无数据
Scan for full text
1.GN. Gabrichevsky Scientific and Research Institute of Epidemiology and Microbiology, Moscow 125212, Russia
2.IM. Sechenov First Moscow State Medical University, Moscow 119991, Russia
3.Perm State Pharmaceutical Academy, Perm 614990, Russia
Denis KUZNETSOV,Oleg kalyuzhin,Andrey MIRONOV等.一例由2019冠病毒病(COVID-19)疫苗接种引发的白癜风病例及其胸腺功能障碍的作用机制分析[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2023,24(12):1141-1150.
Denis KUZNETSOV, Oleg KALYUZHIN, Andrey MIRONOV, et al. A case of vitiligo after COVID-19 vaccination: a possible role of thymic dysfunction. [J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology) 24(12):1141-1150(2023)
Denis KUZNETSOV,Oleg kalyuzhin,Andrey MIRONOV等.一例由2019冠病毒病(COVID-19)疫苗接种引发的白癜风病例及其胸腺功能障碍的作用机制分析[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2023,24(12):1141-1150. DOI: 10.1631/jzus.B2300025.
Denis KUZNETSOV, Oleg KALYUZHIN, Andrey MIRONOV, et al. A case of vitiligo after COVID-19 vaccination: a possible role of thymic dysfunction. [J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology) 24(12):1141-1150(2023) DOI: 10.1631/jzus.B2300025.
最近,人们发现接种2019冠状病毒病(COVID-19)疫苗后出现了大量并发症,影响心脏、肾脏、胰腺、关节和皮肤。本文结合已报道的11例COVID-19疫苗(主要与信使RNA(mRNA)疫苗有关)接种后白癜风病例的数据和我们自己接种的1例非复制载体疫苗后的白癜风病例,分析探讨了其相关的病理机制。根据常见的原理,自身免疫性病变是通过病毒的抗原表位与某些人类蛋白质之间的分子模拟诱发的。我们认为这一过程的基础是胸腺负选择的破坏,导致自身反应性T细胞迁移到外周。在本文中,我们证实了疫苗和/或感染以及黑素细胞氧化应激是自身免疫反应的主要诱因。在这种情况下,白癜风的发病机制可被视为糖尿病或动脉粥样硬化等多种自身免疫性疾病发病机制的模型。此外,我们概述了一种病理机制,其中黑色素细胞氧化应激、自身反应性T细胞和胸腺功能障碍可作为干预策略的潜在目标。
白癜风2019冠状病毒病疫苗皮质醇去氢表雄酮自身反应性T细胞维生素D3
Aktas H, Ertuğrul G, 2022. Vitiligo in a COVID-19-vaccinated patient with ulcerative colitis: coincidence? Clin Exp Dermatol, 47(1):143-144. https://doi.org/10.1111/ced.14842https://doi.org/10.1111/ced.14842
Amiri-Dashatan N, Koushki M, Parsamanesh N, et al., 2022. Serum cortisol concentration and COVID-19 severity: a systematic review and meta-analysis. J Invest Med, 70(3):766-772. https://doi.org/10.1136/jim-2021-001989https://doi.org/10.1136/jim-2021-001989
Arora J, Wang JP, Weaver V, et al., 2022. Novel insight into the role of the vitamin D receptor in the development and function of the immune system. J Steroid Biochem Mol Biol, 219:106084. https://doi.org/10.1016/j.jsbmb.2022.106084https://doi.org/10.1016/j.jsbmb.2022.106084
Ashwell JD, Lu FWM, Vacchio MS, 2000. Glucocorticoids in T cell development and function. Annu Rev Immunol, 18:309-345. https://doi.org/10.1146/annurev.immunol.18.1.309https://doi.org/10.1146/annurev.immunol.18.1.309
Aygun H, 2022. Vitamin D can reduce severity in COVID-19 through regulation of PD-L1. Naunyn-Schmiedeberg’s Arch Pharmacol, 395(4):487-494. https://doi.org/10.1007/s00210-022-02210-whttps://doi.org/10.1007/s00210-022-02210-w
Baecher-Allan C, Brown JA, Freeman GJ, et al., 2001. CD4+CD25high regulatory cells in human peripheral blood. J Immunol, 167(3):1245-1253. https://doi.org/10.4049/jimmunol.167.3.1245https://doi.org/10.4049/jimmunol.167.3.1245
Barthlott T, Moncrieffe H, Veldhoen M, et al., 2005. CD25+CD4+ T cells compete with naive CD4+ T cells for IL-2 and exploit it for the induction of IL-10 production. Int Immunol, 17(3):279-288. https://doi.org/10.1093/intimm/dxh207https://doi.org/10.1093/intimm/dxh207
Block JP, Boehmer TK, Forrest CB, et al., 2022. Cardiac complications after SARS-CoV-2 infection and mRNA COVID-19 vaccination—PCORnet, United States, January 2021–January 2022. MMWR Morb Mortal Wkly Rep, 71(14):517-523. https://doi.org/10.15585/mmwr.mm7114e1https://doi.org/10.15585/mmwr.mm7114e1
Bukhari AE, 2022. New-onset of vitiligo in a child following COVID-19 vaccination. JAAD Case Rep, 22:68-69. https://doi.org/10.1016/j.jdcr.2022.02.021https://doi.org/10.1016/j.jdcr.2022.02.021
Caroppo F, Deotto ML, Tartaglia J, et al., 2022. Vitiligo worsened following the second dose of mRNA SARS-CoV-2 vaccine. Dermatol Ther, 35(6):e15434. https://doi.org/10.1111/dth.15434https://doi.org/10.1111/dth.15434
Carter JA, Strömich L, Peacey M, et al., 2022. Transcriptomic diversity in human medullary thymic epithelial cells. Nat Commun, 13:4296. https://doi.org/10.1038/S41467-022-31750-1https://doi.org/10.1038/S41467-022-31750-1
Chen JR, Li SL, Li CY, 2021. Mechanisms of melanocyte death in vitiligo. Med Res Rev, 41(2):1138-1166. https://doi.org/10.1002/med.21754https://doi.org/10.1002/med.21754
Ciccarese G, Drago F, Boldrin S, et al., 2022. Sudden onset of vitiligo after COVID-19 vaccine. Dermatol Ther, 35(1):e15196. https://doi.org/10.1111/dth.15196https://doi.org/10.1111/dth.15196
Cordell W, 2020. The mechanisms linking relative hypercortisolism—the common feature across COVID-19 risks—to ARDS, septic shock, and cytokine dysregulation. SSRN, preprint. https://doi.org/10.2139/ssrn.3721693https://doi.org/10.2139/ssrn.3721693
Cui TT, Zhang WG, Li SL, et al., 2019. Oxidative stress–induced HMGB1 release from melanocytes: a paracrine mechanism underlying the cutaneous inflammation in vitiligo. J Invest Dermatol, 139(10):2174-2184.e4. https://doi.org/10.1016/j.jid.2019.03.1148https://doi.org/10.1016/j.jid.2019.03.1148
Daniels MA, Teixeiro E, Gill J, et al., 2006. Thymic selection threshold defined by compartmentalization of Ras/MAPK signalling. Nature, 444(7120):724-729. https://doi.org/10.1038/nature05269https://doi.org/10.1038/nature05269
Drabkin MJ, Meyer JI, Kanth N, et al., 2018. Age-stratified patterns of thymic involution on multidetector CT. J Thorac Imaging, 33(6):409-416. https://doi.org/10.1097/RTI.0000000000000349https://doi.org/10.1097/RTI.0000000000000349
Duggal NA, Upton J, Phillips AC, et al., 2015. NK cell immunesenescence is increased by psychological but not physical stress in older adults associated with raised cortisol and reduced perforin expression. AGE, 37:11. https://doi.org/10.1007/s11357-015-9748-2https://doi.org/10.1007/s11357-015-9748-2
Dumont-Lagacé M, St-Pierre C, Perreault C, 2015. Sex hormones have pervasive effects on thymic epithelial cells. Sci Rep, 5:12895. https://doi.org/10.1038/srep12895https://doi.org/10.1038/srep12895
Fahy GM, Brooke RT, Watson JP, et al., 2019. Reversal of epigenetic aging and immunosenescent trends in humans. Aging cell, 18(6):e13028. https://doi.org/10.1111/acel.13028https://doi.org/10.1111/acel.13028
Gordon SM, Chaix J, Rupp LJ, et al., 2012. The transcription factors T-bet and Eomes control key checkpoints of natural killer cell maturation. Immunity, 36(1):55-67. https://doi.org/10.1016/j.immuni.2011.11.016https://doi.org/10.1016/j.immuni.2011.11.016
Grant WB, al Anouti F, Boucher BJ, et al., 2022. A narrative review of the evidence for variations in serum 25-hydroxyvitamin D concentration thresholds for optimal health. Nutrients, 14(3):639. https://doi.org/10.3390/nu14030639https://doi.org/10.3390/nu14030639
Handel AE, Irani SR, Holländer GA, 2018. The role of thymic tolerance in CNS autoimmune disease. Nat Rev Neurol, 14(12):723-734. https://doi.org/10.1038/s41582-018-0095-7https://doi.org/10.1038/s41582-018-0095-7
Haseeb AA, Solyman O, Abushanab MM, et al., 2022. Ocular complications following vaccination for COVID-19: a one-year retrospective. Vaccines, 10(2):342. https://doi.org/10.3390/vaccines10020342https://doi.org/10.3390/vaccines10020342
Herzum A, Micalizzi C, Molle MF, et al., 2022. New-onset vitiligo following COVID-19 disease. Skin Health Dis, 2(1):e86. https://doi.org/10.1002/ski2.86https://doi.org/10.1002/ski2.86
Huda MN, Ahmad SM, Alam J, et al., 2019. Infant cortisol stress–response is associated with thymic function and vaccine response. Stress, 22(1):36-43. https://doi.org/10.1080/10253890.2018.1484445https://doi.org/10.1080/10253890.2018.1484445
Hüe S, Monteiro RC, Berrih-Aknin S, et al., 2003. Potential role of NKG2D/MHC class I-related chain A interaction in intrathymic maturation of single-positive CD8 T cells. J Immunol, 171(4):1909-1917. https://doi.org/10.4049/jimmunol.171.4.1909https://doi.org/10.4049/jimmunol.171.4.1909
Jacquemin C, Rambert J, Guillet S, et al., 2017. Heat shock protein 70 potentiates interferon alpha production by plasmacytoid dendritic cells: relevance for cutaneous lupus and vitiligo pathogenesis. Br J Dermatol, 177(5):1367-1375. https://doi.org/10.1111/bjd.15550https://doi.org/10.1111/bjd.15550
Jacquemin C, Martins C, Lucchese F, et al., 2020. NKG2D defines a subset of skin effector memory CD8 T cells with proinflammatory functions in vitiligo. J Invest Dermatol, 140(6):1143-1153.e5. https://doi.org/10.1016/j.jid.2019.11.013https://doi.org/10.1016/j.jid.2019.11.013
Kaminetsky J, Rudikoff D, 2021. New-onset vitiligo following mRNA-1273 (Moderna) COVID-19 vaccination. Clin Case Rep, 9(9):e04865. https://doi.org/10.1002/ccr3.4865https://doi.org/10.1002/ccr3.4865
Kim K, Bang SY, Ikari K, et al., 2016. Association-heterogeneity mapping identifies an Asian-specific association of the GTF2I locus with rheumatoid arthritis. Sci Rep, 6:27563. https://doi.org/10.1038/srep27563https://doi.org/10.1038/srep27563
Koç Yıldırım S, 2022. A new-onset vitiligo following the inactivated COVID-19 vaccine. J Cosmet Dermatol, 21(2):429-430. https://doi.org/10.1111/jocd.14677https://doi.org/10.1111/jocd.14677
Krüger C, Schallreuter KU, 2012. A review of the worldwide prevalence of vitiligo in children/adolescents and adults. Int J Dermatol, 51(10):1206-1212. https://doi.org/10.1111/j.1365-4632.2011.05377.xhttps://doi.org/10.1111/j.1365-4632.2011.05377.x
le Vu S, Bertrand M, Jabagi MJ, et al., 2022. Age and sex-specific risks of myocarditis and pericarditis following Covid-19 messenger RNA vaccines. Nat Commun, 13:3633. https://doi.org/10.1038/s41467-022-31401-5https://doi.org/10.1038/s41467-022-31401-5
Liu CX, Yan SX, Chen HZ, et al., 2021. Association of GTF2I, NFKB1, and TYK2 regional polymorphisms with systemic sclerosis in a Chinese Han population. Front Immunol, 12:640083. https://doi.org/10.3389/fimmu.2021.640083https://doi.org/10.3389/fimmu.2021.640083
López Riquelme I, Fernández Ballesteros MD, Serrano Ordoñez A, et al., 2022. COVID-19 and autoimmune phenomena: vitiligo after Astrazeneca vaccine. Dermatol Ther, 35(7):e15502. https://doi.org/10.1111/dth.15502https://doi.org/10.1111/dth.15502
Macca L, Peterle L, Ceccarelli M, et al., 2022. Vitiligo-like lesions and COVID-19: case report and review of vaccination- and infection-associated vitiligo. Vaccines, 10(10):1647. https://doi.org/10.3390/vaccines10101647https://doi.org/10.3390/vaccines10101647
Mahdavi MRV, Ardestani SK, Rezaei A, et al., 2021. COVID-19 patients suffer from DHEA-S sufficiency. Immunoregulation, 3(2):135-144. https://doi.org/10.32598/Immunoregulation.3.2.5https://doi.org/10.32598/Immunoregulation.3.2.5
Manti PG, Trattaro S, Castaldi D, et al., 2022. Thymic stroma and TFII-I: towards new targeted therapies. Trends Mol Med, 28(1):67-78. https://doi.org/10.1016/j.molmed.2021.10.008https://doi.org/10.1016/j.molmed.2021.10.008
Nakamagoe K, Furuta JI, Shioya A, et al., 2009. A case of vitiligo vulgaris showing a pronounced improvement after treatment for myasthenia gravis. BMJ Case Rep, 2009:bcr07.2009.2091. http://dx.doi.org/10.1136/bcr.07.2009.2091http://dx.doi.org/10.1136/bcr.07.2009.2091
Nicolaidou E, Vavouli C, Koumprentziotis IA, et al., 2023. New-onset vitiligo after COVID-19 mRNA vaccination: a causal association? J Eur Acad Dermatol Venereol, 37(1):e11-e12. http://dx.doi.org/10.1111/jdv.18513http://dx.doi.org/10.1111/jdv.18513
Nimer RM, Khabour OF, Swedan SF, et al., 2022. The impact of vitamin and mineral supplements usage prior to COVID-19 infection on disease severity and hospitalization. Bosn J Basic Med Sci, 22(5):826-832. https://doi.org/10.17305/bjbms.2021.7009https://doi.org/10.17305/bjbms.2021.7009
Nyce J, 2021. Alert to US physicians: DHEA, widely used as an OTC androgen supplement, may exacerbate COVID-19. Endocr-Relat Cancer, 28(2):R47-R53. https://doi.org/10.1530/ERC-20-0439https://doi.org/10.1530/ERC-20-0439
Paolino M, Koglgruber R, Cronin SJF, et al., 2021. RANK links thymic regulatory T cells to fetal loss and gestational diabetes in pregnancy. Nature, 589(7842):442-447. https://doi.org/10.1038/s41586-020-03071-0https://doi.org/10.1038/s41586-020-03071-0
Post NF, Luiten RM, Wolkerstorfer A, et al., 2021. Does autoimmune vitiligo protect against COVID-19 disease? Exp Dermatol, 30(9):1254-1257. https://doi.org/10.1111/exd.14407https://doi.org/10.1111/exd.14407
Qiao JJ, Zhou GG, Ding YG, et al., 2011. Multiple paraneoplastic syndromes: myasthenia gravis, vitiligo, alopecia areata, and oral lichen planus associated with thymoma. J Neurol Sci, 308(1-2):177-179. https://doi.org/10.1016/j.jns.2011.05.038https://doi.org/10.1016/j.jns.2011.05.038
Richmond JM, Frisoli ML, Harris JE, 2013. Innate immune mechanisms in vitiligo: danger from within. Curr Opin Immunol, 25(6):676-682. https://doi.org/10.1016/j.coi.2013.10.010https://doi.org/10.1016/j.coi.2013.10.010
Schmidt AF, Rubin A, Milgraum D, et al., 2022. Vitiligo following COVID-19: a case report and review of pathophysiology. JAAD Case Rep, 22:47-49. https://doi.org/10.1016/j.jdcr.2022.01.030https://doi.org/10.1016/j.jdcr.2022.01.030
Seal KH, Bertenthal D, Carey E, et al., 2022. Association of vitamin D status and COVID-19-related hospitalization and mortality. J Gen Intern Med, 37(4):853-861. https://doi.org/10.1007/s11606-021-07170-0https://doi.org/10.1007/s11606-021-07170-0
Shilov ES, Gorshkova EA, Minnegalieva AR, et al., 2019. Splicing pattern of mRNA in thymus epithelial cells limits the transcriptome available for negative selection of autoreactive T cells. Mol Biol, 53(1):87-96. https://doi.org/10.1134/S0026893319010151https://doi.org/10.1134/S0026893319010151
Singh R, Cohen JL, Astudillo M, et al., 2022. Vitiligo of the arm after COVID-19 vaccination. JAAD Case Rep, 28:142-144. https://doi.org/10.1016/j.jdcr.2022.06.003https://doi.org/10.1016/j.jdcr.2022.06.003
Speeckaert R, van Geel N, 2017. Vitiligo: an update on pathophysiology and treatment options. Am J Clin Dermatol, 18(6):733-744. https://doi.org/10.1007/s40257-017-0298-5https://doi.org/10.1007/s40257-017-0298-5
Strindhall J, Nilsson BO, Löfgren S, et al., 2007. No immune risk profile among individuals who reach 100 years of age: findings from the Swedish NONA immune longitudinal study. Exp Gerontol, 42(8):753-761. https://doi.org/10.1016/j.exger.2007.05.001https://doi.org/10.1016/j.exger.2007.05.001
Thapa P, Farber DL, 2019. The role of the thymus in the immune response. Thorac Surg Clin, 29(2):123-131. https://doi.org/10.1016/j.thorsurg.2018.12.001https://doi.org/10.1016/j.thorsurg.2018.12.001
Tulic MK, Cavazza E, Cheli Y, et al., 2019. Innate lymphocyte-induced CXCR3B-mediated melanocyte apoptosis is a potential initiator of T-cell autoreactivity in vitiligo. Nat Commun, 10:2178. https://doi.org/10.1038/s41467-019-09963-8https://doi.org/10.1038/s41467-019-09963-8
Uğurer E, Sivaz O, Altunay İK, 2022. Newly-developed vitiligo following COVID-19 mRNA vaccine. J Cosmet Dermatol, 21(4):1350-1351. https://doi.org/10.1111/jocd.14843https://doi.org/10.1111/jocd.14843
Warren S, Nehal K, Querfeld C, et al., 2015. Graft-versus-host disease-like erythroderma: a manifestation of thymoma-associated multiorgan autoimmunity. J Cutan Pathol, 42(10):663-668. https://doi.org/10.1111/cup.12642https://doi.org/10.1111/cup.12642
0
Views
4
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution