无数据
Scan for full text
1.Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
2.Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou 310022, China
3.The First Clinical Medical College, Shanxi Medical University, Jinzhong 030600, China
杨秋辉,傅烨钦,王嘉萱等.超声造影在乳腺癌前哨淋巴结定位和诊断中的优势[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2023,24(11):985-997.
Qiuhui YANG, Yeqin FU, Jiaxuan WANG, et al. Advantages of contrast-enhanced ultrasound in the localization and diagnostics of sentinel lymph nodes in breast cancer. [J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology) 24(11):985-997(2023)
杨秋辉,傅烨钦,王嘉萱等.超声造影在乳腺癌前哨淋巴结定位和诊断中的优势[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2023,24(11):985-997. DOI: 10.1631/jzus.B2300019.
Qiuhui YANG, Yeqin FU, Jiaxuan WANG, et al. Advantages of contrast-enhanced ultrasound in the localization and diagnostics of sentinel lymph nodes in breast cancer. [J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology) 24(11):985-997(2023) DOI: 10.1631/jzus.B2300019.
前哨淋巴结(SLN)是指从乳腺原发肿瘤到腋窝淋巴引流途径中的第一站淋巴结,这些淋巴结的病理状态可以预测整个腋窝淋巴结的情况。因此,准确识别SLN是前哨淋巴结活检(SLNB)替代腋窝淋巴结清扫(ALND)的关键。乳腺癌患者的生活质量和预后与识别SLN后的手术方式有关。目前常用的一些SLN示踪剂包括放射性同位素、纳米碳、吲哚菁绿(ICG)和亚甲蓝(MB)。然而,这些示踪剂都有一定的局限性,如色素沉着、放射性损害以及所需设备价格昂贵。超声造影剂所具有的简便性和安全性可以弥补上述示踪剂的一些不足。该技术也被应用到乳腺癌患者的SLNB,甚至可以初步判断SLN的状态。由于超声造影技术(CEUS)具有高识别率、易操作、无辐射、低成本、定位准确等优点,有望取代传统的活检方法。此外,它还可以显著提高SLN定位的准确性,并有效缩短手术时间。
Sentinel lymph nodes (SLNs) are the first station of lymph nodes that extend from the breast tumor to the axillary lymphatic drainage. The pathological status of these LNs can predict that of the entire axillary lymph node. Therefore, the accurate identification of SLNs is necessary for sentinel lymph node biopsy (SLNB) to replace axillary lymph node dissection (ALND). The quality of life and prognosis of breast cancer patients are related to proper surgical treatment after the precise identification of SLNs. Some of the SLN tracers that have been identified include radioisotope, nano-carbon, indocyanine green (ICG), and methylene blue (MB). However, these tracers have certain limitations, such as pigmentation, radiation dangers, and the requirement for costly detection equipment. Ultrasound contrast agents (UCAs) have good specificity and sensitivity, and thus can compensate for some shortcomings of the mentioned tracers. This technique is also being applied to SLNB in patients with breast cancer, and can even provide an initial judgment on SLN status. Contrast-enhanced ultrasound (CEUS) has the advantages of high distinguishability, simple operation, no radiation harm, low cost, and accurate localization; therefore, it is expected to replace the traditional biopsy methods. In addition, it can significantly enhance the accuracy of SLN localization and shorten the operation time.
乳腺癌前哨淋巴结(SLN)超声造影(CEUS)超声造影剂(UCA)
Breast cancerSentinel lymph node (SLN)Contrast-enhanced ultrasound (CEUS)Ultrasound contrast agent (UCA)
Ballal H, Hunt C, Bharat C, et al., 2018. Arm morbidity of axillary dissection with sentinel node biopsy versus delayed axillary dissection. ANZ J Surg, 88(9):917-921. https://doi.org/10.1111/ans.14382https://doi.org/10.1111/ans.14382
Bass SS, Cox CE, Ku NN, et al., 1999. The role of sentinel lymph node biopsy in breast cancer. J Am Coll Surg, 189(2):183-194. https://doi.org/10.1016/s1072-7515(99)00130-1https://doi.org/10.1016/s1072-7515(99)00130-1
Belmonte R, Messaggi-Sartor M, Ferrer M, et al., 2018. Prospective study of shoulder strength, shoulder range of motion, and lymphedema in breast cancer patients from pre-surgery to 5 years after ALND or SLNB. Support Care Cancer, 26(9):3277-3287. https://doi.org/10.1007/s00520-018-4186-1https://doi.org/10.1007/s00520-018-4186-1
Cantisani V, Bertolotto M, Weskott HP, et al., 2015. Growing indications for CEUS: the kidney, testis, lymph nodes, thyroid, prostate, and small bowel. Eur J Radiol, 84(9):1675-1684. https://doi.org/10.1016/j.ejrad.2015.05.008https://doi.org/10.1016/j.ejrad.2015.05.008
Caproni N, Marchisio F, Pecchi A, et al., 2010. Contrast-enhanced ultrasound in the characterisation of breast masses: utility of quantitative analysis in comparison with MRI. Eur Radiol, 20(6):1384-1395. https://doi.org/10.1007/s00330-009-1690-1https://doi.org/10.1007/s00330-009-1690-1
Chen C, Wang Y, Niu JW, et al., 2021. Domain knowledge powered deep learning for breast cancer diagnosis based on contrast-enhanced ultrasound videos. IEEE Trans Med Imaging, 40(9):2439-2451. https://doi.org/10.1109/tmi.2021.3078370https://doi.org/10.1109/tmi.2021.3078370
Chen WQ, Zheng RS, Zhang SW, et al., 2017. Cancer incidence and mortality in China, 2013. Cancer Lett, 401:63-71. https://doi.org/10.1016/j.canlet.2017.04.024https://doi.org/10.1016/j.canlet.2017.04.024
Cui QX, Dai L, Li JL, et al., 2020. Accuracy of CEUS-guided sentinel lymph node biopsy in early-stage breast cancer: a study review and meta-analysis. World J Surg Oncol, 18:112. https://doi.org/10.1186/s12957-020-01890-zhttps://doi.org/10.1186/s12957-020-01890-z
Cui XW, Ignee A, Nielsen MB, et al., 2013. Contrast enhanced ultrasound of sentinel lymph nodes. J Ultrason, 13(52):73-81. https://doi.org/10.15557/JoU.2013.0006https://doi.org/10.15557/JoU.2013.0006
Cwalinski T, Polom W, Marano L, et al., 2020. Methylene blue—current knowledge, fluorescent properties, and its future use. J Clin Med, 9(11):3538. https://doi.org/10.3390/jcm9113538https://doi.org/10.3390/jcm9113538
Du J, Li FH, Fang H, et al., 2008. Microvascular architecture of breast lesions: evaluation with contrast-enhanced ultrasonographic micro flow imaging. J Ultrasound Med, 27(6):833-842. https://doi.org/10.7863/jum.2008.27.6.833https://doi.org/10.7863/jum.2008.27.6.833
Du X, Zhang JJ, Liu L, et al., 2022. A novel anticancer property of Lycium barbarum polysaccharide in triggering ferroptosis of breast cancer cells. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 23(4):286-299. https://doi.org/10.1631/jzus.B2100748https://doi.org/10.1631/jzus.B2100748
Garcia-Etienne CA, Ferrari A, Della Valle A, et al., 2020. Management of the axilla in patients with breast cancer and positive sentinel lymph node biopsy: an evidence-based update in a european breast center. Eur J Surg Oncol, 46(1):15-23. https://doi.org/10.1016/j.ejso.2019.08.013https://doi.org/10.1016/j.ejso.2019.08.013
Gherghe M, Bordea C, Blidaru A, 2015. Sentinel lymph node biopsy (SLNB) vs. axillary lymph node dissection (ALND) in the current surgical treatment of early stage breast cancer. J Med Life, 8(2):176-180.
Goldberg BB, Merton DA, Liu JB, et al., 2004. Sentinel lymph nodes in a swine model with melanoma: contrast-enhanced lymphatic US. Radiology, 230(3):727-734. https://doi.org/10.1148/radiol.2303021440https://doi.org/10.1148/radiol.2303021440
Golemati S, Cokkinos DD, 2022. Recent advances in vascular ultrasound imaging technology and their clinical implications. Ultrasonics, 119:106599. https://doi.org/10.1016/j.ultras.2021.106599https://doi.org/10.1016/j.ultras.2021.106599
Grischke EM, Röhm C, Hahn M, et al., 2015. ICG fluorescence technique for the detection of sentinel lymph nodes in breast cancer: results of a prospective open-label clinical trial. Geburtshilfe Frauenheilkd, 75(9):935-940. https://doi.org/10.1055/s-0035-1557905https://doi.org/10.1055/s-0035-1557905
Gu LS, Zhang R, Wang Y, et al., 2019. Characteristics of contrast-enhanced ultrasonography and strain elastography of locally advanced breast cancer. J Thorac Dis, 11(12):5274-5289. https://doi.org/10.21037/jtd.2019.11.52https://doi.org/10.21037/jtd.2019.11.52
Guo JB, Wang BH, He MN, et al., 2022. Contrast-enhanced ultrasonography for early prediction of response of neoadjuvant chemotherapy in breast cancer. Front Oncol, 12:1026647. https://doi.org/10.3389/fonc.2022.1026647https://doi.org/10.3389/fonc.2022.1026647
Hao YX, Sun Y, Lei YT, et al., 2021. Percutaneous Sonazoid-enhanced ultrasonography combined with in vitro verification for detection and characterization of sentinel lymph nodes in early breast cancer. Eur Radiol, 31(8):5894-5901. https://doi.org/10.1007/s00330-020-07639-2https://doi.org/10.1007/s00330-020-07639-2
Hu ZY, Cheng XQ, Li J, et al., 2020. Preliminary study of real-time three-dimensional contrast-enhanced ultrasound of sentinel lymph nodes in breast cancer. Eur Radiol, 30(3):1426-1435. https://doi.org/10.1007/s00330-019-06494-0https://doi.org/10.1007/s00330-019-06494-0
Huang SY, Zhao YN, Jiang X, et al., 2021. Clinical utility of contrast-enhanced ultrasound for the diagnosis of lymphadenopathy. Ultrasound Med Biol, 47(4):869-879. https://doi.org/10.1016/j.ultrasmedbio.2020.12.020https://doi.org/10.1016/j.ultrasmedbio.2020.12.020
Huang YX, Le J, Miao AY, et al., 2021. Prediction of treatment responses to neoadjuvant chemotherapy in breast cancer using contrast-enhanced ultrasound. Gland Surg, 10(4):1280-1290. https://doi.org/10.21037/gs-20-836https://doi.org/10.21037/gs-20-836
Ioannidis GS, Goumenakis M, Stefanis I, et al., 2022. Quantification and classification of contrast enhanced ultrasound breast cancer data: a preliminary study. Diagnostics (Basel), 12(2):425. https://doi.org/10.3390/diagnostics12020425https://doi.org/10.3390/diagnostics12020425
Kearns KN, Sokolowski JD, Chadwell K, et al., 2019. The role of contrast-enhanced ultrasound in neurosurgical disease. Neurosurg Focus, 47(6):E8. https://doi.org/10.3171/2019.9.Focus19624https://doi.org/10.3171/2019.9.Focus19624
Kemp Jacobsen K, O'Meara ES, Key D, et al., 2015. Comparing sensitivity and specificity of screening mammography in the United States and Denmark. Int J Cancer, 137(9):2198-2207. https://doi.org/10.1002/ijc.29593https://doi.org/10.1002/ijc.29593
Kitai T, Kawashima M, 2012. Transcutaneous detection and direct approach to the sentinel node using axillary compression technique in ICG fluorescence-navigated sentinel node biopsy for breast cancer. Breast Cancer, 19(4):343-348. https://doi.org/10.1007/s12282-011-0286-1https://doi.org/10.1007/s12282-011-0286-1
Krynyckyi BR, Miner M, Ragonese JM, et al., 2000. Technical aspects of performing lymphoscintigraphy: optimization of methods used to obtain images. Clin Nucl Med, 25(12):978-985. https://doi.org/10.1097/00003072-200012000-00003https://doi.org/10.1097/00003072-200012000-00003
Lee SC, Tchelepi H, Grant E, et al., 2019. Contrast-enhanced ultrasound imaging of breast masses: adjunct tool to decrease the number of false-positive biopsy results. J Ultrasound Med, 38(9):2259-2273. https://doi.org/10.1002/jum.14917https://doi.org/10.1002/jum.14917
Lee YJ, Kim SH, Kang BJ, et al., 2019. Contrast-enhanced ultrasound for early prediction of response of breast cancer to neoadjuvant chemotherapy. Ultraschall Med, 40(2):194-204. https://doi.org/10.1055/a-0637-1601https://doi.org/10.1055/a-0637-1601
Li J, Lu M, Cheng XQ, et al., 2019. How pre-operative sentinel lymph node contrast-enhanced ultrasound helps intra-operative sentinel lymph node biopsy in breast cancer: initial experience. Ultrasound Med Biol, 45(8):1865-1873. https://doi.org/10.1016/j.ultrasmedbio.2019.04.006https://doi.org/10.1016/j.ultrasmedbio.2019.04.006
Li J, Li H, Guan L, et al., 2022. The value of preoperative sentinel lymph node contrast-enhanced ultrasound for breast cancer: a large, multicenter trial. BMC Cancer, 22:455. https://doi.org/10.1186/s12885-022-09551-yhttps://doi.org/10.1186/s12885-022-09551-y
Liu J, Liu XL, He J, et al., 2019. Percutaneous contrast-enhanced ultrasound for localization and diagnosis of sentinel lymph node in early breast cancer. Sci Rep, 9:13545. https://doi.org/10.1038/s41598-019-49736-3https://doi.org/10.1038/s41598-019-49736-3
Luo J, Feng LT, Zhou Q, et al., 2021. The value of contrast-enhanced ultrasound in determining the location of sentinel lymph nodes in breast cancer. Cancer Imaging, 21:28. https://doi.org/10.1186/s40644-021-00397-4https://doi.org/10.1186/s40644-021-00397-4
Luo YH, Chen J, Feng LT, et al., 2022. Study on sentinel lymph node and its lymphatic drainage pattern of breast cancer by contrast-enhanced ultrasound. J Ultrasound Med, 41(11):2727-2737. https://doi.org/10.1002/jum.15957https://doi.org/10.1002/jum.15957
MacDonald AJ, Arkill KP, Tabor GR, et al., 2008. Modeling flow in collecting lymphatic vessels: one-dimensional flow through a series of contractile elements. Am J Physiol Heart Circ Physiol, 295(1):H305-H313. https://doi.org/10.1152/ajpheart.00004.2008https://doi.org/10.1152/ajpheart.00004.2008
Machado P, Stanczak M, Liu JB, et al., 2018. Subdermal ultrasound contrast agent injection for sentinel lymph node identification: an analysis of safety and contrast agent dose in healthy volunteers. J Ultrasound Med, 37(7):1611-1620. https://doi.org/10.1002/jum.14502https://doi.org/10.1002/jum.14502
Machado P, Liu JB, Needleman L, et al., 2023a. Sentinel lymph node identification in patients with breast cancer using lymphosonography. Ultrasound Med Biol, 49(2):616-625. https://doi.org/10.1016/j.ultrasmedbio.2022.10.020https://doi.org/10.1016/j.ultrasmedbio.2022.10.020
Machado P, Liu JB, Needleman L, et al., 2023b. Sentinel lymph node identification in post neoadjuvant chemotherapy breast cancer patients undergoing surgical excision using lymphosonography. J Ultrasound Med, 42(7):1509-1517. https://doi.org/10.1002/jum.16164https://doi.org/10.1002/jum.16164
Magnoni F, Galimberti V, Corso G, et al., 2020. Axillary surgery in breast cancer: an updated historical perspective. Semin Oncol, 47(6):341-352. https://doi.org/10.1053/j.seminoncol.2020.09.001https://doi.org/10.1053/j.seminoncol.2020.09.001
Majlesara A, Golriz M, Hafezi M, et al., 2017. Indocyanine green fluorescence imaging in hepatobiliary surgery. Photodiagn Photodyn Ther, 17:208-215. https://doi.org/10.1016/j.pdpdt.2016.12.005https://doi.org/10.1016/j.pdpdt.2016.12.005
Mattrey RF, Kono Y, Baker K, et al., 2002. Sentinel lymph node imaging with microbubble ultrasound contrast material. Acad Radiol, 9(Suppl 1):S231-S235. https://doi.org/10.1016/s1076-6332(03)80444-0https://doi.org/10.1016/s1076-6332(03)80444-0
Monleon S, Ferrer M, Tejero M, et al., 2016. Shoulder strength changes one year after axillary lymph node dissection or sentinel lymph node biopsy in patients with breast cancer. Arch Phys Med Rehabil, 97(6):953-963. https://doi.org/10.1016/j.apmr.2015.12.014https://doi.org/10.1016/j.apmr.2015.12.014
Moody AN, Bull J, Culpan AM, et al., 2017. Preoperative sentinel lymph node identification, biopsy and localisation using contrast enhanced ultrasound (CEUS) in patients with breast cancer: a systematic review and meta-analysis. Clin Radiol, 72(11):959-971. https://doi.org/10.1016/j.crad.2017.06.121https://doi.org/10.1016/j.crad.2017.06.121
Niu ZH, Gao YJ, Xiao MS, et al., 2023. Contrast-enhanced lymphatic US can improve the preoperative diagnostic performance for sentinel lymph nodes in early breast cancer. Eur Radiol, 33(3):1593-1602. https://doi.org/10.1007/s00330-022-09139-xhttps://doi.org/10.1007/s00330-022-09139-x
Ntoulia A, Anupindi SA, Back SJ, et al., 2021. Contrast-enhanced ultrasound: a comprehensive review of safety in children. Pediatr Radiol, 51(12):2161-2180. https://doi.org/10.1007/s00247-021-05223-4https://doi.org/10.1007/s00247-021-05223-4
Omoto K, Hozumi Y, Omoto Y, et al., 2006. Sentinel node detection in breast cancer using contrast-enhanced sonography with 25% albumin—initial clinical experience. J Clin Ultrasound, 34(7):317-326. https://doi.org/10.1002/jcu.20241https://doi.org/10.1002/jcu.20241
Omoto K, Matsunaga H, Take N, et al., 2009. Sentinel node detection method using contrast-enhanced ultrasonography with Sonazoid in breast cancer: preliminary clinical study. Ultrasound Med Biol, 35(8):1249-1256. https://doi.org/10.1016/j.ultrasmedbio.2009.02.004https://doi.org/10.1016/j.ultrasmedbio.2009.02.004
Parks RM, Cheung KL, 2017. Axillary reverse mapping in N0 patients requiring sentinel lymph node biopsy—a systematic review of the literature and necessity of a randomised study. Breast, 33:57-70. https://doi.org/10.1016/j.breast.2017.02.019https://doi.org/10.1016/j.breast.2017.02.019
Peek MC, Charalampoudis P, Anninga B, et al., 2017. Blue dye for identification of sentinel nodes in breast cancer and malignant melanoma: a systematic review and meta-analysis. Future Oncol, 13(5):455-467. https://doi.org/10.2217/fon-2016-0255https://doi.org/10.2217/fon-2016-0255
Qiu SQ, Zhang GJ, Jansen L, et al., 2018. Evolution in sentinel lymph node biopsy in breast cancer. Crit Rev Oncol Hematol, 123:83-94. https://doi.org/10.1016/j.critrevonc.2017.09.010https://doi.org/10.1016/j.critrevonc.2017.09.010
Safai Zadeh E, Dietrich CF, Kmoth L, et al., 2022. Peripheral pulmonary lesions in confirmed pulmonary arterial embolism: follow-up study of B-mode ultrasound and of perfusion patterns using contrast-enhanced ultrasound (CEUS). J Ultrasound Med, 41(7):1713-1721. https://doi.org/10.1002/jum.15852https://doi.org/10.1002/jum.15852
Saidha NK, Aggarwal R, Sen A, 2018. Identification of sentinel lymph nodes using contrast-enhanced ultrasound in breast cancer. Indian J Surg Oncol, 9(3):355-361. https://doi.org/10.1007/s13193-017-0646-1https://doi.org/10.1007/s13193-017-0646-1
Saracco A, Szabó BK, Aspelin P, et al., 2012. Differentiation between benign and malignant breast tumors using kinetic features of real-time harmonic contrast-enhanced ultrasound. Acta Radiol, 53(4):382-388. https://doi.org/10.1258/ar.2012.110562https://doi.org/10.1258/ar.2012.110562
Schwarze V, Marschner C, de Figueiredo GN, et al., 2020. Single-center study: evaluating the diagnostic performance and safety of contrast-enhanced ultrasound (CEUS) in pregnant women to assess hepatic lesions. Ultraschall Med, 41(1):29-35. https://doi.org/10.1055/a-0973-8517https://doi.org/10.1055/a-0973-8517
Shimazu K, Ito T, Uji K, et al., 2017. Identification of sentinel lymph nodes by contrast-enhanced ultrasonography with Sonazoid in patients with breast cancer: a feasibility study in three hospitals. Cancer Med, 6(8):1915-1922. https://doi.org/10.1002/cam4.1142https://doi.org/10.1002/cam4.1142
Sorrenti S, Dolcetti V, Fresilli D, et al., 2021. The role of CEUS in the evaluation of thyroid cancer: from diagnosis to local staging. J Clin Med, 10(19):4559. https://doi.org/10.3390/jcm10194559https://doi.org/10.3390/jcm10194559
Tjo K, Varamini P, 2022. Nanodiamonds and their potential applications in breast cancer therapy: a narrative review. Drug Deliv Transl Res, 12(5):1017-1028. https://doi.org/10.1007/s13346-021-00996-5https://doi.org/10.1007/s13346-021-00996-5
Toki A, Niikura H, Mori N, et al., 2021. Establishment of a diagnostic method for pelvic sentinel lymph node metastasis by contrast-enhanced ultrasound in uterine cancer. Ultrasound Med Biol, 47(8):2107-2116. https://doi.org/10.1016/j.ultrasmedbio.2021.03.040https://doi.org/10.1016/j.ultrasmedbio.2021.03.040
Vtorushin S, Dulesova A, Krakhmal N, 2022. Luminal androgen receptor (LAR) subtype of triple-negative breast cancer: molecular, morphological, and clinical features. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 23(8):617-624. https://doi.org/10.1631/jzus.B2200113https://doi.org/10.1631/jzus.B2200113
Wang J, Chu YH, Wang BH, et al., 2021. A narrative review of ultrasound technologies for the prediction of neoadjuvant chemotherapy response in breast cancer. Cancer Manag Res, 13:7885-7895. https://doi.org/10.2147/cmar.S331665https://doi.org/10.2147/cmar.S331665
Wang LN, Li JT, Qiao JH, et al., 2021. Establishment of a model for predicting sentinel lymph node metastasis in early breast cancer based on contrast-enhanced ultrasound and clinicopathological features. Gland Surg, 10(5):1701-1712. https://doi.org/10.21037/gs-21-245https://doi.org/10.21037/gs-21-245
Wang LY, Zheng SS, 2019. Advances in low-frequency ultrasound combined with microbubbles in targeted tumor therapy. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 20(4):291-299. https://doi.org/10.1631/jzus.B1800508https://doi.org/10.1631/jzus.B1800508
Wang XJ, Tang LN, Huang WQ, et al., 2021. The combination of contrast-enhanced ultrasonography with blue dye for sentinel lymph node detection in clinically negative node breast cancer. Arch Gynecol Obstet, 304(6):1551-1559. https://doi.org/10.1007/s00404-021-06021-xhttps://doi.org/10.1007/s00404-021-06021-x
Wen BJ, Kong WT, Zhang YD, et al., 2022. Association between contrast-enhanced ultrasound characteristics and molecular subtypes of breast cancer. J Ultrasound Med, 41(8):2019-2031. https://doi.org/10.1002/jum.15886https://doi.org/10.1002/jum.15886
Xie F, Zhang DJ, Cheng L, et al., 2015. Intradermal microbubbles and contrast-enhanced ultrasound (CEUS) is a feasible approach for sentinel lymph node identification in early-stage breast cancer. World J Surg Oncol, 13:319. https://doi.org/10.1186/s12957-015-0736-xhttps://doi.org/10.1186/s12957-015-0736-x
Yang BL, Zheng SY, Huang XY, et al., 2021. A single-center, self-controlled, phase I clinical trial of mitoxantrone hydrochloride injection for lymph tracing for sentinel lymph node identification of breast cancer. Gland Surg, 10(3):992-1001. https://doi.org/10.21037/gs-20-694https://doi.org/10.21037/gs-20-694
Yin L, Agyekum EA, Zhang Q, et al., 2022. Differentiation between granulomatous lobular mastitis and breast cancer using quantitative parameters on contrast-enhanced ultrasound. Front Oncol, 12:876487. https://doi.org/10.3389/fonc.2022.876487https://doi.org/10.3389/fonc.2022.876487
Yu CC, Li Y, Chen GP, et al., 2022. Bioactive constituents of animal-derived traditional Chinese medicinal materials for breast cancer: opportunities and challenges. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 23(7):547-563. https://doi.org/10.1631/jzus.B2101019https://doi.org/10.1631/jzus.B2101019
Yuan Z, Quan J, Yunxiao Z, et al., 2013. Diagnostic value of contrast-enhanced ultrasound parametric imaging in breast tumors. J Breast Cancer, 16(2):208-213. https://doi.org/10.4048/jbc.2013.16.2.208https://doi.org/10.4048/jbc.2013.16.2.208
Zaheer S, Shah N, Maqbool SA, et al., 2019. Estimates of past and future time trends in age-specific breast cancer incidence among women in Karachi, Pakistan: 2004-2025. BMC Public Health, 19:1001. https://doi.org/10.1186/s12889-019-7330-zhttps://doi.org/10.1186/s12889-019-7330-z
Zhai HY, Liang P, Yu J, et al., 2019. Comparison of Sonazoid and SonoVue in the diagnosis of focal liver lesions: a preliminary study. J Ultrasound Med, 38(9):2417-2425. https://doi.org/10.1002/jum.14940https://doi.org/10.1002/jum.14940
Zhao J, Zhang J, Zhu QL, et al., 2018. The value of contrast-enhanced ultrasound for sentinel lymph node identification and characterisation in pre-operative breast cancer patients: a prospective study. Eur Radiol, 28(4):1654-1661. https://doi.org/10.1007/s00330-017-5089-0https://doi.org/10.1007/s00330-017-5089-0
Zheng JJ, Ren WZ, Chen TX, et al., 2018. Recent advances in superparamagnetic iron oxide based nanoprobes as multifunctional theranostic agents for breast cancer imaging and therapy. Curr Med Chem, 25(25):3001-3016. https://doi.org/10.2174/0929867324666170705144642https://doi.org/10.2174/0929867324666170705144642
Zhou SC, Le J, Zhou J, et al., 2020. The role of contrast-enhanced ultrasound in the diagnosis and pathologic response prediction in breast cancer: a meta-analysis and systematic review. Clin Breast Cancer, 20(4):e490-e509. https://doi.org/10.1016/j.clbc.2020.03.002https://doi.org/10.1016/j.clbc.2020.03.002
0
Views
6
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution