无数据
Scan for full text
1.Department of Oral Pathology, Peking University School and Hospital of Stomatology / National Center of Stomatology / National Clinical Research Center for Oral Diseases / National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
2.Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China
3.Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing 100081, China
Xinjia CAI, Jianyun ZHANG, Heyu ZHANG, et al. Biomarkers of malignant transformation in oral leukoplakia: from bench to bedside. [J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology) 24(10):868-882(2023)
Xinjia CAI, Jianyun ZHANG, Heyu ZHANG, et al. Biomarkers of malignant transformation in oral leukoplakia: from bench to bedside. [J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology) 24(10):868-882(2023) DOI: 10.1631/jzus.B2200589.
口腔白斑是一种常见的口腔潜在恶性病变,可恶变为口腔鳞状细胞癌,恶性潜能较高。白斑癌变严重影响患者的生存和生活质量,但因缺乏有效的癌变预测生物标志物,难以对其癌变潜能进行识别。作为头颈病理领域的重要问题之一,白斑癌变生物标志物的筛选将有助于鳞癌的早期诊断。本文通过综述白斑癌变相关生物标志物的相关研究,探讨从基础科研到临床转化的前景。目前虽尚无生物标志物应用于临床,但基因组不稳定性可能是一种具有应用前景的辅助方法。
Oral leukoplakia is a common precursor lesion of oral squamous cell carcinoma, which indicates a high potential of malignancy. The malignant transformation of oral leukoplakia seriously affects patient survival and quality of life; however, it is difficult to identify oral leukoplakia patients who will develop carcinoma because no biomarker exists to predict malignant transformation for effective clinical management. As a major problem in the field of head and neck pathologies, it is imperative to identify biomarkers of malignant transformation in oral leukoplakia. In this review, we discuss the potential biomarkers of malignant transformation reported in the literature and explore the translational probabilities from bench to bedside. Although no single biomarker has yet been applied in the clinical setting, profiling for genomic instability might be a promising adjunct.
口腔白斑口腔鳞状细胞癌癌变生物标志物预后
Oral leukoplakiaOral squamous cell carcinomaMalignant transformationBiomarkerPrognosis
Abe M, Yamashita S, Mori Y, et al., 2016. High-risk oral leukoplakia is associated with aberrant promoter methylation of multiple genes. BMC Cancer, 16:350. https://doi.org/10.1186/s12885-016-2371-5https://doi.org/10.1186/s12885-016-2371-5
Aguirre-Urizar JM, Lafuente‐Ibáñez de Mendoza I, Warnakulasuriya S, 2021. Malignant transformation of oral leukoplakia: systematic review and meta-analysis of the last 5 years. Oral Dis, 27(8):1881-1895. https://doi.org/10.1111/odi.13810https://doi.org/10.1111/odi.13810
Babiuch K, Kuśnierz-Cabala B, Kęsek B, et al., 2020. Evaluation of proinflammatory, NF-kappaB dependent cytokines: IL-1α, IL-6, IL-8, and TNF-α in tissue specimens and saliva of patients with oral squamous cell carcinoma and oral potentially malignant disorders. J Clin Med, 9(3):867. https://doi.org/10.3390/jcm9030867https://doi.org/10.3390/jcm9030867
Baran CA, Agaimy A, Wehrhan F, et al., 2019. MAGE-A expression in oral and laryngeal leukoplakia predicts malignant transformation. Mod Pathol, 32(8):1068-1081. https://doi.org/10.1038/s41379-019-0253-5https://doi.org/10.1038/s41379-019-0253-5
Bhosale PG, Cristea S, Ambatipudi S, et al., 2017. Chromosomal alterations and gene expression changes associated with the progression of leukoplakia to advanced gingivobuccal cancer. Transl Oncol, 10(3):396-409. https://doi.org/10.1016/j.tranon.2017.03.008https://doi.org/10.1016/j.tranon.2017.03.008
Bouaoud J, Foy JP, Tortereau A, et al., 2021. Early changes in the immune microenvironment of oral potentially malignant disorders reveal an unexpected association of M2 macrophages with oral cancer free survival. OncoImmunology, 10(1):1944554. https://doi.org/10.1080/2162402X.2021.1944554https://doi.org/10.1080/2162402X.2021.1944554
Brailo V, Vučićević-Boras V, Cekić-Arambašin A, et al., 2006. The significance of salivary interleukin 6 and tumor necrosis factor alpha in patients with oral leukoplakia. Oral Oncol, 42(4):370-373. https://doi.org/10.1016/j.oraloncology.2005.09.001https://doi.org/10.1016/j.oraloncology.2005.09.001
Cai XJ, Yao ZG, Liu G, et al., 2019. Oral submucous fibrosis: a clinicopathological study of 674 cases in China. J Oral Pathol Med, 48(4):321-325. https://doi.org/10.1111/jop.12836https://doi.org/10.1111/jop.12836
Cai XJ, Zhang JY, Han Y, et al., 2021. Development and validation of a nomogram prediction model for malignant transformation of oral potentially malignant disorders. Oral Oncology, 123:105619. https://doi.org/10.1016/j.oraloncology.2021.105619https://doi.org/10.1016/j.oraloncology.2021.105619
Cai XJ, Zhang JY, Zhang AB, et al., 2022a. Emerging role of high glucose levels in cancer progression and therapy. Chin J Dent Res, 25(1):11-20. https://doi.org/10.3290/j.cjdr.b2752695https://doi.org/10.3290/j.cjdr.b2752695
Cai XJ, Zhang JY, Zhang HY, et al., 2022b. Overestimated risk of transformation in oral lichen planus. Oral Oncology, 133:106025. https://doi.org/10.1016/j.oraloncology.2022.106025https://doi.org/10.1016/j.oraloncology.2022.106025
Calenic B, Greabu M, Caruntu C, et al., 2015. Oral keratinocyte stem/progenitor cells: specific markers, molecular signaling pathways and potential uses. Periodontology 2000, 69(1):68-82. https://doi.org/10.1111/prd.12097https://doi.org/10.1111/prd.12097
Cao W, Younis RH, Li J, et al., 2011. EZH2 promotes malignant phenotypes and is a predictor of oral cancer development in patients with oral leukoplakia. Cancer Prev Res (Phila), 4(11):1816-1824. https://doi.org/10.1158/1940-6207.CAPR-11-0130https://doi.org/10.1158/1940-6207.CAPR-11-0130
Celentano A, Glurich I, Borgnakke WS, et al., 2021. World Workshop on Oral Medicine VII: prognostic biomarkers in oral leukoplakia and proliferative verrucous leukoplakia—a systematic review of retrospective studies. Oral Dis, 27(4):848-880. https://doi.org/10.1111/odi.13363https://doi.org/10.1111/odi.13363
Cervigne NK, Reis PP, Machado J, et al., 2009. Identification of a microRNA signature associated with progression of leukoplakia to oral carcinoma. Hum Mol Genet, 18(24):4818-4829. https://doi.org/10.1093/hmg/ddp446https://doi.org/10.1093/hmg/ddp446
Chang YA, Weng SL, Yang SF, et al., 2018. A three-microRNA signature as a potential biomarker for the early detection of oral cancer. Int J Mol Sci, 19(3):758. https://doi.org/10.3390/ijms19030758https://doi.org/10.3390/ijms19030758
Chaturvedi AK, Udaltsova N, Engels EA, et al., 2020. Oral leukoplakia and risk of progression to oral cancer: a population-based cohort study. J Natl Cancer Inst, 112(10):1047-1054. https://doi.org/10.1093/jnci/djz238https://doi.org/10.1093/jnci/djz238
Chaves ALF, Silva AG, Maia FM, et al., 2019. Reduced CD8+ T cells infiltration can be associated to a malignant transformation in potentially malignant oral epithelial lesions. Clin Oral Invest, 23(4):1913-1919. https://doi.org/10.1007/s00784-018-2622-8https://doi.org/10.1007/s00784-018-2622-8
Chaves FN, Bezerra TMM, Moraes DC, et al., 2020. Loss of heterozygosity and immunoexpression of PTEN in oral epithelial dysplasia and squamous cell carcinoma. Exp Mol Pathol, 112:104341. https://doi.org/10.1016/j.yexmp.2019.104341https://doi.org/10.1016/j.yexmp.2019.104341
Chen YK, Huang AHC, Cheng PH, et al., 2013. Overexpression of Smad proteins, especially Smad7, in oral epithelial dysplasias. Clin Oral Invest, 17(3):921-932. https://doi.org/10.1007/s00784-012-0756-7https://doi.org/10.1007/s00784-012-0756-7
Cruz I, Napier SS, van der Waal I, et al., 2002. Suprabasal p53 immunoexpression is strongly associated with high grade dysplasia and risk for malignant transformation in potentially malignant oral lesions from Northern Ireland. J Clin Pathol, 55(2):98-104.
de Carvalho Fraga CA, Farias LC, de Oliveira MVM, et al., 2014. Increased VEGFR2 and MMP9 protein levels are associated with epithelial dysplasia grading. Pathol Res Pract, 210(12):959-964. https://doi.org/10.1016/j.prp.2014.06.020https://doi.org/10.1016/j.prp.2014.06.020
de Freitas Silva BS, Yamamoto-Silva FP, Pontes HAR, et al., 2014. E-cadherin downregulation and Twist overexpression since early stages of oral carcinogenesis. J Oral Pathol Med, 43(2):125-131. https://doi.org/10.1111/jop.12096https://doi.org/10.1111/jop.12096
de Vicente JC, Rodrigo JP, Rodriguez-Santamarta T, et al., 2013. Podoplanin expression in oral leukoplakia: tumorigenic role. Oral Oncol, 49(6):598-603. https://doi.org/10.1016/j.oraloncology.2013.02.008https://doi.org/10.1016/j.oraloncology.2013.02.008
de Vicente JC, Donate-Pérez del Molino P, Rodrigo JP, et al., 2019. SOX2 expression is an independent predictor of oral cancer progression. J Clin Med, 8(10):1744. https://doi.org/10.3390/jcm8101744https://doi.org/10.3390/jcm8101744
Drews RM, Hernando B, Tarabichi M, et al., 2022. A pan-cancer compendium of chromosomal instability. Nature, 606(7916):976-983. https://doi.org/10.1038/s41586-022-04789-9https://doi.org/10.1038/s41586-022-04789-9
Emilion G, Langdon J, Speight P, et al., 1996. Frequent gene deletions in potentially malignant oral lesions. Br J Cancer, 73(6):809-813. https://doi.org/10.1038/bjc.1996.142https://doi.org/10.1038/bjc.1996.142
Fernández-Valle Á, Rodrigo JP, García-Pedrero JM, et al., 2016. Expression of the voltage-gated potassium channel Kv3.4 in oral leucoplakias and oral squamous cell carcinomas. Histopathology, 69(1):91-98. https://doi.org/10.1111/his.12917https://doi.org/10.1111/his.12917
Ferrer-Sánchez A, Bagan J, Vila-Francés J, et al., 2022. Prediction of the risk of cancer and the grade of dysplasia in leukoplakia lesions using deep learning. Oral Oncol, 132:105967. https://doi.org/10.1016/j.oraloncology.2022.105967https://doi.org/10.1016/j.oraloncology.2022.105967
Fonseca-Silva T, Diniz MG, de Sousa SF, et al., 2016. Association between histopathological features of dysplasia in oral leukoplakia and loss of heterozygosity. Histopathology, 68(3):456-460. https://doi.org/10.1111/his.12746https://doi.org/10.1111/his.12746
Ghosh A, Das C, Ghose S, et al., 2022. Integrative analysis of genomic and transcriptomic data of normal, tumour, and co-occurring leukoplakia tissue triads drawn from patients with gingivobuccal oral cancer identifies signatures of tumour initiation and progression. J Pathol, 257(5):593-606. https://doi.org/10.1002/path.5900https://doi.org/10.1002/path.5900
Gires O, Mack B, Rauch J, et al., 2006. CK8 correlates with malignancy in leukoplakia and carcinomas of the head and neck. Biochem Biophys Res Commun, 343(1):252-259. https://doi.org/10.1016/j.bbrc.2006.02.139https://doi.org/10.1016/j.bbrc.2006.02.139
Gomes CC, Fonseca-Silva T, Galvão CF, et al., 2015. Inter- and intra-lesional molecular heterogeneity of oral leukoplakia. Oral Oncol, 51(2):178-181. https://doi.org/10.1016/j.oraloncology.2014.11.003https://doi.org/10.1016/j.oraloncology.2014.11.003
Graveland AP, Bremmer JF, de Maaker M, et al., 2013. Molecular screening of oral precancer. Oral Oncol, 49(12):1129-1135. https://doi.org/10.1016/j.oraloncology.2013.09.005https://doi.org/10.1016/j.oraloncology.2013.09.005
Grochau KJ, Safi AF, Drebber U, et al., 2019. Podoplanin expression in oral leukoplakia—a prospective study. J Craniomaxillofac Surg, 47(3):505-509. https://doi.org/10.1016/j.jcms.2018.12.005https://doi.org/10.1016/j.jcms.2018.12.005
Jäwert F, Fehr A, Öhman J, et al., 2022. Recurrent copy number alterations involving EGFR, CDKN2A, and CCND1 in oral premalignant lesions. J Oral Pathol Med, 51(6):546-552. https://doi.org/10.1111/jop.13303https://doi.org/10.1111/jop.13303
Jiang WW, Fujii H, Shirai T, et al., 2001. Accumulative increase of loss of heterozygosity from leukoplakia to foci of early cancerization in leukoplakia of the oral cavity. Cancer, 92(9):2349-2356. https://doi.org/10.1002/1097-0142(20011101)92:9https://doi.org/10.1002/1097-0142(20011101)92:9<2349::aid-cncr1582>3.0.co;2-i
Kaur J, Matta A, Kak I, et al., 2014. S100A7 overexpression is a predictive marker for high risk of malignant transformation in oral dysplasia. Int J Cancer, 134(6):1379-1388. https://doi.org/10.1002/ijc.28473https://doi.org/10.1002/ijc.28473
Kawaguchi H, El-Naggar AK, Papadimitrakopoulou V, et al., 2008. Podoplanin: a novel marker for oral cancer risk in patients with oral premalignancy. J Clin Oncol, 26(3):354-360. https://doi.org/10.1200/JCO.2007.13.4072https://doi.org/10.1200/JCO.2007.13.4072
Klein IP, Meurer L, Danilevicz CK, et al., 2020. BMI-1 expression increases in oral leukoplakias and correlates with cell proliferation. J Appl Oral Sci, 28:e20190532. https://doi.org/10.1590/1678-7757-2019-0532https://doi.org/10.1590/1678-7757-2019-0532
Kovesi G, Szende B, 2006. Prognostic value of cyclin D1, p27, and p63 in oral leukoplakia. J Oral Pathol Med, 35(5):274-277. https://doi.org/10.1111/j.1600-0714.2006.00396.xhttps://doi.org/10.1111/j.1600-0714.2006.00396.x
Kreppel M, Kreppel B, Drebber U, et al., 2012. Podoplanin expression in oral leukoplakia: prognostic value and clinicopathological implications. Oral Dis, 18(7):692-699. https://doi.org/10.1111/j.1601-0825.2012.01927.xhttps://doi.org/10.1111/j.1601-0825.2012.01927.x
Kujan O, Agag M, Smaga M, et al., 2022. PD-1/PD-L1, Treg-related proteins, and tumour-infiltrating lymphocytes are associated with the development of oral squamous cell carcinoma. Pathology, 54(4):409-416. https://doi.org/10.1016/j.pathol.2021.09.013https://doi.org/10.1016/j.pathol.2021.09.013
Kurokawa H, Matsumoto S, Murata T, et al., 2003. Immunohistochemical study of syndecan-1 down-regulation and the expression of p53 protein or Ki-67 antigen in oral leukoplakia with or without epithelial dysplasia. J Oral Pathol Med, 32(9):513-521. https://doi.org/10.1034/j.1600-0714.2003.00117.xhttps://doi.org/10.1034/j.1600-0714.2003.00117.x
Kyrodimou M, Andreadis D, Drougou A, et al., 2014. Desmoglein-3/γ-catenin and E-cadherin/ß-catenin differential expression in oral leukoplakia and squamous cell carcinoma. Clin Oral Invest, 18(1):199-210. https://doi.org/10.1007/s00784-013-0937-zhttps://doi.org/10.1007/s00784-013-0937-z
Lameira AG, Pontes FSC, Guimarães DM, et al., 2014. MCM3 could be a better marker than Ki-67 for evaluation of dysplastic oral lesions: an immunohistochemical study. J Oral Pathol Med, 43(6):427-434. https://doi.org/10.1111/jop.12153https://doi.org/10.1111/jop.12153
Li XT, Liu L, Zhang JY, et al., 2021. Improvement in the risk assessment of oral leukoplakia through morphology-related copy number analysis. Sci China Life Sci, 64(9):1379-1391. https://doi.org/10.1007/s11427-021-1965-xhttps://doi.org/10.1007/s11427-021-1965-x
Lin CY, Chen WH, Liao CT, et al., 2010. Positive association of glucose-regulated protein 78 during oral cancer progression and the prognostic value in oral precancerous lesions. Head Neck, 32(8):1028-1039. https://doi.org/10.1002/hed.21287https://doi.org/10.1002/hed.21287
Lin L, Wang JY, Liu DJ, et al., 2016. Interleukin-37 expression and its potential role in oral leukoplakia and oral squamous cell carcinoma. Sci Rep, 6:26757. https://doi.org/10.1038/srep26757https://doi.org/10.1038/srep26757
Liu W, Feng JQ, Shen XM, et al., 2012. Two stem cell markers, ATP-binding cassette, G2 subfamily (ABCG2) and BMI-1, predict the transformation of oral leukoplakia to cancer: a long-term follow-up study. Cancer, 118(6):1693-1700. https://doi.org/10.1002/cncr.26483https://doi.org/10.1002/cncr.26483
Liu W, Wu L, Shen XM, et al., 2013. Expression patterns of cancer stem cell markers ALDH1 and CD133 correlate with a high risk of malignant transformation of oral leukoplakia. Int J Cancer, 132(4):868-874. https://doi.org/10.1002/ijc.27720https://doi.org/10.1002/ijc.27720
Maimaiti A, Abudoukeremu K, Tie L, et al., 2015. MicroRNA expression profiling and functional annotation analysis of their targets associated with the malignant transformation of oral leukoplakia. Gene, 558(2):271-277. https://doi.org/10.1016/j.gene.2015.01.004https://doi.org/10.1016/j.gene.2015.01.004
Mao L, Lee JS, Fan YH, et al., 1996. Frequent microsatellite alterations at chromosomes 9p21 and 3p14 in oral premalignant lesions and their value in cancer risk assessment. Nat Med, 2(6):682-685. https://doi.org/10.1038/nm0696-682https://doi.org/10.1038/nm0696-682
Mello FW, Miguel AFP, Dutra KL, et al., 2018. Prevalence of oral potentially malignant disorders: a systematic review and meta-analysis. J Oral Pathol Med, 47(7):633-640. https://doi.org/10.1111/jop.12726https://doi.org/10.1111/jop.12726
Mello FW, Melo G, Guerra ENS, et al., 2020. Oral potentially malignant disorders: a scoping review of prognostic biomarkers. Crit Rev Oncol Hematol, 153:102986. https://doi.org/10.1016/j.critrevonc.2020.102986https://doi.org/10.1016/j.critrevonc.2020.102986
Miyahara LAN, Pontes FSC, Burbano RMR, et al., 2018. PTEN allelic loss is an important mechanism in the late stage of development of oral leucoplakia into oral squamous cell carcinoma. Histopathology, 72(2):330-338. https://doi.org/10.1111/his.13381https://doi.org/10.1111/his.13381
Monteiro L, Mello FW, Warnakulasuriya S, 2021. Tissue biomarkers for predicting the risk of oral cancer in patients diagnosed with oral leukoplakia: a systematic review. Oral Dis, 27(8):1977-1992. https://doi.org/10.1111/odi.13747https://doi.org/10.1111/odi.13747
Monteiro L, do Amaral B, Delgado L, et al., 2022. Podoplanin expression independently and jointly with oral epithelial dysplasia grade acts as a potential biomarker of malignant transformation in oral leukoplakia. Biomolecules, 12(5):606. https://doi.org/10.3390/biom12050606https://doi.org/10.3390/biom12050606
Muller S, Tilakaratne WM, 2022. Update from the 5th edition of the World Health Organization Classification of Head and Neck Tumors: tumours of the oral cavity and mobile tongue. Head Neck Pathol, 16(1):54-62. https://doi.org/10.1007/s12105-021-01402-9https://doi.org/10.1007/s12105-021-01402-9
Nguyen CTK, Okamura T, Morita KI, et al., 2017. LAMC2 is a predictive marker for the malignant progression of leukoplakia. J Oral Pathol Med, 46(3):223-231. https://doi.org/10.1111/jop.12485https://doi.org/10.1111/jop.12485
Odell E, Kujan O, Warnakulasuriya S, et al., 2021. Oral epithelial dysplasia: recognition, grading and clinical significance. Oral Dis, 27(8):1947-1976. https://doi.org/10.1111/odi.13993https://doi.org/10.1111/odi.13993
Pal J, Rajput Y, Shrivastava S, et al., 2022. A standalone approach to utilize telomere length measurement as a surveillance tool in oral leukoplakia. Mol Oncol, 16(8):1650-1660. https://doi.org/10.1002/1878-0261.13133https://doi.org/10.1002/1878-0261.13133
Papale F, Santonocito S, Polizzi A, et al., 2022. The new era of salivaomics in dentistry: frontiers and facts in the early diagnosis and prevention of oral diseases and cancer. Metabolites, 12(7):638. https://doi.org/10.3390/metabo12070638https://doi.org/10.3390/metabo12070638
Partridge M, Emilion G, Pateromichelakis S, et al., 1998. Allelic imbalance at chromosomal loci implicated in the pathogenesis of oral precancer, cumulative loss and its relationship with progression to cancer. Oral Oncol, 34(2):77-83. https://doi.org/10.1016/s1368-8375(97)00052-3https://doi.org/10.1016/s1368-8375(97)00052-3
Peng JK, Dan HX, Xu H, et al., 2022. Agreement evaluation of the severity of oral epithelial dysplasia in oral leukoplakia. Chin J Stomatol, 57(9):921-926 (in Chinese). https://doi.org/10.3760/cma.j.cn112144-20211206-00537https://doi.org/10.3760/cma.j.cn112144-20211206-00537
Peng X, Cheng L, You Y, et al., 2022. Oral microbiota in human systematic diseases. Int J Oral Sci, 14:14. https://doi.org/10.1038/s41368-022-00163-7https://doi.org/10.1038/s41368-022-00163-7
Philipone E, Yoon AJ, Wang S, et al., 2016. MicroRNAs-208b-3p, 204-5p, 129-2-3p and 3065-5p as predictive markers of oral leukoplakia that progress to cancer. Am J Cancer Res, 6(7):1537-1546.
Pietrobon G, Tagliabue M, Stringa LM, et al., 2021. Leukoplakia in the oral cavity and oral microbiota: a comprehensive review. Cancers (Basel), 13(17):4439. https://doi.org/10.3390/cancers13174439https://doi.org/10.3390/cancers13174439
Poomsawat S, Buajeeb W, Khovidhunkit SO, et al., 2010. Alteration in the expression of cdk4 and cdk6 proteins in oral cancer and premalignant lesions. J Oral Pathol Med, 39(10):793-799. https://doi.org/10.1111/j.1600-0714.2010.00909.xhttps://doi.org/10.1111/j.1600-0714.2010.00909.x
Pritzker KPH, Darling MR, Hwang JTK, et al., 2021. Oral potentially malignant disorders (OPMD): what is the clinical utility of dysplasia grade? Expert Rev Mol Diagn, 21(3):289-298. https://doi.org/10.1080/14737159.2021.1898949https://doi.org/10.1080/14737159.2021.1898949
Ramos-García P, González-Moles MÁ, Ayen A, et al., 2019. Predictive value of CCND1/cyclin D1 alterations in the malignant transformation of potentially malignant head and neck disorders: systematic review and meta-analysis. Head Neck, 41(9):3395-3407. https://doi.org/10.1002/hed.25834https://doi.org/10.1002/hed.25834
Ramos-García P, González-Moles MÁ, Warnakulasuriya S, 2022. Significance of p53 overexpression in the prediction of the malignant transformation risk of oral potentially malignant disorders: a systematic review and meta-analysis. Oral Oncol, 126:105734. https://doi.org/10.1016/j.oraloncology.2022.105734https://doi.org/10.1016/j.oraloncology.2022.105734
Ray JG, Chatterjee R, Chaudhuri K, 2019. Oral submucous fibrosis: a global challenge. Rising incidence, risk factors, management, and research priorities. Periodontology 2000, 80(1):200-212. https://doi.org/10.1111/prd.12277https://doi.org/10.1111/prd.12277
Ries J, Agaimy A, Vairaktaris E, et al., 2012. Evaluation of MAGE-A expression and grade of dysplasia for predicting malignant progression of oral leukoplakia. Int J Oncol, 41(3):1085-1093. https://doi.org/10.3892/ijo.2012.1532https://doi.org/10.3892/ijo.2012.1532
Saintigny P, El-Naggar AK, Papadimitrakopoulou V, et al., 2009. ΔNp63 overexpression, alone and in combination with other biomarkers, predicts the development of oral cancer in patients with leukoplakia. Clin Cancer Res, 15(19):6284-6291. https://doi.org/10.1158/1078-0432.CCR-09-0498https://doi.org/10.1158/1078-0432.CCR-09-0498
Sakata J, Yoshida R, Matsuoka Y, et al., 2017. Predictive value of the combination of SMAD4 expression and lymphocyte infiltration in malignant transformation of oral leukoplakia. Cancer Med, 6(4):730-738. https://doi.org/10.1002/cam4.1005https://doi.org/10.1002/cam4.1005
Sathasivam HP, Nayar D, Sloan P, et al., 2021. Dysplasia and DNA ploidy to prognosticate clinical outcome in oral potentially malignant disorders. J Oral Pathol Med, 50(2):200-209. https://doi.org/10.1111/jop.13121https://doi.org/10.1111/jop.13121
Schaaij-Visser TBM, Bremmer JF, Braakhuis BJM, et al., 2010. Evaluation of cornulin, keratin 4, keratin 13 expression and grade of dysplasia for predicting malignant progression of oral leukoplakia. Oral Oncol, 46(2):123-127. https://doi.org/10.1016/j.oraloncology.2009.11.012https://doi.org/10.1016/j.oraloncology.2009.11.012
Schwarz S, Bier J, Driemel O, et al., 2008. Losses of 3p14 and 9p21 as shown by fluorescence in situ hybridization are early events in tumorigenesis of oral squamous cell carcinoma and already occur in simple keratosis. Cytometry A, 73(4):305-311. https://doi.org/10.1002/cyto.a.20504https://doi.org/10.1002/cyto.a.20504
Shao S, Tsoi LC, Sarkar MK, et al., 2019. IFN-γ enhances cell-mediated cytotoxicity against keratinocytes via JAK2/STAT1 in lichen planus. Sci Transl Med, 11(511):eaav7561. https://doi.org/10.1126/scitranslmed.aav7561https://doi.org/10.1126/scitranslmed.aav7561
Simple M, Suresh A, Das D, et al., 2015. Cancer stem cells and field cancerization of oral squamous cell carcinoma. Oral Oncol, 51(7):643-651. https://doi.org/10.1016/j.oraloncology.2015.04.006https://doi.org/10.1016/j.oraloncology.2015.04.006
Thiem DGE, Schneider S, Venkatraman NT, et al., 2017. Semiquantifiable angiogenesis parameters in association with the malignant transformation of oral leukoplakia. J Oral Pathol Med, 46(9):710-716. https://doi.org/10.1111/jop.12544https://doi.org/10.1111/jop.12544
Tobias MAS, Nogueira BP, Santana MCS, et al., 2022. Artificial intelligence for oral cancer diagnosis: what are the possibilities? Oral Oncol, 134:106117. https://doi.org/10.1016/j.oraloncology.2022.106117https://doi.org/10.1016/j.oraloncology.2022.106117
Tu HF, Lin LH, Chang KW, et al., 2022. Exploiting salivary miR-375 as a clinical biomarker of oral potentially malignant disorder. J Dent Sci, 17(2):659-665. https://doi.org/10.1016/j.jds.2021.09.020https://doi.org/10.1016/j.jds.2021.09.020
van den Bossche V, Zaryouh H, Vara-Messler M, et al., 2022. Microenvironment-driven intratumoral heterogeneity in head and neck cancers: clinical challenges and opportunities for precision medicine. Drug Resist Updat, 60:100806. https://doi.org/10.1016/j.drup.2022.100806https://doi.org/10.1016/j.drup.2022.100806
Vered M, Allon I, Dayan D, 2009. Maspin, p53, p63, and Ki-67 in epithelial lesions of the tongue: from hyperplasia through dysplasia to carcinoma. J Oral Pathol Med, 38(3):314-320. https://doi.org/10.1111/j.1600-0714.2008.00698.xhttps://doi.org/10.1111/j.1600-0714.2008.00698.x
Villa A, Celentano A, Glurich I, et al., 2019. World Workshop on Oral Medicine VII: prognostic biomarkers in oral leukoplakia: a systematic review of longitudinal studies. Oral Dis, 25(S1):64-78. https://doi.org/10.1111/odi.13087https://doi.org/10.1111/odi.13087
von Zeidler SV, de Souza Botelho T, Mendonça EF, et al., 2014. E-cadherin as a potential biomarker of malignant transformation in oral leukoplakia: a retrospective cohort study. BMC Cancer, 14:972. https://doi.org/10.1186/1471-2407-14-972https://doi.org/10.1186/1471-2407-14-972
Warnakulasuriya S, 2000. Lack of molecular markers to predict malignant potential of oral precancer. J Pathol, 190(4):407-409. https://doi.org/10.1002/(SICI)1096-9896(200003)190:4<407::AID-PATH546>3.0.CO;2-Dhttps://doi.org/10.1002/(SICI)1096-9896(200003)190:4<407::AID-PATH546>3.0.CO;2-D
Warnakulasuriya S, Johnson NW, van der Waal I, 2007. Nomenclature and classification of potentially malignant disorders of the oral mucosa. J Oral Pathol Med, 36(10):575-580. https://doi.org/10.1111/j.1600-0714.2007.00582.xhttps://doi.org/10.1111/j.1600-0714.2007.00582.x
Warnakulasuriya S, Kujan O, Aguirre-Urizar JM, et al., 2021. Oral potentially malignant disorders: a consensus report from an international seminar on nomenclature and classification, convened by the WHO Collaborating Centre for Oral Cancer. Oral Dis, 27(8):1862-1880. https://doi.org/10.1111/odi.13704https://doi.org/10.1111/odi.13704
Weber M, Wehrhan F, Baran C, et al., 2020. Malignant transformation of oral leukoplakia is associated with macrophage polarization. J Transl Med, 18:11. https://doi.org/10.1186/s12967-019-02191-0https://doi.org/10.1186/s12967-019-02191-0
William WN, Zhao X, Bianchi JJ, et al., 2021. Immune evasion in HPV- head and neck precancer–cancer transition is driven by an aneuploid switch involving chromosome 9p loss. Proc Natl Acad Sci USA, 118(19):e2022655118. https://doi.org/10.1073/pnas.2022655118https://doi.org/10.1073/pnas.2022655118
Wood MW, Medina JE, Thompson GC, et al., 1994. Accumulation of the p53 tumor-suppressor gene product in oral leukoplakia. Otolaryngol Head Neck Surg, 111(6):758-763. https://doi.org/10.1177/019459989411100610https://doi.org/10.1177/019459989411100610
Wu XB, Wang RY, Jiao JT, et al., 2018. Transglutaminase 3 contributes to malignant transformation of oral leukoplakia to cancer. Int J Biochem Cell Biol, 104:34-42. https://doi.org/10.1016/j.biocel.2018.08.016https://doi.org/10.1016/j.biocel.2018.08.016
Xu SB, Wang MY, Shi XZ, et al., 2022. Influence of PD-1/PD-L1 on immune microenvironment in oral leukoplakia and oral squamous cell carcinoma. Oral Dis, online. https://doi.org/10.1111/odi.14332https://doi.org/10.1111/odi.14332
Yagyuu T, Funayama N, Imada M, et al., 2021. Effect of smoking status and programmed death-ligand 1 expression on the microenvironment and malignant transformation of oral leukoplakia: a retrospective cohort study. PLoS ONE, 16(4):e0250359. https://doi.org/10.1371/journal.pone.0250359https://doi.org/10.1371/journal.pone.0250359
Yang SY, Li SH, Liu JL, et al., 2022. Histopathology-based diagnosis of oral squamous cell carcinoma using deep learning. J Dent Res, 101(11):1321-1327. https://doi.org/10.1177/00220345221089858https://doi.org/10.1177/00220345221089858
Yang Y, Li YX, Yang X, et al., 2013. Progress risk assessment of oral premalignant lesions with saliva miRNA analysis. BMC Cancer, 13:129. https://doi.org/10.1186/1471-2407-13-129https://doi.org/10.1186/1471-2407-13-129
Zhang L, Rosin MP, 2001. Loss of heterozygosity: a potential tool in management of oral premalignant lesions? J Oral Pathol Med, 30(9):513-520. https://doi.org/10.1034/j.1600-0714.2001.300901.xhttps://doi.org/10.1034/j.1600-0714.2001.300901.x
Zhang XL, Han S, Han HY, et al., 2013. Risk prediction for malignant conversion of oral epithelial dysplasia by hypoxia related protein expression. Pathology, 45(5):478-483. https://doi.org/10.1097/PAT.0b013e3283632624https://doi.org/10.1097/PAT.0b013e3283632624
Zhang XL, Kim KY, Zheng ZL, et al., 2017a. Nomogram for risk prediction of malignant transformation in oral leukoplakia patients using combined biomarkers. Oral Oncol, 72:132-139. https://doi.org/10.1016/j.oraloncology.2017.07.015https://doi.org/10.1016/j.oraloncology.2017.07.015
Zhang XL, Kim KY, Zheng ZL, et al., 2017b. Snail and Axin2 expression predict the malignant transformation of oral leukoplakia. Oral Oncol, 73:48-55. https://doi.org/10.1016/j.oraloncology.2017.08.004https://doi.org/10.1016/j.oraloncology.2017.08.004
0
Views
1
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution