote the clinical application of mNGS to infectious diseases. This review briefly introduces the history of next-generation sequencing
mainstream sequencing platforms
and mNGS workflow
and discusses the clinical applications of mNGS to infectious diseases and its advantages and disadvantages.
宏基因组二代测序技术(mNGS)感染性疾病脑脊液(CSF)牛津纳米孔技术(ONT)微生物群
Metagenomics next-generation sequencing (mNGS)Infectious diseaseCerebrospinal fluid (CSF)Oxford Nanopore Technologies (ONT)Microbiome
Azoulay E, Russell L, van de Louw A, et al., 2020. Diagnosis of severe respiratory infections in immunocompromised patients. Intensive Care Med, 46(2):298-314. https://doi.org/10.1007/s00134-019-05906-5https://doi.org/10.1007/s00134-019-05906-5
Bajaj JS, Acharya C, Sikaroodi M, et al., 2020. Cost-effectiveness of integrating gut microbiota analysis into hospitalisation prediction in cirrhosis. GastroHep, 2(2):79-86. https://doi.org/10.1002/ygh2.390https://doi.org/10.1002/ygh2.390
Blauwkamp TA, Thair S, Rosen MJ, et al., 2019. Analytical and clinical validation of a microbial cell-free DNA sequencing test for infectious disease. Nat Microbiol, 4(4):663-674. https://doi.org/10.1038/s41564-018-0349-6https://doi.org/10.1038/s41564-018-0349-6
Chen HB, Yin YY, Gao H, et al., 2020. Clinical utility of in-house metagenomic next-generation sequencing for the diagnosis of lower respiratory tract infections and analysis of the host immune response. Clin Infect Dis, 71(Suppl 4):S416-S426. https://doi.org/10.1093/cid/ciaa1516https://doi.org/10.1093/cid/ciaa1516
Chiang AD, Dekker JP, 2020. From the pipeline to the bedside: advances and challenges in clinical metagenomics. J Infect Dis, 221(Suppl 3):S331-S340. https://doi.org/10.1093/infdis/jiz151https://doi.org/10.1093/infdis/jiz151
Chiu CY, Miller SA, 2019. Clinical metagenomics. Nat Rev Genet, 20(6):341-355. https://doi.org/10.1038/s41576-019-0113-7https://doi.org/10.1038/s41576-019-0113-7
del Fabbro C, Scalabrin S, Morgante M, et al., 2013. An extensive evaluation of read trimming effects on Illumina NGS data analysis. PLoS ONE, 8(12):e85024. https://doi.org/10.1371/journal.pone.0085024https://doi.org/10.1371/journal.pone.0085024
Duan HX, Li X, Mei AH, et al., 2021. The diagnostic value of metagenomic next-generation sequencing in infectious diseases. BMC Infect Dis, 21:62. https://doi.org/10.1186/s12879-020-05746-5https://doi.org/10.1186/s12879-020-05746-5
Dye C, 2014. After 2015: infectious diseases in a new era of health and development. Philos Trans R Soc B Biol Sci, 369(1645):20130426. https://doi.org/10.1098/rstb.2013.0426https://doi.org/10.1098/rstb.2013.0426
Fang XW, Mei Q, Fan XQ, et al., 2020. Diagnostic value of metagenomic next-generation sequencing for the detection of pathogens in bronchoalveolar lavage fluid in ventilator-associated pneumonia patients. Front Microbiol, 11:599756. https://doi.org/10.3389/fmicb.2020.599756https://doi.org/10.3389/fmicb.2020.599756
Faria NR, Quick J, Claro IM, et al., 2017. Establishment and cryptic transmission of Zika virus in Brazil and the Americas. Nature, 546(7658):406-410. https://doi.org/10.1038/nature22401https://doi.org/10.1038/nature22401
Flurin L, Wolf MJ, Mutchler MM, et al., 2022. Targeted metagenomic sequencing-based approach applied to 2146 tissue and body fluid samples in routine clinical practice. Clin Infect Dis, 75(10):1800-1808. https://doi.org/10.1093/cid/ciac247https://doi.org/10.1093/cid/ciac247
Flygare S, Simmon K, Miller C, et al., 2016. Taxonomer: an interactive metagenomics analysis portal for universal pathogen detection and host mRNA expression profiling. Genome Biol, 17:111. https://doi.org/10.1186/s13059-016-0969-1https://doi.org/10.1186/s13059-016-0969-1
Foox J, Tighe SW, Nicolet CM, et al., 2021. Performance assessment of DNA sequencing platforms in the ABRF next-generation sequencing study. Nat Biotechnol, 39(9):1129-1140. https://doi.org/10.1038/s41587-021-01049-5https://doi.org/10.1038/s41587-021-01049-5
Gallon P, Parekh M, Ferrari S, et al., 2019. Metagenomics in ophthalmology: hypothesis or real prospective? Biotechnol Rep (Amst), 23:e00355. https://doi.org/10.1016/j.btre.2019.e00355https://doi.org/10.1016/j.btre.2019.e00355
Gao D, Yu QF, Wang GQ, et al., 2016. Diagnosis of a malayan filariasis case using a shotgun diagnostic metagenomics assay. Parasit Vectors, 9:86. https://doi.org/10.1186/s13071-016-1363-2https://doi.org/10.1186/s13071-016-1363-2
Geng SK, Mei Q, Zhu CY, et al., 2021. Metagenomic next-generation sequencing technology for detection of pathogens in blood of critically ill patients. Int J Infect Dis, 103:81-87. https://doi.org/10.1016/j.ijid.2020.11.166https://doi.org/10.1016/j.ijid.2020.11.166
Gosiewski T, Ludwig-Galezowska AH, Huminska K, et al., 2017. Comprehensive detection and identification of bacterial DNA in the blood of patients with sepsis and healthy volunteers using next-generation sequencing method—the observation of DNAemia. Eur J Clin Microbiol Infect Dis, 36(2):329-336. https://doi.org/10.1007/s10096-016-2805-7https://doi.org/10.1007/s10096-016-2805-7
Granerod J, Ambrose HE, Davies NWS, et al., 2010. Causes of encephalitis and differences in their clinical presentations in England: a multicentre, population-based prospective study. Lancet Infect Dis, 10(12):835-844. https://doi.org/10.1016/s1473-3099(10)70222-xhttps://doi.org/10.1016/s1473-3099(10)70222-x
Gu W, Miller S, Chiu CY, 2019. Clinical metagenomic next-generation sequencing for pathogen detection. Annu Rev Pathol, 14:319-338. https://doi.org/10.1146/annurev-pathmechdis-012418-012751https://doi.org/10.1146/annurev-pathmechdis-012418-012751
Gu W, Deng XD, Lee M, et al., 2021. Rapid pathogen detection by metagenomic next-generation sequencing of infected body fluids. Nat Med, 27:115-124. https://doi.org/10.1038/s41591-020-1105-zhttps://doi.org/10.1038/s41591-020-1105-z
Guo YF, Li HN, Chen HB, et al., 2021. Metagenomic next-generation sequencing to identify pathogens and cancer in lung biopsy tissue. eBioMedicine, 73:103639. https://doi.org/10.1016/j.ebiom.2021.103639https://doi.org/10.1016/j.ebiom.2021.103639
Hasan MR, Rawat A, Tang P, et al., 2016. Depletion of human DNA in spiked clinical specimens for improvement of sensitivity of pathogen detection by next-generation sequencing. J Clin Microbiol, 54(4):919-927. https://doi.org/10.1128/JCM.03050-15https://doi.org/10.1128/JCM.03050-15
Han DS, Li ZY, Li R, et al., 2019. mNGS in clinical microbiology laboratories: on the road to maturity. Crit Rev Microbiol, 45(5-6):668-685. https://doi.org/10.1080/1040841X.2019.1681933https://doi.org/10.1080/1040841X.2019.1681933
Heather JM, Chain B, 2016. The sequence of sequencers: the history of sequencing DNA. Genomics, 107(1):1-8. https://doi.org/10.1016/j.ygeno.2015.11.003https://doi.org/10.1016/j.ygeno.2015.11.003
Hong DK, Blauwkamp TA, Kertesz M, et al., 2018. Liquid biopsy for infectious diseases: sequencing of cell-free plasma to detect pathogen DNA in patients with invasive fungal disease. Diagn Microbiol Infect Dis, 92(3):210-213. https://doi.org/10.1016/j.diagmicrobio.2018.06.009https://doi.org/10.1016/j.diagmicrobio.2018.06.009
Huang J, Liang XM, Xuan YK, et al., 2017. A reference human genome dataset of the BGISEQ-500 sequencer. Gigascience, 6(5):gix024. https://doi.org/10.1093/gigascience/gix024https://doi.org/10.1093/gigascience/gix024
Huang J, Jiang EL, Yang DL, et al., 2020. Metagenomic next-generation sequencing versus traditional pathogen detection in the diagnosis of peripheral pulmonary infectious lesions. Infect Drug Resist, 13:567-576. https://doi.org/10.2147/IDR.S235182https://doi.org/10.2147/IDR.S235182
Jing CD, Chen HB, Liang Y, et al., 2021. Clinical evaluation of an improved metagenomic next-generation sequencing test for the diagnosis of bloodstream infections. Clin Chem, 67(8):1133-1143. https://doi.org/10.1093/clinchem/hvab061https://doi.org/10.1093/clinchem/hvab061
Korostin D, Kulemin N, Naumov V, et al., 2020. Comparative analysis of novel MGISEQ-2000 sequencing platform vs Illumina HiSeq 2500 for whole-genome sequencing. PLoS ONE, 15(3):e0230301. https://doi.org/10.1371/journal.pone.0230301https://doi.org/10.1371/journal.pone.0230301
Lalitha P, Prajna NV, Sikha M, et al., 2021. Evaluation of metagenomic deep sequencing as a diagnostic test for infectious keratitis. Ophthalmology, 128(3):473-475. https://doi.org/10.1016/j.ophtha.2020.07.030https://doi.org/10.1016/j.ophtha.2020.07.030
Lamy B, Dargère S, Arendrup MC, et al., 2016. How to optimize the use of blood cultures for the diagnosis of bloodstream infections? A state-of-the art. Front Microbiol, 7:697. https://doi.org/10.3389/fmicb.2016.00697https://doi.org/10.3389/fmicb.2016.00697
Li N, Cai QQ, Miao Q, et al., 2021. High-throughput metagenomics for identification of pathogens in the clinical settings. Small Methods, 5(1):2000792. https://doi.org/10.1002/smtd.202000792https://doi.org/10.1002/smtd.202000792
Liu DL, Zhou HW, Xu T, et al., 2021. Multicenter assessment of shotgun metagenomics for pathogen detection. eBioMedicine, 74:103649. https://doi.org/10.1016/j.ebiom.2021.103649https://doi.org/10.1016/j.ebiom.2021.103649
Liu X, Chen YL, Ouyang H, et al., 2021. Tuberculosis diagnosis by metagenomic next-generation sequencing on bronchoalveolar lavage fluid: a cross-sectional analysis. Int J Infect Dis, 104:50-57. https://doi.org/10.1016/j.ijid.2020.12.063https://doi.org/10.1016/j.ijid.2020.12.063
Liu YX, Qin Y, Chen T, et al., 2021. A practical guide to amplicon and metagenomic analysis of microbiome data. Protein Cell, 12(5):315-330. https://doi.org/10.1007/s13238-020-00724-8https://doi.org/10.1007/s13238-020-00724-8
Low L, Nakamichi K, Akileswaran L, et al., 2022. Deep metagenomic sequencing for endophthalmitis pathogen detection using a Nanopore platform. Am J Ophthalmol, 242:243-251. https://doi.org/10.1016/j.ajo.2022.05.022https://doi.org/10.1016/j.ajo.2022.05.022
Marotz CA, Sanders JG, Zuniga C, et al., 2018. Improving saliva shotgun metagenomics by chemical host DNA depletion. Microbiome, 6:42. https://doi.org/10.1186/s40168-018-0426-3https://doi.org/10.1186/s40168-018-0426-3
Maxam AM, Gilbert W, 1977. A new method for sequencing DNA. Proc Natl Acad Sci USA, 74(2):560-564. https://doi.org/10.1073/pnas.74.2.560https://doi.org/10.1073/pnas.74.2.560
Miao Q, Ma YY, Wang QQ, et al., 2018. Microbiological diagnostic performance of metagenomic next-generation sequencing when applied to clinical practice. Clin Infect Dis, 67(suppl_2):S231-S240. https://doi.org/10.1093/cid/ciy693https://doi.org/10.1093/cid/ciy693
Miller S, Naccache SN, Samayoa E, et al., 2019. Laboratory validation of a clinical metagenomic sequencing assay for pathogen detection in cerebrospinal fluid. Genome Res, 29(5):831-842. https://doi.org/10.1101/gr.238170.118https://doi.org/10.1101/gr.238170.118
Mu SR, Hu L, Zhang Y, et al., 2021. Prospective evaluation of a rapid clinical metagenomics test for bacterial pneumonia. Front Cell Infect Microbiol, 11:684965. https://doi.org/10.3389/fcimb.2021.684965https://doi.org/10.3389/fcimb.2021.684965
Naccache SN, Federman S, Veeraraghavan N, et al., 2014. A cloud-compatible bioinformatics pipeline for ultrarapid pathogen identification from next-generation sequencing of clinical samples. Genome Res, 24(7):1180-1192. https://doi.org/10.1101/gr.171934.113https://doi.org/10.1101/gr.171934.113
National Medical Products Administration, 2024. Citing Electronic Sources of Information. No. 20183220257. https://www.nmpa.gov.cn/datasearch/search-info.html?nmpa=aWQ9YmIwNjM4Zjk5NzBiM2ZjYWUxMmU4NjE1NGE4NjBiZDYmaXRlbUlkPWZmODA4MDgxODNjYWQ3NTAwMTgzY2I2NmZlNjkwMjg1https://www.nmpa.gov.cn/datasearch/search-info.html?nmpa=aWQ9YmIwNjM4Zjk5NzBiM2ZjYWUxMmU4NjE1NGE4NjBiZDYmaXRlbUlkPWZmODA4MDgxODNjYWQ3NTAwMTgzY2I2NmZlNjkwMjg1
National Medical Products Administration, 2024. Citing Electronic Sources of Information. No. 20183220258. https://www.nmpa.gov.cn/datasearch/search-info.html?nmpa=aWQ9ZGZjNWJjYWJhMzI4YTY3MDdmOWM0MWUzODFmY2Q4NTkmaXRlbUlkPWZmODA4MDgxODNjYWQ3NTAwMTgzY2I2NmZlNjkwMjg1https://www.nmpa.gov.cn/datasearch/search-info.html?nmpa=aWQ9ZGZjNWJjYWJhMzI4YTY3MDdmOWM0MWUzODFmY2Q4NTkmaXRlbUlkPWZmODA4MDgxODNjYWQ3NTAwMTgzY2I2NmZlNjkwMjg1
Nelson MT, Pope CE, Marsh RL, et al., 2019. Human and extracellular DNA depletion for metagenomic analysis of complex clinical infection samples yields optimized viable microbiome profiles. Cell Rep, 26(8):2227-2240.e5. https://doi.org/10.1016/j.celrep.2019.01.091https://doi.org/10.1016/j.celrep.2019.01.091
Parekh M, Romano V, Franch A, et al., 2020. Shotgun sequencing to determine corneal infection. Am J Ophthalmol Case Rep, 19:100737. https://doi.org/10.1016/j.ajoc.2020.100737https://doi.org/10.1016/j.ajoc.2020.100737
Peng JM, Du B, Qin HY, et al., 2021. Metagenomic next-generation sequencing for the diagnosis of suspected pneumonia in immunocompromised patients. J Infect, 82(4):22-27. https://doi.org/10.1016/j.jinf.2021.01.029https://doi.org/10.1016/j.jinf.2021.01.029
Piantadosi A, Mukerji SS, Ye S, et al., 2021. Enhanced virus detection and metagenomic sequencing in patients with meningitis and encephalitis. mBio, 12(4):e0114321. https://doi.org/10.1128/mBio.01143-21https://doi.org/10.1128/mBio.01143-21
Prachayangprecha S, Schapendonk CME, Koopmans MP, et al., 2014. Exploring the potential of next-generation sequencing in detection of respiratory viruses. J Clin Microbiol, 52(10):3722-3730. https://doi.org/10.1128/jcm.01641-14https://doi.org/10.1128/jcm.01641-14
Qian YY, Wang HY, Zhou Y, et al., 2020. Improving pulmon
ary infection diagnosis with metagenomic next generation sequencing. Front Cell Infect Microbiol, 10:567615. https://doi.org/10.3389/fcimb.2020.567615https://doi.org/10.3389/fcimb.2020.567615
Quick J, Loman NJ, Duraffour S, et al., 2016. Real-time, portable genome sequencing for Ebola surveillance. Nature, 530(7589):228-232. https://doi.org/10.1038/nature16996https://doi.org/10.1038/nature16996
Quince C, Walker AW, Simpson JT, et al., 2017. Shotgun metagenomics, from sampling to analysis. Nat Biotechnol, 35(9):833-844. https://doi.org/10.1038/nbt.3935https://doi.org/10.1038/nbt.3935
Ramachandran PS, Wilson MR, 2020. Metagenomics for neuro‑logical infections ‒ expanding our imagination. Nat Rev Neurol, 16(10):547-556. https://doi.org/10.1038/s41582-020-0374-yhttps://doi.org/10.1038/s41582-020-0374-y
Rhodes A, Evans LE, Alhazzani W, et al., 2017. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med, 43(3):304-377. https://doi.org/10.1007/s00134-017-4683-6https://doi.org/10.1007/s00134-017-4683-6
Salipante SJ, Sengupta DJ, Rosenthal C, et al., 2013. Rapid 16S rRNA next-generation sequencing of polymicrobial clinical samples for diagnosis of complex bacterial infections. PLoS ONE, 8(5):e65226. https://doi.org/10.1371/journal.pone.0065226https://doi.org/10.1371/journal.pone.0065226
Salter SJ, Cox MJ, Turek EM, et al., 2014. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol, 12:87. https://doi.org/10.1186/s12915-014-0087-zhttps://doi.org/10.1186/s12915-014-0087-z
Sanger F, Coulson AR, 1975. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol, 94(3):441-448. https://doi.org/10.1016/0022-2836(75)90213-2https://doi.org/10.1016/0022-2836(75)90213-2
Schatz MC, Delcher AL, Salzberg SL, 2010. Assembly of large genomes using second-generation sequencing. Genome Res, 20(9):1165-1173. https://doi.org/10.1101/gr.101360.109https://doi.org/10.1101/gr.101360.109
Strong MJ, Xu GR, Morici L, et al., 2014. Microbial contamin
ation in next generation sequencing: implications for sequence-based analysis of clinical samples. PLoS Pathog, 10(11):e1004437. https://doi.org/10.1371/journal.ppat.1004437https://doi.org/10.1371/journal.ppat.1004437
Sun X, Song L, Yang WJ, et al., 2020. Nanopore sequencing and its clinical applications. Methods Mol Biol, 2204:13-32. https://doi.org/10.1007/978-1-0716-0904-0_2https://doi.org/10.1007/978-1-0716-0904-0_2
Thomas T, Gilbert J, Meyer F, 2012. Metagenomics—a guide from sampling to data analysis. Microb Inform Exp, 2:3. https://doi.org/10.1186/2042-5783-2-3https://doi.org/10.1186/2042-5783-2-3
Thorburn F, Bennett S, Modha S, et al., 2015. The use of next generation sequencing in the diagnosis and typing of respiratory infections. J Clin Virol, 69:96-100. https://doi.org/10.1016/j.jcv.2015.06.082https://doi.org/10.1016/j.jcv.2015.06.082
van Dijk EL, Jaszczyszyn Y, Naquin D, et al., 2018. The third revolution in sequencing technology. Trends Genet, 34(9):666-681. https://doi.org/10.1016/j.tig.2018.05.008https://doi.org/10.1016/j.tig.2018.05.008
Wagner K, Springer B, Pires VP, et al., 2018. Molecular detection of fungal pathogens in clinical specimens by 18S rDNA high-throughput screening in comparison to ITS PCR and culture. Sci Rep, 8:6964. https://doi.org/10.1038/s41598-018-25129-whttps://doi.org/10.1038/s41598-018-25129-w
Wang YH, Zhao Y, Bollas A, et al., 2021. Nanopore sequencing technology, bioinformatics and applications. Nat Biotechnol, 39(11):1348-1365. https://doi.org/10.1038/s41587-021-01108-xhttps://doi.org/10.1038/s41587-021-01108-x
Wilson MR, Naccache SN, Samayoa E, et al., 2014. Actionable diagnosis of neuroleptospirosis by next-generation sequencing. N Engl J Med, 370(25):2408-2417. https://doi.org/10.1056/NEJMoa1401268https://doi.org/10.1056/NEJMoa1401268
Wilson MR, O'Donovan BD, Gelfand JM, et al., 2018. Chronic meningitis investigated via metagenomic next-generation sequencing. JAMA Neurol, 75(8):947-955. https://doi.org/10.1001/jamaneurol.2018.0463https://doi.org/10.1001/jamaneurol.2018.0463
Wilson MR, Sample HA, Zorn KC, et al., 2019. Clinical metagenomic sequencing for diagnosis of meningitis and encephalitis. N Engl J Med, 380(24):2327-2340. https://doi.org/10.1056/NEJMoa1803396https://doi.org/10.1056/NEJMoa1803396
Xiao TT, Zhou WH, 2020. The third generation sequencing: the advanced approach to genetic diseases. Transl Pediatr, 9(2):163-173. https://doi.org/10.21037/tp.2020.03.06https://doi.org/10.21037/tp.2020.03.06
Xing XW, Zhang JT, Ma YB, et al., 2020. Metagenomic next-generation sequencing for diagnosis of infectious encephalitis and meningitis: a large, prospective case series of 213 patients. Front Cell Infect Microbiol, 10:88. https://doi.org/10.3389/fcimb.2020.00088https://doi.org/10.3389/fcimb.2020.00088
Yang L, Song JX, Wang YB, et al., 2021. Metagenomic next-generation sequencing for pulmonary fungal infection diag
nosis: lung biopsy versus bronchoalveolar lavage fluid. Infect Drug Resist, 14:4333-4359. https://doi.org/10.2147/IDR.S333818https://doi.org/10.2147/IDR.S333818
Zhang W, Wu TF, Guo MM, et al., 2019. Characterization of a new bunyavirus and its derived small RNAs in the brown citrus aphid, Aphis citricidus. Virus Genes, 55(4):557-561. https://doi.org/10.1007/s11262-019-01667-xhttps://doi.org/10.1007/s11262-019-01667-x
Zhang XX, Guo LY, Liu LL, et al., 2019. The diagnostic value of metagenomic next-generation sequencing for identifying Streptococcus pneumoniae in paediatric bacterial meningitis. BMC Infect Dis, 19:495. https://doi.org/10.1186/s12879-019-4132-yhttps://doi.org/10.1186/s12879-019-4132-y
Zhang Y, Cui P, Zhang HC, et al., 2020. Clinical application and evaluation of metagenomic next-generation sequencing in suspected adult central nervous system infection. J Transl Med, 18:199. https://doi.org/10.1186/s12967-020-02360-6https://doi.org/10.1186/s12967-020-02360-6
Zheng Y, Qiu XJ, Wang T, et al., 2021. The diagnostic value of metagenomic next-generation sequencing in lower respiratory tract infection. Front Cell Infect Microbiol, 11:694756. https://doi.org/10.3389/fcimb.2021.694756https://doi.org/10.3389/fcimb.2021.694756
Zhou X, Wu HL, Ruan QL, et al., 2019. Clinical evaluation of diagnosis efficacy of active Mycobacterium tuberculosis complex infection via metagenomic next-generation sequencing of direct clinical samples. Front Cell Infect Microbiol, 9:351. https://doi.org/10.3389/fcimb.2019.00351https://doi.org/10.3389/fcimb.2019.00351
Zhu N, Zhou DB, Li SQ, 2021. Diagnostic accuracy of metagenomic next-generation sequencing in sputum-scarce or smear-negative cases with suspected pulmonary tuberculosis. BioMed Res Int, 2021:9970817. https://doi.org/10.1155/2021/9970817https://doi.org/10.1155/2021/9970817
Zhu YG, Tang XD, Lu YT, et al., 2018. Contemporary situation of community-acquired pneumonia in China: a systematic review. J Transl Int Med, 6(1):26-31. https://doi.org/10.2478/jtim-2018-0006https://doi.org/10.2478/jtim-2018-0006
0
Views
24
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution