无数据
Scan for full text
1.Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
2.Department of Primary Industries and Regional Development, South Perth, WA 6151, Australia
Sakura KARUNARATHNE,Esther WALKER,Darshan SHARMA等.定向改良大麦耐逆性的遗传资源和基因编辑策略[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2023,24(12):1069-1092.
Sakura KARUNARATHNE, Esther WALKER, Darshan SHARMA, et al. Genetic resources and precise gene editing for targeted improvement of barley abiotic stress tolerance. [J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology) 24(12):1069-1092(2023)
Sakura KARUNARATHNE,Esther WALKER,Darshan SHARMA等.定向改良大麦耐逆性的遗传资源和基因编辑策略[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2023,24(12):1069-1092. DOI: 10.1631/jzus.B2200552.
Sakura KARUNARATHNE, Esther WALKER, Darshan SHARMA, et al. Genetic resources and precise gene editing for targeted improvement of barley abiotic stress tolerance. [J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology) 24(12):1069-1092(2023) DOI: 10.1631/jzus.B2200552.
逆境胁迫如干旱、高温、盐害、低温和涝渍危害谷类作物生长,这些因素限制了全球大麦产量并造成了巨大的经济损失。随着抗逆基因被不断发掘和验证,以及新型基因编辑系统的引入,精确改良大麦耐逆性迎来了新的发展契机,特别是利用强大的CRISPR/Cas9工具定点诱导突变和改良性状。本文综述了世界大麦主产地中受主要逆境因素影响的区域以及相应的经济损失,收集了约150个已被验证的关键抗逆基因并构建于同一个大麦物理图谱中,以期用于育种实践。此外,本文还概述了应用碱基编辑、引导编辑和多重编辑等不同策略定向改良性状,并讨论了当前的技术难点,包括高通量突变体筛选和突破大麦遗传转化的基因型依赖,以实现商业化育种。本文罗列的抗逆基因和提出的相应基因编辑策略对增强大麦耐逆性和环境适应性具有理论和实践意义。
Abiotic stresses, predominately drought, heat, salinity, cold, and waterlogging, adversely affect cereal crops. They limit barley production worldwide and cause huge economic losses. In barley, functional genes under various stresses have been identified over the years and genetic improvement to stress tolerance has taken a new turn with the introduction of modern gene-editing platforms. In particular, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) is a robust and versatile tool for precise mutation creation and trait improvement. In this review, we highlight the stress-affected regions and the corresponding economic losses among the main barley producers. We collate about 150 key genes associated with stress tolerance and combine them into a single physical map for potential breeding practices. We also overview the applications of precise base editing, prime editing, and multiplexing technologies for targeted trait modification, and discuss current challenges including high-throughput mutant genotyping and genotype dependency in genetic transformation to promote commercial breeding. The listed genes counteract key stresses such as drought, salinity, and nutrient deficiency, and the potential application of the respective gene-editing technologies will provide insight into barley improvement for climate resilience.
CRISPR基因功能干旱遗传改良转录调控育种
Clustered regularly interspaced short palindromic repeats (CRISPR)Gene functionDroughtGenetic improvementTranscription regulationBreeding
Abass M, Morris PC, 2013. The Hordeum vulgare signalling protein MAP kinase 4 is a regulator of biotic and abiotic stress responses. J Plant Physiol, 170(15):1353-1359. https://doi.org/10.1016/j.jplph.2013.04.009https://doi.org/10.1016/j.jplph.2013.04.009
Acosta JA, Faz A, Jansen B, et al., 2011. Assessment of salinity status in intensively cultivated soils under semiarid climate, Murcia, SE Spain. J Arid Environ, 75(11):1056-1066. https://doi.org/10.1016/j.jaridenv.2011.05.006https://doi.org/10.1016/j.jaridenv.2011.05.006
Adisa OM, Masinde M, Botai JO, et al., 2020. Bibliometric analysis of methods and tools for drought monitoring and prediction in Africa. Sustainability, 12(16):6516. https://doi.org/10.3390/su12166516https://doi.org/10.3390/su12166516
Afgan E, Baker D, Batut B, et al., 2018. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res, 46(W1):W537-W544. https://doi.org/10.1093/nar/gky379https://doi.org/10.1093/nar/gky379
Ahmadalipour A, Moradkhani H, Castelletti A, et al., 2019. Future drought risk in Africa: integrating vulnerability, climate change, and population growth. Sci Total Environ, 662:672-686. https://doi.org/10.1016/j.scitotenv.2019.01.278https://doi.org/10.1016/j.scitotenv.2019.01.278
Ahmed F, Rafii MY, Ismail MR, et al., 2013. Waterlogging tolerance of crops: breeding, mechanism of tolerance, molecular approaches, and future prospects. Biomed Res Int, 2013:963525. https://doi.org/10.1155/2013/963525https://doi.org/10.1155/2013/963525
al Abdallat AM, Ayad JY, abu Elenein JM, et al., 2014. Overexpression of the transcription factor HvSNAC1 improves drought tolerance in barley (Hordeum vulgare L.). Mol Breeding, 33(2):401-414. https://doi.org/10.1007/s11032-013-9958-1https://doi.org/10.1007/s11032-013-9958-1
Alexander RD, Wendelboe-Nelson C, Morris PC, 2019. The barley transcription factor HvMYB1 is a positive regulator of drought tolerance. Plant Physiol Biochem, 142:246-253. https://doi.org/10.1016/j.plaphy.2019.07.014https://doi.org/10.1016/j.plaphy.2019.07.014
Alghuthaymi MA, Ahmad A, Khan Z, et al., 2021. Exosome/liposome-like nanoparticles: new carriers for CRISPR genome editing in plants. Int J Mol Sci, 22(14):7456. https://doi.org/10.3390/ijms22147456https://doi.org/10.3390/ijms22147456
Ali Q, Malik A, 2021. Genetic response of growth phases for abiotic environmental stress tolerance in cereal crop plants. Genetika, 53(1):419-456. https://doi.org/10.2298/GENSR2101419Ahttps://doi.org/10.2298/GENSR2101419A
Aman R, Ali Z, Butt H, et al., 2018. RNA virus interference via CRISPR/Cas13a system in plants. Genome Biol, 19:1. https://doi.org/10.1186/s13059-017-1381-1https://doi.org/10.1186/s13059-017-1381-1
An YH, Gu Z, Jiao XY, et al., 2022. Enhanced N2O emissions from winter wheat field induced by winter irrigation in the North China Plain. Agronomy, 12(4):955. https://doi.org/10.3390/agronomy12040955https://doi.org/10.3390/agronomy12040955
Anzalone AV, Randolph PB, Davis JR, et al., 2019. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature, 576(7785):149-157. https://doi.org/10.1038/s41586-019-1711-4https://doi.org/10.1038/s41586-019-1711-4
Araneda-Cabrera RJ, Bermúdez M, Puertas J, 2021. Benchmarking of drought and climate indices for agricultural drought monitoring in Argentina. Sci Total Environ, 790:148090. https://doi.org/10.1016/j.scitotenv.2021.148090https://doi.org/10.1016/j.scitotenv.2021.148090
Atkinson NJ, Urwin PE, 2012. The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot, 63(10):3523-3543. https://doi.org/10.1093/jxb/ers100https://doi.org/10.1093/jxb/ers100
Bahrani HA, Ghazvini H, Amiri B, et al., 2023. Responses of barley (Hordeum vulgare L.) genotypes to salinity stress under controlled and field conditions. Gesunde Pflanz, 75:499-513. https://doi.org/10.1007/s10343-022-00711-5https://doi.org/10.1007/s10343-022-00711-5
Bennett A, 2021. A Review of the Economics of Regenerative Agriculture in Western Australia. Department of Primary Industries and Regional Development, Western Australian Government, Perth, Australia. https://library.dpird.wa.gov.au/pubns/153https://library.dpird.wa.gov.au/pubns/153
Bento VA, Ribeiro AFS, Russo A, et al., 2021. The impact of climate change in wheat and barley yields in the Iberian Peninsula. Sci Rep, 11:15484. https://doi.org/10.1038/s41598-021-95014-6https://doi.org/10.1038/s41598-021-95014-6
Billon P, Bryant EE, Joseph SA, et al., 2017. CRISPR-mediated base editing enables efficient disruption of eukaryotic genes through induction of STOP codons. Mol Cell, 67(6):1068-1079.e4. https://doi.org/10.1016/j.molcel.2017.08.008https://doi.org/10.1016/j.molcel.2017.08.008
Borrego-Benjumea A, Carter A, Glenn AJ, et al., 2019. Impact of excess moisture due to precipitation on barley grain yield in the Canadian Prairies. Can J Plant Sci, 99(1):93-96. https://doi.org/10.1139/cjps-2018-0108https://doi.org/10.1139/cjps-2018-0108
Borrego-Benjumea A, Carter A, Tucker JR, et al., 2020. Genome-wide analysis of gene expression provides new insights into waterlogging responses in barley (Hordeum vulgare L.). Plants (Basel), 9(2):240. https://doi.org/10.3390/plants9020240https://doi.org/10.3390/plants9020240
Borychowski M, Grzelak A, Popławski Ł, 2022. What drives low-carbon agriculture? The experience of farms from the Wielkopolska region in Poland. Environ Sci Pollut Res, 29(13):18641-18652. https://doi.org/10.1007/s11356-021-17022-3https://doi.org/10.1007/s11356-021-17022-3
Bosello F, Nicholls RJ, Richards J, et al., 2012. Economic impacts of climate change in Europe: sea-level rise. Climatic Change, 112(1):63-81. https://doi.org/10.1007/s10584-011-0340-1https://doi.org/10.1007/s10584-011-0340-1
Brinkman EK, Chen T, Amendola M, et al., 2014. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res, 42(22):e168. https://doi.org/10.1093/nar/gku936https://doi.org/10.1093/nar/gku936
Brisson N, Rebière B, Zimmer D, et al., 2002. Response of the root system of a winter wheat crop to waterlogging. Plant Soil, 243(1):43-55. https://doi.org/10.1023/A:1019947903041https://doi.org/10.1023/A:1019947903041
Butt H, Rao GS, Sedeek K, et al., 2020. Engineering herbicide resistance via prime editing in rice. Plant Biotechnol J, 18(12):2370-2372. https://doi.org/10.1111/pbi.13399https://doi.org/10.1111/pbi.13399
Cammarano D, Ceccarelli S, Grando S, et al., 2019. The impact of climate change on barley yield in the Mediterranean basin. Eur J Agron, 106:1-11. https://doi.org/10.1016/j.eja.2019.03.002https://doi.org/10.1016/j.eja.2019.03.002
Challinor AJ, Watson J, Lobell DB, et al., 2014. A meta-analysis of crop yield under climate change and adaptation. Nat Climate Change, 4(4):287-291. https://doi.org/10.1038/nclimate2153https://doi.org/10.1038/nclimate2153
Chatzidimopoulos M, Ganopoulos I, Moraitou-Daponta E, et al., 2019. High-resolution melting (HRM) analysis reveals genotypic differentiation of Venturia inaequalis populations in Greece. Front Ecol Evol, 7:489. https://doi.org/10.3389/fevo.2019.00489https://doi.org/10.3389/fevo.2019.00489
Chen J, Mueller V, 2018. Coastal climate change, soil salinity and human migration in Bangladesh. Nat Climate Change, 8(11):981-985. https://doi.org/10.1038/s41558-018-0313-8https://doi.org/10.1038/s41558-018-0313-8
Christen E, Saliem KA, 2013. Managing Salinity in Iraq’s Agriculture: Current State, Causes, and Impacts. International Center for Agricultural Research in the Dry Areas (ICARDA), Lebanon.
Ciais P, Reichstein M, Viovy N, et al., 2005. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 437(7058):529-533. https://doi.org/10.1038/nature03972https://doi.org/10.1038/nature03972
Ciancio N, Miralles DJ, Striker GG, et al., 2021. Plant growth rate after, and not during, waterlogging better correlates to yield responses in wheat and barley. J Agron Crop Sci, 207(2):304-316. https://doi.org/10.1111/jac.12472https://doi.org/10.1111/jac.12472
Cochrane DW, Shah JK, Hebelstrup KH, et al., 2017. Expression of phytoglobin affects nitric oxide metabolism and energy state of barley plants exposed to anoxia. Plant Sci, 265:124-130. https://doi.org/10.1016/j.plantsci.2017.10.001https://doi.org/10.1016/j.plantsci.2017.10.001
Cohen I, Zandalinas SI, Huck C, et al., 2021. Meta-analysis of drought and heat stress combination impact on crop yield and yield components. Physiol Plant, 171(1):66-76. https://doi.org/10.1111/ppl.13203https://doi.org/10.1111/ppl.13203
Collin A, Daszkowska-Golec A, Kurowska M, et al., 2020. Barley ABI5 (Abscisic Acid INSENSITIVE 5) is involved in abscisic acid-dependent drought response. Front Plant Sci, 11:1138. https://doi.org/10.3389/fpls.2020.01138https://doi.org/10.3389/fpls.2020.01138
Colmsee C, Beier S, Himmelbach A, et al., 2015. BARLEX-the barley draft genome explorer. Mol Plant, 8(6):964-966. https://doi.org/10.1016/j.molp.2015.03.009https://doi.org/10.1016/j.molp.2015.03.009
Corwin DL, 2021. Climate change impacts on soil salinity in agricultural areas. Eur J Soil Sci, 72(2):842-862. https://doi.org/10.1111/ejss.13010https://doi.org/10.1111/ejss.13010
Daliakopoulos IN, Tsanis IK, Koutroulis A, et al., 2016. The threat of soil salinity: a European scale review. Sci Total Environ, 573:727-739. https://doi.org/10.1016/j.scitotenv.2016.08.177https://doi.org/10.1016/j.scitotenv.2016.08.177
de Castro J, Hill RD, Stasolla C, et al., 2022. Waterlogging stress physiology in barley. Agronomy, 12(4):780. https://doi.org/10.3390/agronomy12040780https://doi.org/10.3390/agronomy12040780
de san Celedonio RP, Abeledo LG, Miralles DJ, 2014. Identifying the critical period for waterlogging on yield and its components in wheat and barley. Plant Soil, 378(1-2):265-277. https://doi.org/10.1007/s11104-014-2028-6https://doi.org/10.1007/s11104-014-2028-6
Dickin E, Wright D, 2008. The effects of winter waterlogging and summer drought on the growth and yield of winter wheat (Triticum aestivum L.). Eur J Agron, 28(3):234-244. https://doi.org/10.1016/j.eja.2007.07.010https://doi.org/10.1016/j.eja.2007.07.010
Doll NM, Gilles LM, Gérentes MF, et al., 2019. Single and multiple gene knockouts by CRISPR-Cas9 in maize. Plant Cell Rep, 38(4):487-501. https://doi.org/10.1007/s00299-019-02378-1https://doi.org/10.1007/s00299-019-02378-1
Elliott J, Glotter M, Ruane AC, et al., 2018. Characterizing agricultural impacts of recent large-scale US droughts and changing technology and management. Agric Syst, 159:275-281. https://doi.org/10.1016/j.agsy.2017.07.012https://doi.org/10.1016/j.agsy.2017.07.012
Fatima Z, Ahmed M, Hussain M, et al., 2020. The fingerprints of climate warming on cereal crops phenology and adaptation options. Sci Rep, 10:18013. https://doi.org/10.1038/s41598-020-74740-3https://doi.org/10.1038/s41598-020-74740-3
Feng X, Liu WX, Qiu CW, et al., 2020a. HvAKT2 and HvHAK1 confer drought tolerance in barley through enhanced leaf mesophyll H+ homoeostasis. Plant Biotechnol J, 18(8):1683-1696. https://doi.org/10.1111/pbi.13332https://doi.org/10.1111/pbi.13332
Feng X, Liu WX, Cao FB, et al., 2020b. Overexpression of HvAKT1 improves drought tolerance in barley by regulating root ion homeostasis and ROS and NO signaling. J Exp Bot, 71(20):6587-6600. https://doi.org/10.1093/jxb/eraa354https://doi.org/10.1093/jxb/eraa354
Flessner ML, Burke IC, Dille JA, et al., 2021. Potential wheat yield loss due to weeds in the United States and Canada. Weed Technol, 35(6):916-923. https://doi.org/10.1017/wet.2021.78https://doi.org/10.1017/wet.2021.78
FAO (The Food and Agriculture Organization of the United Nations), 2009. Global Agriculture Towards 2050. High Level Expert Forum—How to Feed the World in 2050, Office of the Director, Agricultural Development Economics Division Economic and Social Development Department, Rome, Italy. https://www.fao.org/fileadmin/templates/wsfs/docs/Issues_papers/HLEF2050_Global_Agriculture.pdfhttps://www.fao.org/fileadmin/templates/wsfs/docs/Issues_papers/HLEF2050_Global_Agriculture.pdf
Fu LB, Wu DZ, Zhang XC, et al., 2022. Vacuolar H+-pyrophosphatase HVP10 enhances salt tolerance via promoting Na+ translocation into root vacuoles. Plant Physiol, 188(2):1248-1263. https://doi.org/10.1093/plphys/kiab538https://doi.org/10.1093/plphys/kiab538
Fujii M, Yokosho K, Yamaji N, et al., 2012. Acquisition of aluminium tolerance by modification of a single gene in barley. Nat Commun, 3:713. https://doi.org/10.1038/ncomms1726https://doi.org/10.1038/ncomms1726
Galon L, Basso FJM, Forte CT, et al., 2022. Weed interference period and economic threshold level in barley. J Plant Prot Res, 62(1):33-48. https://doi.org/10.24425/jppr.2022.140295https://doi.org/10.24425/jppr.2022.140295
Gammans M, Mérel P, Ortiz-Bobea A, 2017. Negative impacts of climate change on cereal yields: statistical evidence from France. Environ Res Lett, 12(5):054007. https://doi.org/10.1088/1748-9326/aa6b0chttps://doi.org/10.1088/1748-9326/aa6b0c
Gao YY, Quan SX, Lyu B, et al., 2022. Barley transcription factor HvNLP2 mediates nitrate signaling and affects nitrogen use efficiency. J Exp Bot, 73(3):770-783. https://doi.org/10.1093/jxb/erab245https://doi.org/10.1093/jxb/erab245
Gasparis S, Kała M, Przyborowski M, et al., 2018. A simple and efficient CRISPR/Cas9 platform for induction of single and multiple, heritable mutations in barley (Hordeum vulgare L.). Plant Methods, 14:111. https://doi.org/10.1186/s13007-018-0382-8https://doi.org/10.1186/s13007-018-0382-8
Geng GP, Wu JJ, Wang QF, et al., 2016. Agricultural drought hazard analysis during 1980‒2008: a global perspective. Int J Climatol, 36(1):389-399. https://doi.org/10.1002/joc.4356https://doi.org/10.1002/joc.4356
Gharde Y, Singh PK, Dubey RP, 2018. Assessment of yield and economic losses in agriculture due to weeds in India. Crop Protection, 107:12-18. https://doi.org/10.1016/j.cropro.2018.01.007https://doi.org/10.1016/j.cropro.2018.01.007
Gierczik K, Székely A, Ahres M, et al., 2019. Overexpression of two upstream phospholipid signaling genes improves cold stress response and hypoxia tolerance, but leads to developmental abnormalities in barley. Plant Mol Biol Rep, 37(4):314-326. https://doi.org/10.1007/s11105-019-01154-5https://doi.org/10.1007/s11105-019-01154-5
Gomez-Sanchez A, Gonzalez-Melendi P, Santamaria ME, et al., 2019. Repression of drought-induced cysteine-protease genes alters barley leaf structure and responses to abiotic and biotic stresses. J Exp Bot, 70(7):2143-2155. https://doi.org/10.1093/jxb/ery410https://doi.org/10.1093/jxb/ery410
Gorji T, Sertel E, Tanik A, 2017. Monitoring soil salinity via remote sensing technology under data scarce conditions: a case study from Turkey. Ecol Indic, 74:384-391. https://doi.org/10.1016/j.ecolind.2016.11.043https://doi.org/10.1016/j.ecolind.2016.11.043
GRDC GrowNotes, 2016. Barley Weed Control, Barley Northern Region. https://grdc.com.au/__data/assets/pdf_file/0022/370534/GrowNote-Barley-North-6-Weed-Control.pdfhttps://grdc.com.au/__data/assets/pdf_file/0022/370534/GrowNote-Barley-North-6-Weed-Control.pdf
Grohmann L, Keilwagen J, Duensing N, et al., 2019. Detection and identification of genome editing in plants: challenges and opportunities. Front Plant Sci, 10:236. https://doi.org/10.3389/fpls.2019.00236https://doi.org/10.3389/fpls.2019.00236
Gürel F, Öztürk ZN, Uçarlı C, et al., 2016. Barley genes as tools to confer abiotic stress tolerance in crops. Front Plant Sci, 7:1137. https://doi.org/10.3389/fpls.2016.01137https://doi.org/10.3389/fpls.2016.01137
Han Y, Yin SY, Huang L, et al., 2018. A sodium transporter HvHKT1;1 confers salt tolerance in barley via regulating tissue and cell ion homeostasis. Plant Cell Physiol, 59(10):1976-1989. https://doi.org/10.1093/pcp/pcy116https://doi.org/10.1093/pcp/pcy116
Han Y, Broughton S, Liu L, et al., 2021. Highly efficient and genotype-independent barley gene editing based on anther culture. Plant Commun, 2(2):100082. https://doi.org/10.1016/j.xplc.2020.100082https://doi.org/10.1016/j.xplc.2020.100082
Hazzouri KM, Khraiwesh B, Amiri KMA, et al., 2018. Mapping of HKT1;5 gene in barley using GWAS approach and its implication in salt tolerance mechanism. Front Plant Sci, 9:156. https://doi.org/10.3389/fpls.2018.00156https://doi.org/10.3389/fpls.2018.00156
He G, Liu XS, Cui ZL, 2021. Achieving global food security by focusing on nitrogen efficiency potentials and local production. Glob Food Sec, 29:100536. https://doi.org/10.1016/j.gfs.2021.100536https://doi.org/10.1016/j.gfs.2021.100536
He TH, Angessa T, Hill CB, et al., 2022. Genetic solutions through breeding counteract climate change and secure barley production in Australia. Crop Des, 1(1):100001. https://doi.org/10.1016/j.cropd.2021.12.001https://doi.org/10.1016/j.cropd.2021.12.001
Hebelstrup KH, Shah JK, Simpson C, et al., 2014. An assessment of the biotechnological use of hemoglobin modulation in cereals. Physiol Plant, 150(4):593-603. https://doi.org/10.1111/ppl.12115https://doi.org/10.1111/ppl.12115
Heffer P, Prud'homme M, 2016. Global nitrogen fertiliser demand and supply: trend, current level and outlook. Proceedings of 2016 International Nitrogen Initiative Conference, Melbourne, Australia.
Hirayama T, Shinozaki K, 2010. Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J, 61(6):1041-1052. https://doi.org/10.1111/j.1365-313X.2010.04124.xhttps://doi.org/10.1111/j.1365-313X.2010.04124.x
Holme IB, Wendt T, Gil-Humanes J, et al., 2017. Evaluation of the mature grain phytase candidate HvPAPhy_a gene in barley (Hordeum vulgare L.) using CRISPR/Cas9 and TALENs. Plant Mol Biol, 95(1-2):111-121. https://doi.org/10.1007/s11103-017-0640-6https://doi.org/10.1007/s11103-017-0640-6
Houk E, Frasier M, Schuck E, 2006. The agricultural impacts of irrigation induced waterlogging and soil salinity in the Arkansas Basin. Agric Water Manag, 85(1-2):175-183. https://doi.org/10.1016/j.agwat.2006.04.007https://doi.org/10.1016/j.agwat.2006.04.007
Houlton BZ, Almaraz M, Aneja V, et al., 2019. A world of cobenefits: solving the global nitrogen challenge. Earths Future, 7(8):865-872. https://doi.org/10.1029/2019EF001222https://doi.org/10.1029/2019EF001222
Huang JP, Yu HP, Guan XD, et al., 2016. Accelerated dryland expansion under climate change. Nat Climate Change, 6(2):166-171. https://doi.org/10.1038/nclimate2837https://doi.org/10.1038/nclimate2837
Huang L, Kuang LH, Wu LY, et al., 2020. The HKT transporter HvHKT1;5 negatively regulates salt tolerance. Plant Physiol, 182(1):584-596. https://doi.org/10.1104/pp.19.00882https://doi.org/10.1104/pp.19.00882
Hudzenko VM, Demydov OA, Polishchuk TP, et al., 2021. Comprehensive evaluation of spring barley yield and tolerance to abiotic and biotic stresses. Ukr J Ecol, 11(8):48-55. https://doi.org/10.15421/2021_267https://doi.org/10.15421/2021_267
Huffman E, Eilers RG, Padbury G, et al., 2000. Canadian agri-environmental indicators related to land quality: integrating census and biophysical data to estimate soil cover, wind erosion and soil salinity. Agric Ecosyst Environ, 81(2):113-123. https://doi.org/10.1016/S0167-8809(00)00185-7https://doi.org/10.1016/S0167-8809(00)00185-7
Hughes J, Hepworth C, Dutton C, et al., 2017. Reducing stomatal density in barley improves drought tolerance without impacting on yield. Plant Physiol, 174(2):776-787. https://doi.org/10.1104/pp.16.01844https://doi.org/10.1104/pp.16.01844
Hunt E, Femia F, Werrell C, et al., 2021. Agricultural and food security impacts from the 2010 Russia flash drought. Weather Climate Extremes, 34:100383. https://doi.org/10.1016/j.wace.2021.100383https://doi.org/10.1016/j.wace.2021.100383
The International Barley Genome Sequencing Consortium, 2012. A physical, genetic and functional sequence assembly of the barley genome. Nature, 491(7426):711-716. https://doi.org/10.1038/nature11543https://doi.org/10.1038/nature11543
Ismagul A, Mazonka I, Callegari C, et al., 2014. Agrobacterium-mediated transformation of barley (Hordeum vulgare L.). In: Fleury D, Whitford R (Eds.), Crop Breeding: Methods and Protocols. Human Press, New York, p.203-211. https://doi.org/10.1007/978-1-4939-0446-4_16https://doi.org/10.1007/978-1-4939-0446-4_16
Jabran K, Mahajan G, Sardana V, et al., 2015. Allelopathy for weed control in agricultural systems. Crop Protection, 72:57-65. https://doi.org/10.1016/j.cropro.2015.03.004https://doi.org/10.1016/j.cropro.2015.03.004
Janack B, Sosoi P, Krupinska K, et al., 2016. Knockdown of WHIRLY1 affects drought stress-induced leaf senescence and histone modifications of the senescence-associated gene HvS40. Plants, 5(3):37. https://doi.org/10.3390/plants5030037https://doi.org/10.3390/plants5030037
Janiak A, Kwasniewski M, Sowa M, et al., 2018. No time to waste: transcriptome study reveals that drought tolerance in barley may be attributed to stressed-like expression patterns that exist before the occurrence of stress. Front Plant Sci, 8:2212. https://doi.org/10.3389/fpls.2017.02212https://doi.org/10.3389/fpls.2017.02212
Jayakodi M, Padmarasu S, Haberer G, et al., 2020. The barley pan-genome reveals the hidden legacy of mutation breeding. Nature, 588(7837):284-289. https://doi.org/10.1038/s41586-020-2947-8https://doi.org/10.1038/s41586-020-2947-8
Jeknić Z, Pillman KA, Dhillon T, et al., 2014. Hv-CBF2A overexpression in barley accelerates COR gene transcript accumulation and acquisition of freezing tolerance during cold acclimation. Plant Mol Biol, 84(1-2):67-82. https://doi.org/10.1007/s11103-013-0119-zhttps://doi.org/10.1007/s11103-013-0119-z
Kang GZ, Li GZ, Ma HZ, et al., 2013. Proteomic analysis on the leaves of TaBTF3 gene virus-induced silenced wheat plants may reveal its regulatory mechanism. J Proteomics, 83:130-143. https://doi.org/10.1016/j.jprot.2013.03.020https://doi.org/10.1016/j.jprot.2013.03.020
Karunarathne SD, Han Y, Zhang XQ, et al., 2020. Genome-wide association study and identification of candidate genes for nitrogen use efficiency in barley (Hordeum vulgare L.). Front Plant Sci, 11:571912. https://doi.org/10.3389/fpls.2020.571912https://doi.org/10.3389/fpls.2020.571912
Karunarathne SD, Han Y, Zhang XQ, et al., 2022. CRISPR/Cas9 gene editing and natural variation analysis demonstrate the potential for HvARE1 in improvement of nitrogen use efficiency in barley. J Integr Plant Biol, 64(3):756-770. https://doi.org/10.1111/jipb.13214https://doi.org/10.1111/jipb.13214
Kebede A, Kang MS, Bekele E, 2019. Advances in mechanisms of drought tolerance in crops, with emphasis on barley. Adv Agron, 156:265-314. https://doi.org/10.1016/bs.agron.2019.01.008https://doi.org/10.1016/bs.agron.2019.01.008
Kershanskaya OI, Yessenbaeva GL, Nelidova DS, et al., 2022. CRISPR/Cas genome editing perspectives for barley breeding. Physiol Plant, 174(3):e13686. https://doi.org/10.1111/ppl.13686https://doi.org/10.1111/ppl.13686
Kim YA, Moon H, Park CJ, 2019. CRISPR/Cas9-targeted mutagenesis of Os8N3 in rice to confer resistance to Xanthomonas oryzae pv. oryzae. Rice, 12:67. https://doi.org/10.1186/s12284-019-0325-7https://doi.org/10.1186/s12284-019-0325-7
Kirono DGC, Round V, Heady C, et al., 2020. Drought projections for Australia: updated results and analysis of model simulations. Weather Climate Extremes, 30:100280. https://doi.org/10.1016/j.wace.2020.100280https://doi.org/10.1016/j.wace.2020.100280
Kloc Y, Dmochowska-Boguta M, Zielezinski A, et al., 2020. Silencing of HvGSK1.1―a GSK3/SHAGGY-like kinase―enhances barley (Hordeum vulgare L.) growth in normal and in salt stress conditions. Int J Mol Sci, 21(18):6616. https://doi.org/10.3390/ijms21186616https://doi.org/10.3390/ijms21186616
Kovalchuk N, Jia W, Eini O, et al., 2013. Optimization of TaDREB3 gene expression in transgenic barley using cold-inducible promoters. Plant Biotechnol J, 11(6):659-670. https://doi.org/10.1111/pbi.12056https://doi.org/10.1111/pbi.12056
Křenek P, Chubar E, Vadovič P, et al., 2021. CRISPR/Cas9-induced loss-of-function mutation in the barley mitogen-activated protein kinase 6 gene causes abnormal embryo development leading to severely reduced grain germination and seedling shootless phenotype. Front Plant Sci, 12:670302. https://doi.org/10.3389/fpls.2021.670302https://doi.org/10.3389/fpls.2021.670302
Kubiak A, Wolna-Maruwka A, Niewiadomska A, et al., 2022. The problem of weed infestation of agricultural plantations vs. the assumptions of the European biodiversity strategy. Agronomy, 12(8):1808. https://doi.org/10.3390/agronomy12081808https://doi.org/10.3390/agronomy12081808
Kumar P, Sahu NC, Kumar S, et al., 2021. Impact of climate change on cereal production: evidence from lower-middle-income countries. Environ Sci Pollut Res, 28(37):51597-51611. https://doi.org/10.1007/s11356-021-14373-9https://doi.org/10.1007/s11356-021-14373-9
Kurnaz L, 2014. Drought in Turkey. Istanbul Policy Center, Sabanci University, Istanbul. https://ipc.sabanciuniv.edu/Content/Images/CKeditorImages/20200323-16034498.pdfhttps://ipc.sabanciuniv.edu/Content/Images/CKeditorImages/20200323-16034498.pdf
Kuscu C, Parlak M, Tufan T, et al., 2017. CRISPR-STOP: gene silencing through base-editing-induced nonsense mutations. Nat Methods, 14(7):710-712. https://doi.org/10.1038/nmeth.4327https://doi.org/10.1038/nmeth.4327
Langholtz M, Davison BH, Jager HI, et al., 2021. Increased nitrogen use efficiency in crop production can provide economic and environmental benefits. Sci Total Environ, 758:143602. https://doi.org/10.1016/j.scitotenv.2020.143602https://doi.org/10.1016/j.scitotenv.2020.143602
Lawrenson T, Harwood WA, 2019. Creating targeted gene knockouts in barley using CRISPR/Cas9. In: Harwood WA (Ed.), Barley. Humana Press, New York, p.217-232. https://doi.org/10.1007/978-1-4939-8944-7_14https://doi.org/10.1007/978-1-4939-8944-7_14
Lawrenson T, Shorinola O, Stacey N, et al., 2015. Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease. Genome Biol, 16:258. https://doi.org/10.1186/s13059-015-0826-7https://doi.org/10.1186/s13059-015-0826-7
Leong KYB, Chan YH, Abdullah WMANW, et al., 2018. The CRISPR/Cas9 system for crop improvement: progress and prospects. In: Çiftçi YÖ (Ed.), Next Generation Plant Breeding. IntechOpen, London, United Kingdom. https://doi.org/10.5772/intechopen.75024https://doi.org/10.5772/intechopen.75024
Li C, Zhang R, Meng XB, et al., 2020. Targeted, random mutagenesis of plant genes with dual cytosine and adenine base editors. Nat Biotechnol, 38(7):875-882. https://doi.org/10.1038/s41587-019-0393-7https://doi.org/10.1038/s41587-019-0393-7
Li W, Teng F, Li TD, et al., 2013. Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems. Nat Biotechnol, 31(8):684-686. https://doi.org/10.1038/nbt.2652https://doi.org/10.1038/nbt.2652
Liang JJ, Deng GB, Long H, et al., 2012. Virus-induced silencing of genes encoding LEA protein in Tibetan hulless barley (Hordeum vulgare ssp. vulgare) and their relationship to drought tolerance. Mol Breed, 30(1):441-451. https://doi.org/10.1007/s11032-011-9633-3https://doi.org/10.1007/s11032-011-9633-3
Lin QP, Zong Y, Xue CX, et al., 2020. Prime genome editing in rice and wheat. Nat Biotechnol, 38(5):582-585. https://doi.org/10.1038/s41587-020-0455-xhttps://doi.org/10.1038/s41587-020-0455-x
Lin QP, Jin S, Zong Y, et al., 2021. High-efficiency prime editing with optimized, paired pegRNAs in plants. Nat Biotechnol, 39(8):923-927. https://doi.org/10.1038/s41587-021-00868-whttps://doi.org/10.1038/s41587-021-00868-w
Liu K, Harrison MT, Ibrahim A, et al., 2020a. Genetic factors increasing barley grain yields under soil waterlogging. Food Energy Secur, 9(4):e238. https://doi.org/10.1002/fes3.238https://doi.org/10.1002/fes3.238
Liu K, Harrison MT, Hunt J, et al., 2020b. Identifying optimal sowing and flowering periods for barley in Australia: a modelling approach. Agric For Meteorol, 282-283:107871. https://doi.org/10.1016/j.agrformet.2019.107871https://doi.org/10.1016/j.agrformet.2019.107871
Liu K, Harrison MT, Shabala S, et al., 2020c. The state of the art in modeling waterlogging impacts on plants: what do we know and what do we need to know. Earths Future, 8(12):e2020EF001801. https://doi.org/10.1029/2020EF001801https://doi.org/10.1029/2020EF001801
Liu K, Harrison MT, Archontoulis SV, et al., 2021. Climate change shifts forward flowering and reduces crop waterlogging stress. Environ Res Lett, 16(9):094017. https://doi.org/10.1088/1748-9326/ac1b5ahttps://doi.org/10.1088/1748-9326/ac1b5a
Liu K, Harrison MT, Yan HL, et al., 2023. Silver lining to a climate crisis in multiple prospects for alleviating crop waterlogging under future climates. Nat Commun, 14:765. https://doi.org/10.1038/s41467-023-36129-4https://doi.org/10.1038/s41467-023-36129-4
Llewellyn R, Ronning D, Ouzman J, et al., 2016. Impact of Weeds on Australian Grain Production: the Cost of Weeds to Australian Grain Growers and the Adoption of Weed Management and Tillage Practices. Technical Report No. EP161334, Grains Research and Development Corporation, Canberra, Australia. https://grdc.com.au/__data/assets/pdf_file/0027/75843/grdc_weeds_review_r8.pdf.pdfhttps://grdc.com.au/__data/assets/pdf_file/0027/75843/grdc_weeds_review_r8.pdf.pdf
Lowder LG, Zhou JP, Zhang YX, et al., 2018. Robust transcriptional activation in plants using multiplexed CRISPR-Act2.0 and mTALE-Act systems. Mol Plant, 11(2):245-256. https://doi.org/10.1016/j.molp.2017.11.010https://doi.org/10.1016/j.molp.2017.11.010
Lowe K, Wu E, Wang N, et al., 2016. Morphogenic regulators Baby boom and Wuschel improve monocot transformation. Plant Cell, 28(9):1998-2015. https://doi.org/10.1105/tpc.16.00124https://doi.org/10.1105/tpc.16.00124
Lu CQ, Tian HQ, 2017. Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: shifted hot spots and nutrient imbalance. Earth Syst Sci Data, 9(1):181-192. https://doi.org/10.5194/essd-9-181-2017https://doi.org/10.5194/essd-9-181-2017
Ma XN, Zhang XY, Liu HM, et al., 2020. Highly efficient DNA-free plant genome editing using virally delivered CRISPR-Cas9. Nat Plants, 6(7):773-779. https://doi.org/10.1038/s41477-020-0704-5https://doi.org/10.1038/s41477-020-0704-5
Mahajan G, Hickey L, Chauhan BS, 2020. Response of barley genotypes to weed interference in Australia. Agronomy, 10(1):99. https://doi.org/10.3390/agronomy10010099https://doi.org/10.3390/agronomy10010099
Maher MF, Nasti RA, Vollbrecht M, et al., 2020. Plant gene-editing through de novo induction of meristems. Nat Biotechnol, 38(1):84-89. https://doi.org/10.1038/s41587-019-0337-2https://doi.org/10.1038/s41587-019-0337-2
Manik SMN, Pengilley G, Dean G, et al., 2019. Soil and crop management practices to minimize the impact of waterlogging on crop productivity. Front Plant Sci, 10:140. https://doi.org/10.3389/fpls.2019.00140https://doi.org/10.3389/fpls.2019.00140
Manik SMN, Quamruzzaman M, Livermore M, et al., 2022. Impacts of barley root cortical aerenchyma on growth, physiology, yield components, and grain quality under field waterlogging conditions. Field Crops Res, 279:108461. https://doi.org/10.1016/j.fcr.2022.108461https://doi.org/10.1016/j.fcr.2022.108461
Manmathan H, Shaner D, Snelling J, et al., 2013. Virus-induced gene silencing of Arabidopsis thaliana gene homologues in wheat identifies genes conferring improved drought tolerance. J Exp Bot, 64(5):1381-1392. https://doi.org/10.1093/jxb/ert003https://doi.org/10.1093/jxb/ert003
Mao XD, Liu C, Tong H, et al., 2019. Principles of digital PCR and its applications in current obstetrical and gynecological diseases. Am J Transl Res, 11(12):7209-7222.
Markonis Y, Kumar R, Hanel M, et al., 2021. The rise of compound warm-season droughts in Europe. Sci Adv, 7(6):eabb9668. https://doi.org/10.1126/sciadv.abb9668https://doi.org/10.1126/sciadv.abb9668
Mascher M, Gundlach H, Himmelbach A, et al., 2017. A chromosome conformation capture ordered sequence of the barley genome. Nature, 544(7651):427-433. https://doi.org/10.1038/nature22043https://doi.org/10.1038/nature22043
Masud MB, McAllister T, Cordeiro MRC, et al., 2018. Modeling future water footprint of barley production in Alberta, Canada: implications for water use and yields to 2064. Sci Total Environ, 616-617:208-222. https://doi.org/10.1016/j.scitotenv.2017.11.004https://doi.org/10.1016/j.scitotenv.2017.11.004
Mayerová M, Madaras M, Soukup J, 2018. Effect of chemical weed control on crop yields in different crop rotations in a long-term field trial. Crop Protection, 114:215-222. https://doi.org/10.1016/j.cropro.2018.08.001https://doi.org/10.1016/j.cropro.2018.08.001
McCarty NS, Graham AE, Studená L, et al., 2020. Multiplexed CRISPR technologies for gene editing and transcriptional regulation. Nat Commun, 11:1281. https://doi.org/10.1038/s41467-020-15053-xhttps://doi.org/10.1038/s41467-020-15053-x
Mendiondo GM, Gibbs DJ, Szurman-Zubrzycka M, et al., 2016. Enhanced waterlogging tolerance in barley by manipulation of expression of the N-end rule pathway E3 ligase PROTEOLYSIS6. Plant Biotechnol J, 14(1):40-50. https://doi.org/10.1111/pbi.12334https://doi.org/10.1111/pbi.12334
Mian A, Oomen RJFJ, Isayenkov S, et al., 2011. Over-expression of an Na+-and K+-permeable HKT transporter in barley improves salt tolerance. Plant J, 68(3):468-479. https://doi.org/10.1111/j.1365-313X.2011.04701.xhttps://doi.org/10.1111/j.1365-313X.2011.04701.x
Mittler R, 2006. Abiotic stress, the field environment and stress combination. Trends Plant Sci, 11(1):15-19. https://doi.org/10.1016/j.tplants.2005.11.002https://doi.org/10.1016/j.tplants.2005.11.002
Monat C, Padmarasu S, Lux T, et al., 2019. TRITEX: chromosome-scale sequence assembly of Triticeae genomes with open-source tools. Genome Biol, 20:284. https://doi.org/10.1186/s13059-019-1899-5https://doi.org/10.1186/s13059-019-1899-5
Montilla-Bascón G, Rubiales D, Hebelstrup KH, et al., 2017. Reduced nitric oxide levels during drought stress promote drought tolerance in barley and is associated with elevated polyamine biosynthesis. Sci Rep, 7:13311. https://doi.org/10.1038/s41598-017-13458-1https://doi.org/10.1038/s41598-017-13458-1
Mookkan M, Nelson-Vasilchik K, Hague J, et al., 2017. Selectable marker independent transformation of recalcitrant maize inbred B73 and sorghum P898012 mediated by morphogenic regulators BABY BOOM and WUSCHEL2. Plant Cell Rep, 36(9):1477-1491. https://doi.org/10.1007/s00299-017-2169-1https://doi.org/10.1007/s00299-017-2169-1
Munns R, Tester M, 2008. Mechanisms of salinity tolerance. Annu Rev Plant Biol, 59:651-681. https://doi.org/10.1146/annurev.arplant.59.032607.092911https://doi.org/10.1146/annurev.arplant.59.032607.092911
Mwando E, Han Y, Angessa TT, et al., 2020. Genome-wide association study of salinity tolerance during germination in barley (Hordeum vulgare L.). Front Plant Sci, 11:118. https://doi.org/10.3389/fpls.2020.00118https://doi.org/10.3389/fpls.2020.00118
Mwendwa JM, Brown WB, Weston PA, et al., 2022. Evaluation of barley cultivars for competitive traits in Southern New South Wales. Plants, 11(3):362. https://doi.org/10.3390/plants11030362https://doi.org/10.3390/plants11030362
Naeem M, Farooq S, Hussain M, 2022. The impact of different weed management systems on weed flora and dry biomass production of barley grown under various barley-based cropping systems. Plants, 11(6):718. https://doi.org/10.3390/plants11060718https://doi.org/10.3390/plants11060718
Nagahatenna DSK, Parent B, Edwards EJ, et al., 2020. Barley plants overexpressing Ferrochelatases (HvFC1 and HvFC2) show improved photosynthetic rates and have reduced photo-oxidative damage under drought stress than non-transgenic controls. Agronomy, 10(9):1351. https://doi.org/10.3390/agronomy10091351https://doi.org/10.3390/agronomy10091351
Najera VA, Twyman RM, Christou P, et al., 2019. Applications of multiplex genome editing in higher plants. Curr Opin Biotechnol, 59:93-102. https://doi.org/10.1016/j.copbio.2019.02.015https://doi.org/10.1016/j.copbio.2019.02.015
Nefissi Ouertani R, Arasappan D, Abid G, et al., 2021. Transcriptomic analysis of salt-stress-responsive genes in barley roots and leaves. Int J Mol Sci, 22(15):8155. https://doi.org/10.3390/ijms22158155https://doi.org/10.3390/ijms22158155
Nejat N, 2022. Gene Editing of Elite Malting Barley Cultivar RGT Planet Using Agrobacterium-Mediated Delivery of CRISPR/Cas9. PhD Thesis, Murdoch University, Perth, Australia.
Nejat N, Han Y, Zhang XQ, et al., 2022. Swiftly evolving CRISPR genome editing: a revolution in genetic engineering for developing stress-resilient crops. Curr Chin Sci, 2(5):382-399. https://doi.org/10.2174/2210298102666220324112842https://doi.org/10.2174/2210298102666220324112842
Nonaka S, Arai C, Takayama M, et al., 2017. Efficient increase of γ-aminobutyric acid (GABA) content in tomato fruits by targeted mutagenesis. Sci Rep, 7:7057. https://doi.org/10.1038/s41598-017-06400-yhttps://doi.org/10.1038/s41598-017-06400-y
Oerke EC, 2006. Crop losses to pests. J Agric Sci, 144(1):31-43. https://doi.org/10.1017/S0021859605005708https://doi.org/10.1017/S0021859605005708
Office of the Auditor General-Western Australia, 2018. Management of Salinity (Report 8‒May 2018). Office of the Auditor General Western Australia, Perth, Australia. https://audit.wa.gov.au/wp-content/uploads/2018/05/report2018_08-Salinity-2.pdfhttps://audit.wa.gov.au/wp-content/uploads/2018/05/report2018_08-Salinity-2.pdf
Otkin JA, Svoboda M, Hunt ED, et al., 2018. Flash droughts: a review and assessment of the challenges imposed by rapid-onset droughts in the United States. Bull Amer Meteor Soc, 99(5):911-919. https://doi.org/10.1175/BAMS-D-17-0149.1https://doi.org/10.1175/BAMS-D-17-0149.1
Otkin JA, Zhong YF, Hunt ED, et al., 2021. Development of a flash drought intensity index. Atmosphere, 12(6):741. https://doi.org/10.3390/atmos12060741https://doi.org/10.3390/atmos12060741
Pan R, Ding MQ, Feng ZB, et al., 2022. HvGST4 enhances tolerance to multiple abiotic stresses in barley: evidence from integrated meta-analysis to functional verification. Plant Physiol Biochem, 188:47-59. https://doi.org/10.1016/j.plaphy.2022.07.027https://doi.org/10.1016/j.plaphy.2022.07.027
Parker T, Gallant A, Hobbins M, et al., 2021. Flash drought in Australia and its relationship to evaporative demand. Environ Res Lett, 16(6):064033. https://doi.org/10.1088/1748-9326/abfe2chttps://doi.org/10.1088/1748-9326/abfe2c
Paynter BH, Hills AL, 2009. Barley and rigid ryegrass (Lolium rigidum) competition is influenced by crop cultivar and density. Weed Technol, 23(1):40-48. https://doi.org/10.1614/WT-08-093.1https://doi.org/10.1614/WT-08-093.1
Pellegrino E, Bedini S, Nuti M, et al., 2018. Impact of genetically engineered maize on agronomic, environmental and toxicological traits: a meta-analysis of 21 years of field data. Sci Rep, 8:3113. https://doi.org/10.1038/s41598-018-21284-2https://doi.org/10.1038/s41598-018-21284-2
Peterson BA, Haak DC, Nishimura MT, et al., 2016. Genome-wide assessment of efficiency and specificity in CRISPR/Cas9 mediated multiple site targeting in Arabidopsis. PLoS ONE, 11(9):e0162169. https://doi.org/10.1371/journal.pone.0162169https://doi.org/10.1371/journal.pone.0162169
Qadir M, Quillérou E, Nangia V, et al., 2014. Economics of salt‐induced land degradation and restoration. Nat Resour Forum, 38(4):282-295. https://doi.org/10.1111/1477-8947.12054https://doi.org/10.1111/1477-8947.12054
Ren BZ, Ma ZT, Zhao B, et al., 2022. Nitrapyrin mitigates nitrous oxide emissions, and improves maize yield and nitrogen efficiency under waterlogged field. Plants, 11(15):1983. https://doi.org/10.3390/plants11151983https://doi.org/10.3390/plants11151983
Ren C, Li HY, Liu YF, et al., 2022. Highly efficient activation of endogenous gene in grape using CRISPR/dCas9-based transcriptional activators. Hortic Res, 9:uhab037. https://doi.org/10.1093/hr/uhab037https://doi.org/10.1093/hr/uhab037
Rengasamy P, 2006. World salinization with emphasis on Australia. J Exp Bot, 57(5):1017-1023. https://doi.org/10.1093/jxb/erj108https://doi.org/10.1093/jxb/erj108
Rengasamy P, Chittleborough D, Helyar K, 2003. Root-zone constraints and plant-based solutions for dryland salinity. Plant Soil, 257(2):249-260. https://doi.org/10.1023/A:1027326424022https://doi.org/10.1023/A:1027326424022
Rukhovich DI, Simakova MS, Kulyanitsa AL, et al., 2014. Impact of shelterbelts on the fragmentation of erosional networks and local soil waterlogging. Eurasian Soil Sci, 47(11):1086-1099. https://doi.org/10.1134/S106422931411009Xhttps://doi.org/10.1134/S106422931411009X
Safonov G, Safonova Y, 2013. Economic Analysis of the Impact of Climate Change on Agriculture in Russia: National and Regional Aspects. Oxfam Research Reports, Oxfam International House, Oxford. https://doi.org/10.1163/2210-7975_hrd-9824-3045https://doi.org/10.1163/2210-7975_hrd-9824-3045
Samson J, Berteaux D, McGill BJ, et al., 2011. Geographic disparities and moral hazards in the predicted impacts of climate change on human populations. Glob Ecol Biogeogr, 20(4):532-544. https://doi.org/10.1111/j.1466-8238.2010.00632.xhttps://doi.org/10.1111/j.1466-8238.2010.00632.x
Schmitt J, Offermann F, Söder M, et al., 2022. Extreme weather events cause significant crop yield losses at the farm level in German agriculture. Food Policy, 112:102359. https://doi.org/10.1016/j.foodpol.2022.102359https://doi.org/10.1016/j.foodpol.2022.102359
Schreiber M, Mascher M, Wright J, et al., 2020. A genome assembly of the barley ‘transformation reference’ cultivar golden promise. G3-Genes Genom Genet, 10(6):1823-1827. https://doi.org/10.1534/g3.119.401010https://doi.org/10.1534/g3.119.401010
Setter TL, Waters I, 2003. Review of prospects for germplasm improvement for waterlogging tolerance in wheat, barley and oats. Plant Soil, 253(1):1-34. https://doi.org/10.1023/A:1024573305997https://doi.org/10.1023/A:1024573305997
Shimatani Z, Kashojiya S, Takayama M, et al., 2017. Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat Biotechnol, 35(5):441-443. https://doi.org/10.1038/nbt.3833https://doi.org/10.1038/nbt.3833
Sivamani E, Bahieldin A, Wraith JM, et al., 2000. Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Sci, 155(1):1-9. https://doi.org/10.1016/S0168-9452(99)00247-2https://doi.org/10.1016/S0168-9452(99)00247-2
Smargon AA, Cox DBT, Pyzocha NK, et al., 2017. Cas13b is a type VI-B CRISPR-associated RNA-guided RNase differentially regulated by accessory proteins Csx27 and Csx28. Mol Cell, 65(4):618-630.e7. https://doi.org/10.1016/j.molcel.2016.12.023https://doi.org/10.1016/j.molcel.2016.12.023
Sorokin A, Bryzzhev A, Strokov A, et al., 2016. The economics of land degradation in Russia. In: Nkonya E, Mirzabaev A, von Braun J (Eds.), Economics of Land Degradation and Improvement—A Global Assessment for Sustainable Development. Springer, Cham, p.541-576. https://doi.org/10.1007/978-3-319-19168-3_18https://doi.org/10.1007/978-3-319-19168-3_18
Stahl K, Kohn I, Blauhut V, et al., 2016. Impacts of European drought events: insights from an international database of text-based reports. Nat Hazards Earth Syst Sci, 16(3):801-819. https://doi.org/10.5194/nhess-16-801-2016https://doi.org/10.5194/nhess-16-801-2016
Statista, 2022a. Major Barley Producers Worldwide in 2021/2022, by Country. https://www.statista.com/statistics/272760/barley-harvest-forecasthttps://www.statista.com/statistics/272760/barley-harvest-forecast
Statista, 2022b. Worldwide Production of Grain in 2021/22, by Type. https://www.statista.com/statistics/263977/world-grain-production-by-typehttps://www.statista.com/statistics/263977/world-grain-production-by-type
Sun HY, Chen ZH, Chen F, et al., 2015. DNA microarray revealed and RNAi plants confirmed key genes conferring low Cd accumulation in barley grains. BMC Plant Biol, 15:259. https://doi.org/10.1186/s12870-015-0648-5https://doi.org/10.1186/s12870-015-0648-5
Talamè V, Ozturk NZ, Bohnert HJ, et al., 2007. Barley transcript profiles under dehydration shock and drought stress treatments: a comparative analysis. J Exp Bot, 58(2):229-240. https://doi.org/10.1093/jxb/erl163https://doi.org/10.1093/jxb/erl163
Taleisnik E, Lavado RS, 2021. Saline and Alkaline Soils in Latin America. Springer, Cham, Germany. https://doi.org/10.1007/978-3-030-52592-7https://doi.org/10.1007/978-3-030-52592-7
Tello-Ruiz MK, Jaiswal P, Ware D, 2022. Gramene: a resource for comparative analysis of plants genomes and pathways. In: Edwards D (Ed.), Plant Bioinformatics. Humana, New York, p.101-131. https://doi.org/10.1007/978-1-0716-2067-0_5https://doi.org/10.1007/978-1-0716-2067-0_5
Tian LX, Zhang YC, Chen PL, et al., 2021. How does the waterlogging regime affect crop yield? A global meta-analysis. Front Plant Sci, 12:634898. https://doi.org/10.3389/fpls.2021.634898https://doi.org/10.3389/fpls.2021.634898
Tian SW, Jiang LJ, Cui XX, et al., 2018. Engineering herbicide-resistant watermelon variety through CRISPR/Cas9-mediated base-editing. Plant Cell Rep, 37(9):1353-1356. https://doi.org/10.1007/s00299-018-2299-0https://doi.org/10.1007/s00299-018-2299-0
Tommasini L, Svensson JT, Rodriguez EM, et al., 2008. Dehydrin gene expression provides an indicator of low temperature and drought stress: transcriptome-based analysis of barley (Hordeum vulgare L.). Funct Integr Genomics, 8(4):387-405. https://doi.org/10.1007/s10142-008-0081-zhttps://doi.org/10.1007/s10142-008-0081-z
Trade Map, 2022. Trade Statistics for International Business Development. https://www.trademap.org/Index.aspxhttps://www.trademap.org/Index.aspx
Tricase C, Amicarelli V, Lamonaca E, et al., 2018. Economic analysis of the barley market and related uses. In: Tadele Z (Ed.), Grasses as Food and Feed. IntechOpen, London, United Kingdom.
Twining S, 2014. Impact of 2014 Winter Floods on Agriculture in England. ADAS Ltd., UK. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/401235/RFI7086_Flood_Impacts_Report__2_.pdfhttps://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/401235/RFI7086_Flood_Impacts_Report__2_.pdf
Ullah A, Bano A, Khan N, 2021. Climate change and salinity effects on crops and chemical communication between plants and plant growth-promoting microorganisms under stress. Front Sustain Food Syst, 5:618092. https://doi.org/10.3389/fsufs.2021.618092https://doi.org/10.3389/fsufs.2021.618092
Umezawa T, Fujita M, Fujita Y, et al., 2006. Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Curr Opin Biotechnol, 17(2):113-122. https://doi.org/10.1016/j.copbio.2006.02.002https://doi.org/10.1016/j.copbio.2006.02.002
USDA-FAS-IPAD (United States Department of Agriculture, Foreign Agricultural Service, International Production Assessment Division), 2022. Crop Production Maps. United States Government. https://ipad.fas.usda.gov/ogamaps/cropproductionmaps.aspxhttps://ipad.fas.usda.gov/ogamaps/cropproductionmaps.aspx
van Dijk M, Morley T, Rau ML, et al., 2021. A meta-analysis of projected global food demand and population at risk of hunger for the period 2010‒2050. Nat Food, 2(7):494-501. https://doi.org/10.1038/s43016-021-00322-9https://doi.org/10.1038/s43016-021-00322-9
van Veelen B, 2021. Cash cows? Assembling low-carbon agriculture through green finance. Geoforum, 118:130-139. https://doi.org/10.1016/j.geoforum.2020.12.008https://doi.org/10.1016/j.geoforum.2020.12.008
Velasco‐Arroyo B, Diaz‐Mendoza M, Gomez‐Sanchez A, et al., 2018. Silencing barley cystatins HvCPI‐2 and HvCPI‐4 specifically modifies leaf responses to drought stress. Plant Cell Environ, 41(8):1776-1790. https://doi.org/10.1111/pce.13178https://doi.org/10.1111/pce.13178
Visioni A, Al-Abdallat A, Elenien JA, et al., 2019. Genomics and molecular breeding for improving tolerance to abiotic stress in barley (Hordeum vulgare L.). In: Rajpal VR, Sehgal D, Kumar A, et al. (Eds.), Genomics Assisted Breeding of Crops for Abiotic Stress Tolerance, Vol. II. Springer, Cham, p.49-68. https://doi.org/10.1007/978-3-319-99573-1https://doi.org/10.1007/978-3-319-99573-1
Vlčko T, Ohnoutková L, 2020. Allelic variants of CRISPR/Cas9 induced mutation in an inositol trisphosphate 5/6 kinase gene manifest different phenotypes in barley. Plants, 9(2):195. https://doi.org/10.3390/plants9020195https://doi.org/10.3390/plants9020195
Wada N, Ueta R, Osakabe Y, et al., 2020. Precision genome editing in plants: state-of-the-art in CRISPR/Cas9-based genome engineering. BMC Plant Biol, 20:234. https://doi.org/10.1186/s12870-020-02385-5https://doi.org/10.1186/s12870-020-02385-5
Wan Y, Lemaux PG, 1994. Generation of large numbers of independently transformed fertile barley plants. Plant Physiol, 104(1):37-48. https://doi.org/10.1104/pp.104.1.37https://doi.org/10.1104/pp.104.1.37
Wang J, Vanga SK, Saxena R, et al., 2018. Effect of climate change on the yield of cereal crops: a review. Climate, 6(2):41. https://doi.org/10.3390/cli6020041https://doi.org/10.3390/cli6020041
Wang K, Shi L, Liang XN, et al., 2022. The gene TaWOX5 overcomes genotype dependency in wheat genetic transformation. Nat Plants, 8(2):110-117. https://doi.org/10.1038/s41477-021-01085-8https://doi.org/10.1038/s41477-021-01085-8
Wang WQ, Zhang GQ, Yang SL, et al., 2021. Overexpression of isochorismate synthase enhances drought tolerance in barley. J Plant Physiol, 260:153404. https://doi.org/10.1016/j.jplph.2021.153404https://doi.org/10.1016/j.jplph.2021.153404
Wani SH, Kumar V, Khare T, et al., 2020. Engineering salinity tolerance in plants: progress and prospects. Planta, 251(4):76. https://doi.org/10.1007/s00425-020-03366-6https://doi.org/10.1007/s00425-020-03366-6
Wardlaw IF, Wrigley CW, 1994. Heat tolerance in temperate cereals: an overview. Aust J Plant Physiol, 21(6):695-703. https://doi.org/10.1071/PP9940695https://doi.org/10.1071/PP9940695
Wolfe D, Dudek S, Ritchie MD, et al., 2013. Visualizing genomic information across chromosomes with PhenoGram. BioData Min, 6:18. https://doi.org/10.1186/1756-0381-6-18https://doi.org/10.1186/1756-0381-6-18
Xie W, Xiong W, Pan J, et al., 2018. Decreases in global beer supply due to extreme drought and heat. Nat Plants, 4(11):964-973. https://doi.org/10.1038/s41477-018-0263-1https://doi.org/10.1038/s41477-018-0263-1
Xing HL, Dong L, Wang ZP, et al., 2014. A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol, 14:327. https://doi.org/10.1186/s12870-014-0327-yhttps://doi.org/10.1186/s12870-014-0327-y
Xiong XY, Li ZX, Liang JP, et al., 2022. A cytosine base editor toolkit with varying activity windows and target scopes for versatile gene manipulation in plants. Nucleic Acids Res, 50(6):3565-3580. https://doi.org/10.1093/nar/gkac166https://doi.org/10.1093/nar/gkac166
Xu RF, Li J, Liu XS, et al., 2020. Development of plant prime-editing systems for precise genome editing. Plant Commun, 1(3):100043. https://doi.org/10.1016/j.xplc.2020.100043https://doi.org/10.1016/j.xplc.2020.100043
Yan HL, Harrison MT, Liu K, et al., 2022. Crop traits enabling yield gains under more frequent extreme climatic events. Sci Total Environ, 808:152170. https://doi.org/10.1016/j.scitotenv.2021.152170https://doi.org/10.1016/j.scitotenv.2021.152170
Yan M, Pan GX, Lavallee JM, et al., 2020. Rethinking sources of nitrogen to cereal crops. Glob Chang Biol, 26(1):191-199. https://doi.org/10.1111/gcb.14908https://doi.org/10.1111/gcb.14908
Yang SH, Kim E, Park H, et al., 2022. Selection of the high efficient sgRNA for CRISPR-Cas9 to edit herbicide related genes, PDS, ALS, and EPSPS in tomato. Appl Biol Chem, 65:13. https://doi.org/10.1186/s13765-022-00679-whttps://doi.org/10.1186/s13765-022-00679-w
Yavas I, Unay A, Aydin M, 2012. The waterlogging tolerance of wheat varieties in western of Turkey. Sci World J, 2012:529128. https://doi.org/10.1100/2012/529128https://doi.org/10.1100/2012/529128
Zahra N, Hafeez MB, Shaukat K, et al., 2021. Hypoxia and anoxia stress: plant responses and tolerance mechanisms. J Agron Crop Sci, 207(2):249-284. https://doi.org/10.1111/jac.12471https://doi.org/10.1111/jac.12471
Zaidi SSEA, Mahfouz MM, Mansoor S, 2017. CRISPR-Cpf1: a new tool for plant genome editing. Trends Plant Sci, 22(7):550-553. https://doi.org/10.1016/j.tplants.2017.05.001https://doi.org/10.1016/j.tplants.2017.05.001
Zaman M, Shahid SA, Heng L, 2018. Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques. Springer, Cham, Germany. https://doi.org/10.1007/978-3-319-96190-3https://doi.org/10.1007/978-3-319-96190-3
Zang YM, Gong Q, Xu YH, et al., 2022. Production of conjoined transgenic and edited barley and wheat plants for Nud genes using the CRISPR/SpCas9 system. Front Genet, 13:873850. https://doi.org/10.3389/fgene.2022.873850https://doi.org/10.3389/fgene.2022.873850
Zeng ZH, Han N, Liu CC, et al., 2020. Functional dissection of HGGT and HPT in barley vitamin E biosynthesis via CRISPR/Cas9-enabled genome editing. Ann Bot, 126(5):929-942. https://doi.org/10.1093/aob/mcaa115https://doi.org/10.1093/aob/mcaa115
Zhang JH, Zhang HT, Li SY, et al., 2021. Increasing yield potential through manipulating of an ARE1 ortholog related to nitrogen use efficiency in wheat by CRISPR/Cas9. J Integr Plant Biol, 63(9):1649-1663. https://doi.org/10.1111/jipb.13151https://doi.org/10.1111/jipb.13151
Zhong YX, Blennow A, Kofoed-Enevoldsen O, et al., 2019. Protein Targeting to Starch 1 is essential for starchy endosperm development in barley. J Exp Bot, 70(2):485-496. https://doi.org/10.1093/jxb/ery398https://doi.org/10.1093/jxb/ery398
Zhou GF, Delhaize E, Zhou MX, et al., 2013. The barley MATE gene, HvAACT1, increases citrate efflux and Al3+ tolerance when expressed in wheat and barley. Ann Bot, 112(3):603-612. https://doi.org/10.1093/aob/mct135https://doi.org/10.1093/aob/mct135
Zhou GF, Broughton S, Zhang XQ, et al., 2016. Genome-wide association mapping of acid soil resistance in barley (Hordeum vulgare L.). Front Plant Sci, 7:406. https://doi.org/10.3389/fpls.2016.00406https://doi.org/10.3389/fpls.2016.00406
Zhu HC, Li C, Gao CX, 2020. Applications of CRISPR-Cas in agriculture and plant biotechnology. Nat Rev Mol Cell Biol, 21(11):661-677. https://doi.org/10.1038/s41580-020-00288-9https://doi.org/10.1038/s41580-020-00288-9
Zhu HD, 2005. Single-strand conformational polymorphism analysis: basic principles and routine practice. In: Fennell JP, Baker AH (Eds.), Hypertension. Humana Press, Humana Totowa, p.149-158. https://doi.org/10.1385/1-59259-850-1:149https://doi.org/10.1385/1-59259-850-1:149
0
Views
5
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution