无数据
Scan for full text
College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
洪翔宇,马俊杰,郑珊珊等.神经激肽1受体拮抗剂的研究与应用进展[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2024,25(02):91-105.
Xiangyu HONG, Junjie MA, Shanshan ZHENG, et al. Advances in the research and application of neurokinin-1 receptor antagonists. [J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology) 25(2):91-105(2024)
洪翔宇,马俊杰,郑珊珊等.神经激肽1受体拮抗剂的研究与应用进展[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2024,25(02):91-105. DOI: 10.1631/jzus.B2300455.
Xiangyu HONG, Junjie MA, Shanshan ZHENG, et al. Advances in the research and application of neurokinin-1 receptor antagonists. [J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology) 25(2):91-105(2024) DOI: 10.1631/jzus.B2300455.
目前研究已经发现神经肽(SP)/神经激肽1受体(NK-1R)拮抗剂系统参与了包括2019冠状病毒病(COVID-19)症状在内的多种人体生理疾病。肿瘤学领域的最新研究表明:NK-1R的上调和SP/NK-1R系统的激活与多种癌症类型的进展和不良临床预后之间存在复杂的相关性,使用NK-1R拮抗剂来调节SP/NK-1R系统可成为一种潜在的广谱抗肿瘤策略。本文综述了NK-1R拮抗剂在人体生理疾病和癌症治疗中的最新应用和潜力以及相关机制,总结了改善NK-1R拮抗剂生物利用度和药效的策略(如固体分散系统、纳米化、纳米封装等),同时探讨了在放射药物治疗中,阿瑞匹坦作为放射配体受体以靶向过表达NK-1R的肿瘤疗法。此外,本文还总结了NK-1R拮抗剂与其他药物的协同效应,为NK-1R拮抗剂的创新应用提供了参考。
Recently, the substance P (SP)/neurokinin-1 receptor (NK-1R) system has been found to be involved in various human pathophysiological disorders including the symptoms of coronavirus disease 2019 (COVID-19). Besides, studies in the oncological field have demonstrated an intricate correlation between the upregulation of NK-1R and the activation of SP/NK-1R system with the progression of multiple carcinoma types and poor clinical prognosis. These findings indicate that the modulation of SP/NK-1R system with NK-1R antagonists can be a potential broad-spectrum antitumor strategy. This review updates the latest potential and applications of NK-1R antagonists in the treatment of human diseases and cancers, as well as the underlying mechanisms. Furthermore, the strategies to improve the bioavailability and efficacy of NK-1R antagonist drugs are summarized, such as solid dispersion systems, nanonization, and nanoencapsulation. As a radiopharmaceutical therapeutic, the NK-1R antagonist aprepitant was originally developed as radioligand receptor to target NK-1R-overexpressing tumors. However, combining NK-1R antagonists with other drugs can produce a synergistic effect, thereby enhancing the therapeutic effect, alleviating the symptoms, and improving patients’ quality of life in several diseases and cancers.
神经激肽1受体(NK-1R)拮抗剂阿瑞匹坦生理疾病2019冠状病毒病(COVID-19)肿瘤靶点纳米包被生物相容性放射性配体受体联合疗法
Neurokinin-1 receptor (NK-1R) antagonistPathophysiological disorderTumor targetBioavailabilityNanoencapsulationSynergistic therapy
Afshari AR, Motamed-Sanaye A, Sabri H, et al., 2021. Neurokinin-1 receptor (NK-1R) antagonists: potential targets in the treatment of glioblastoma multiforme. Curr Med Chem, 28(24):4877-4892. https://doi.org/10.2174/0929867328666210113165805https://doi.org/10.2174/0929867328666210113165805
Agelopoulos K, Rülander F, Dangelmaier J, et al., 2019. Neurokinin 1 receptor antagonists exhibit peripheral effects in prurigo nodularis including reduced ERK1/2 activation. J Eur Acad Dermatol Venereol, 33(12):2371-2379. https://doi.org/10.1111/jdv.15905https://doi.org/10.1111/jdv.15905
Alwazzan A, Mehboob R, Hassan A, et al., 2020. Elevated neurokinin-1 receptor expression in uterine products of conception is associated with first trimester miscarriages. Front Physiol, 11:554766. https://doi.org/10.3389/fphys.2020.554766https://doi.org/10.3389/fphys.2020.554766
Bai TR, Zhou D, Weir T, et al., 1995. Substance P (NK1)- and neurokinin A (NK2)-receptor gene expression in inflammatory airway diseases. Am J Physiol, 269(3 Pt 1):L309-L317. https://doi.org/10.1152/ajplung.1995.269.3.L309https://doi.org/10.1152/ajplung.1995.269.3.L309
Bakirtzi K, Law IKM, Fang K, et al., 2019. MiR-21 in substance P-induced exosomes promotes cell proliferation and migration in human colonic epithelial cells. Am J Physiol, 317(6):G802-G810. https://doi.org/10.1152/ajpgi.00043.2019https://doi.org/10.1152/ajpgi.00043.2019
Barbe MF, Hilliard BA, Fisher PW, et al., 2020. Blocking substance P signaling reduces musculotendinous and dermal fibrosis and sensorimotor declines in a rat model of overuse injury. Connect Tissue Res, 61(6):604-619. https://doi.org/10.1080/03008207.2019.1653289https://doi.org/10.1080/03008207.2019.1653289
Beirith I, Renz BW, Mudusetti S, et al., 2021. Identification of the neurokinin-1 receptor as targetable stratification factor for drug repurposing in pancreatic cancer. Cancers (Basel), 13(11):2703. https://doi.org/10.3390/cancers13112703https://doi.org/10.3390/cancers13112703
Biadsee A, Biadsee A, Kassem F, et al., 2020. Olfactory and oral manifestations of COVID-19: sex-related symptoms—a potential pathway to early diagnosis. Otolaryngol Head Neck Surg, 163(4):722-728. https://doi.org/10.1177/0194599820934380https://doi.org/10.1177/0194599820934380
Bubak AN, Como CN, Blackmon AM, et al., 2018. Varicella zoster virus induces nuclear translocation of the neurokinin-1 receptor, promoting lamellipodia formation and viral spread in spinal astrocytes. J Infect Dis, 218(8):1324-1335. https://doi.org/10.1093/infdis/jiy297https://doi.org/10.1093/infdis/jiy297
Chen Y, Chauhan SK, Lee HS, et al., 2014. Chronic dry eye disease is principally mediated by effector memory TH17 cells. Mucosal Immunol, 7(1):38-45. https://doi.org/10.1038/mi.2013.20https://doi.org/10.1038/mi.2013.20
Chu HW, Kraft M, Krause JE, et al., 2000. Substance P and its receptor neurokinin 1 expression in asthmatic airways. J Allergy Clin Immunol, 106(4):713-722. https://doi.org/10.1067/mai.2000.109829https://doi.org/10.1067/mai.2000.109829
Craig VJ, Zhang L, Hagood JS, et al., 2015. Matrix metalloproteinases as therapeutic targets for idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol, 53(5):585-600. https://doi.org/10.1165/rcmb.2015-0020TRhttps://doi.org/10.1165/rcmb.2015-0020TR
de Felipe C, Herrero JF, O'Brien JA, et al., 1998. Altered nociception, analgesia and aggression in mice lacking the receptor for substance P. Nature, 392(6674):394-397. https://doi.org/10.1038/32904https://doi.org/10.1038/32904
Definition and Classification Subcommittee, 2007. The definition and classification of dry eye disease: report of the Definition and Classification Subcommittee of the International Dry Eye Workshop (2007). Ocul Surf, 5(2):75-92. https://doi.org/10.1016/s1542-0124(12)70081-2https://doi.org/10.1016/s1542-0124(12)70081-2
Dehlin HM, Levick SP, 2014. Substance P in heart failure: the good and the bad. Int J Cardiol, 170(3):270-277. https://doi.org/10.1016/j.ijcard.2013.11.010https://doi.org/10.1016/j.ijcard.2013.11.010
Deng XT, Tang SM, Wu PY, et al., 2019. SP/NK-1R promotes gallbladder cancer cell proliferation and migration. J Cell Mol Med, 23(12):7961-7973. https://doi.org/10.1111/jcmm.14230https://doi.org/10.1111/jcmm.14230
Dong JQ, Feng F, Xu GH, et al., 2015. Elevated SP/NK-1R in esophageal carcinoma promotes esophageal carcinoma cell proliferation and migration. Gene, 560(2):205-210. https://doi.org/10.1016/j.gene.2015.02.002https://doi.org/10.1016/j.gene.2015.02.002
Dong YY, Mo X, Hu YB, et al., 2020. Epidemiology of COVID-19 among children in China. Pediatrics, 145(6):e20200702. https://doi.org/10.1542/peds.2020-0702https://doi.org/10.1542/peds.2020-0702
Douglas SD, Leeman SE, 2011. Neurokinin-1 receptor: functional significance in the immune system in reference to selected infections and inflammation. Ann N Y Acad Sci, 1217:83-95. https://doi.org/10.1111/j.1749-6632.2010.05826.xhttps://doi.org/10.1111/j.1749-6632.2010.05826.x
Ebrahimi S, Javid H, Alaei A, et al., 2020. New insight into the role of substance P/neurokinin-1 receptor system in breast cancer progression and its crosstalk with microRNAs. Clin Genet, 98(4):322-330. https://doi.org/10.1111/cge.13750https://doi.org/10.1111/cge.13750
Ebrahimi S, Mirzavi F, Aghaee-Bakhtiari SH, et al., 2022. SP/NK1R system regulates carcinogenesis in prostate cancer: shedding light on the antitumoral function of aprepitant. Biochim Biophys Acta Mol Cell Res, 1869(5):119221. https://doi.org/10.1016/j.bbamcr.2022.119221https://doi.org/10.1016/j.bbamcr.2022.119221
Foulsham W, Marmalidou A, Amouzegar A, et al., 2017. Review: the function of regulatory T cells at the ocular surface. Ocul Surf, 15(4):652-659. https://doi.org/10.1016/j.jtos.2017.05.013https://doi.org/10.1016/j.jtos.2017.05.013
García-Aranda M, Téllez T, McKenna L, et al., 2022. Neurokinin-1 receptor (NK-1R) antagonists as a new strategy to overcome cancer resistance. Cancers (Basel), 14(9):2255. https://doi.org/10.3390/cancers14092255https://doi.org/10.3390/cancers14092255
Ge CT, Huang HM, Huang FY, et al., 2019. Neurokinin-1 receptor is an effective target for treating leukemia by inducing oxidative stress through mitochondrial calcium overload. Proc Natl Acad Sci USA, 116(39):19635-19645. https://doi.org/10.1073/pnas.1908998116https://doi.org/10.1073/pnas.1908998116
Ghahremanloo A, Javid H, Afshari AR, et al., 2021. Investigation of the role of neurokinin-1 receptor inhibition using aprepitant in the apoptotic cell death through PI3K/Akt/NF-κB signal transduction pathways in colon cancer cells. Biomed Res Int, 2021:1383878. https://doi.org/10.1155/2021/1383878https://doi.org/10.1155/2021/1383878
Ghasemi A, Hashemy SI, Aghaei M, et al., 2018. Leptin induces matrix metalloproteinase 7 expression to promote ovarian cancer cell invasion by activating ERK and JNK pathways. J Cell Biochem, 119(2):2333-2344. https://doi.org/10.1002/jcb.26396https://doi.org/10.1002/jcb.26396
Ghasemi A, Saeidi J, Azimi-Nejad M, et al., 2019. Leptin-induced signaling pathways in cancer cell migration and invasion. Cell Oncol (Dordr), 42(3):243-260. https://doi.org/10.1007/s13402-019-00428-0https://doi.org/10.1007/s13402-019-00428-0
Gordon L, Polak JM, Moscoso GJ, et al., 1993. Development of the peptidergic innervation of human heart. J Anat, 183(Pt 1):131-140.
Halik PK, Lipiński PFJ, Matalińska J, et al., 2020. Radiochemical synthesis and evaluation of novel radioconjugates of neurokinin 1 receptor antagonist aprepitant dedicated for NK1R-positive tumors. Molecules, 25(16):3756. https://doi.org/10.3390/molecules25163756https://doi.org/10.3390/molecules25163756
Halik PK, Koźmiński P, Matalińska J, et al., 2022. In vitro biological evaluation of aprepitant based 177Lu-radioconjugates. Pharmaceutics, 14(3):607. https://doi.org/10.3390/pharmaceutics14030607https://doi.org/10.3390/pharmaceutics14030607
Isorna I, Esteban F, Solanellas J, et al., 2020. The substance P and neurokinin-1 receptor system in human thyroid cancer: an immunohistochemical study. Eur J Histochem, 64(2):3117. https://doi.org/10.4081/ejh.2020.3117https://doi.org/10.4081/ejh.2020.3117
Jin P, Qi DQ, Cui YH, et al., 2022. Aprepitant attenuates NLRC4-dependent neuronal pyroptosis via NK1R/PKCδ pathway in a mouse model of intracerebral hemorrhage. J Neuroinflammation, 19:198. https://doi.org/10.1186/s12974-022-02558-zhttps://doi.org/10.1186/s12974-022-02558-z
Kakade P, Pathan Z, Gite S, et al., 2022. Nanoparticle engineering of aprepitant using Nano-by-Design (NbD) approach. AAPS PharmSciTech, 23(6):204. https://doi.org/10.1208/s12249-022-02350-5https://doi.org/10.1208/s12249-022-02350-5
Kast RE, Ramiro S, Lladó S, et al., 2016. Antitumor action of temozolomide, ritonavir and aprepitant against human glioma cells. J Neurooncol, 126(3):425-431. https://doi.org/10.1007/s11060-015-1996-6https://doi.org/10.1007/s11060-015-1996-6
Khom S, Steinkellner T, Hnasko TS, et al., 2020. Alcohol dependence potentiates substance P/neurokinin-1 receptor signaling in the rat central nucleus of amygdala. Sci Adv, 6(12):eaaz1050. https://doi.org/10.1126/sciadv.aaz1050https://doi.org/10.1126/sciadv.aaz1050
Khorasani S, Boroumand N, Lavi Arab F, et al., 2020. The immunomodulatory effects of tachykinins and their receptors. J Cell Biochem, 121(5-6):3031-3041. https://doi.org/10.1002/jcb.29668https://doi.org/10.1002/jcb.29668
Kim RY, Sunkara KP, Bracke KR, et al., 2021. A microRNA-21-mediated SATB1/S100A9/NF-κB axis promotes chronic obstructive pulmonary disease pathogenesis. Sci Transl Med, 13(621):eaav7223. https://doi.org/10.1126/scitranslmed.aav7223https://doi.org/10.1126/scitranslmed.aav7223
Kitchens CA, McDonald PR, Pollack IF, et al., 2009. Synergy between microtubule destabilizing agents and neurokinin 1 receptor antagonists identified by an siRNA synthetic lethal screen. FASEB J, 23(S1):756.13-756.13. https://doi.org/10.1096/fasebj.23.1_supplement.756.13https://doi.org/10.1096/fasebj.23.1_supplement.756.13
Korfi F, Javid H, Assaran Darban R, et al., 2021. The effect of SP/NK1R on the expression and activity of catalase and superoxide dismutase in glioblastoma cancer cells. Biochem Res Int, 2021:6620708. https://doi.org/10.1155/2021/6620708https://doi.org/10.1155/2021/6620708
Kramer MS, Cutler N, Feighner J, et al., 1998. Distinct mechanism for antidepressant activity by blockade of central substance P receptors. Science, 281(5383):1640-1645. https://doi.org/10.1126/science.281.5383.1640https://doi.org/10.1126/science.281.5383.1640
Kumar S, Gupta SK, 2013. Pharmaceutical solid dispersion technology: a strategy to improve dissolution of poorly water-soluble drugs. Recent Pat Drug Deliv Formul, 7(2):111-121. https://doi.org/10.2174/18722113113079990009https://doi.org/10.2174/18722113113079990009
Lee KS, Lee J, Kim HK, et al., 2021. Extracellular vesicles from adipose tissue-derived stem cells alleviate osteoporosis through osteoprotegerin and miR-21-5p. J Extracell Vesicles, 10(12):e12152. https://doi.org/10.1002/jev2.12152https://doi.org/10.1002/jev2.12152
Liu JW, Zou MJ, Piao HY, et al., 2015. Characterization and pharmacokinetic study of aprepitant solid dispersions with soluplus®. Molecules, 20(6):11345-11356. https://doi.org/10.3390/molecules200611345https://doi.org/10.3390/molecules200611345
Liu JW, Li SY, Ao W, et al., 2022a. Fabrication of an aprepitant nanosuspension using hydroxypropyl chitosan to increase the bioavailability. Biochem Biophys Res Commun, 631:72-77. https://doi.org/10.1016/j.bbrc.2022.09.031https://doi.org/10.1016/j.bbrc.2022.09.031
Liu JW, Li YJ, Ao W, et al., 2022b. Preparation and characterization of aprepitant solid dispersion with HPMCAS-LF. ACS Omega, 7(44):39907-39912. https://doi.org/10.1021/acsomega.2c04021https://doi.org/10.1021/acsomega.2c04021
Liu L, Burcher E, 2005. Tachykinin peptides and receptors: putting amphibians into perspective. Peptides, 26(8):1369-1382. https://doi.org/10.1016/j.peptides.2005.03.027https://doi.org/10.1016/j.peptides.2005.03.027
Liu XP, Zhu YL, Zheng W, et al., 2019. Antagonism of NK-1R using aprepitant suppresses inflammatory response in rheumatoid arthritis fibroblast-like synoviocytes. Artif Cells Nanomed Biotechnol, 47(1):1628-1634. https://doi.org/10.1080/21691401.2019.1573177https://doi.org/10.1080/21691401.2019.1573177
Lorestani S, Ghahremanloo A, Jangjoo A, et al., 2020. Evaluation of serum level of substance P and tissue distribution of NK-1 receptor in colorectal cancer. Mol Biol Rep, 47(5):3469-3474. https://doi.org/10.1007/s11033-020-05432-4https://doi.org/10.1007/s11033-020-05432-4
Maeda H, Wu J, Sawa T, et al., 2000. Tumor vascular permeability and the epr effect in macromolecular therapeutics: a review. J Control Release, 65(1-2):271-284. https://doi.org/10.1016/s0168-3659(99)00248-5https://doi.org/10.1016/s0168-3659(99)00248-5
Mahtal N, Lenoir O, Tinel C, et al., 2022. MicroRNAs in kidney injury and disease. Nat Rev Nephrol, 18(10):643-662. https://doi.org/10.1038/s41581-022-00608-6https://doi.org/10.1038/s41581-022-00608-6
Maroñas-Jiménez L, Estrach T, Gallardo F, et al., 2018. Aprepitant improves refractory pruritus in primary cutaneous T-cell lymphomas: experience of the Spanish Working Group on Cutaneous Lymphomas. Br J Dermatol, 178(4):e273-e274. https://doi.org/10.1111/bjd.16128https://doi.org/10.1111/bjd.16128
Martinez AN, Philipp MT, 2016. Substance P and antagonists of the neurokinin-1 receptor in neuroinflammation associated with infectious and neurodegenerative diseases of the central nervous system. J Neurol Neuromedicine, 1(2):29-36. https://doi.org/10.29245/2572.942x/2016/2.1020https://doi.org/10.29245/2572.942x/2016/2.1020
Mehboob R, Lavezzi AM, 2021. Neuropathological explan
ation of minimal COVID-19 infection rate in newborns, infants and children—a mystery so far. New insight into the role of substance P. J Neurol Sci, 420:117276. https://doi.org/10.1016/j.jns.2020.117276https://doi.org/10.1016/j.jns.2020.117276
Meléndez GC, Li JP, Law BA, et al., 2011. Substance P induces adverse myocardial remodelling via a mechanism involving cardiac mast cells. Cardiovasc Res, 92(3):420-429. https://doi.org/10.1093/cvr/cvr244https://doi.org/10.1093/cvr/cvr244
Miao YB, Quinn TP, 2021. Advances in receptor-targeted radiolabeled peptides for melanoma imaging and therapy. J Nucl Med, 62(3):313-318. https://doi.org/10.2967/jnumed.120.243840https://doi.org/10.2967/jnumed.120.243840
Mistrova E, Kruzliak P, Dvorakova MC, 2016. Role of substance P in the cardiovascular system. Neuropeptides, 58:41-51. https://doi.org/10.1016/j.npep.2015.12.005https://doi.org/10.1016/j.npep.2015.12.005
Mohamed MZ, Abed El Baky MF, Ali ME, et al., 2022. Aprepitant exerts anti-fibrotic effect via inhibition of TGF-β/Smad3 pathway in bleomycin-induced pulmonary fibrosis in rats. Environ Toxicol Pharmacol, 95:103940. https://doi.org/10.1016/j.etap.2022.103940https://doi.org/10.1016/j.etap.2022.103940
Mohammadi F, Javid H, Afshari AR, et al., 2020. Substance P accelerates the progression of human esophageal squamous cell carcinoma via MMP-2, MMP-9, VEGF-A, and VEGFR1 overexpression. Mol Biol Rep, 47(6):4263-4272. https://doi.org/10.1007/s11033-020-05532-1https://doi.org/10.1007/s11033-020-05532-1
Molinos-Quintana A, Trujillo-Hacha P, Piruat JI, et al., 2019. Human acute myeloid leukemia cells express Neurokinin-1 receptor, which is involved in the antileukemic effect of Neurokinin-1 receptor antagonists. Invest New Drugs, 37:17-26. https://doi.org/10.1007/s10637-018-0607-8https://doi.org/10.1007/s10637-018-0607-8
Morgat C, Mishra AK, Varshney R, et al., 2014. Targeting neuropeptide receptors for cancer imaging and therapy: perspectives with bombesin, neurotensin, and neuropeptide-Y receptors. J Nucl Med, 55(10):1650-1657. https://doi.org/10.2967/jnumed.114.142000https://doi.org/10.2967/jnumed.114.142000
Mozafari M, Ebrahimi S, Darban RA, et al., 2022. Potential in vitro therapeutic effects of targeting SP/NK1R system in cervical cancer. Mol Biol Rep, 49(2):1067-1076. https://doi.org/10.1007/s11033-021-06928-3https://doi.org/10.1007/s11033-021-06928-3
Muñoz M, Rosso M, 2010. The NK-1 receptor antagonist aprepitant as a broad spectrum antitumor drug. Invest New Drugs, 28(2):187-193. https://doi.org/10.1007/s10637-009-9218-8https://doi.org/10.1007/s10637-009-9218-8
Muñoz M, Coveñas R, 2020a. The neurokinin-1 receptor antagonist aprepitant, a new drug for the treatment of hematological malignancies: focus on acute myeloid leukemia. J Clin Med, 9(6):1659. https://doi.org/10.3390/jcm9061659https://doi.org/10.3390/jcm9061659
Muñoz M, Coveñas R, 2020b. The neurokinin-1 receptor antagonist aprepitant: an intelligent bullet against cancer? Cancers, 12(9):2682. https://doi.org/10.3390/cancers12092682https://doi.org/10.3390/cancers12092682
Muñoz M, Rosso M, Robles-Frias MJ, et al., 2010. The NK-1 receptor is expressed in human melanoma and is involved in the antitumor action of the NK-1 receptor antagonist aprepitant on melanoma cell lines. Lab Invest, 90(8):1259-1269. https://doi.org/10.1038/labinvest.2010.92https://doi.org/10.1038/labinvest.2010.92
Muñoz M, González-Ortega A, Rosso M, et al., 2012. The substance P/neurokinin-1 receptor system in lung cancer: focus on the antitumor action of neurokinin-1 receptor antagonists. Peptides, 38(2):318-325. https://doi.org/10.1016/j.peptides.2012.09.024https://doi.org/10.1016/j.peptides.2012.09.024
Muñoz M, González-Ortega A, Salinas-Martín MV, et al., 2014. The neurokinin-1 receptor antagonist aprepitant is a promising candidate for the treatment of breast cancer. Int J Oncol, 45(4):1658-1672. https://doi.org/10.3892/ijo.2014.2565https://doi.org/10.3892/ijo.2014.2565
Muñoz M, Covenas R, Esteban F, et al., 2015. The substance P/NK-1 receptor system: NK-1 receptor antagonists as anti-cancer drugs. J Biosci, 40(2):441-463. https://doi.org/10.1007/s12038-015-9530-8https://doi.org/10.1007/s12038-015-9530-8
Muñoz M, Crespo JC, Crespo JP, et al., 2019a. Neurokinin-1 receptor antagonist aprepitant and radiotherapy, a successful combination therapy in a patient with lung cancer: a case report. Mol Clin Oncol, 11(1):50-54. https://doi.org/10.3892/mco.2019.1857https://doi.org/10.3892/mco.2019.1857
Muñoz M, Rosso M, Coveñas R, 2019b. Neurokinin-1 receptor antagonists against hepatoblastoma. Cancers (Basel), 11(9):1258. https://doi.org/10.3390/cancers11091258https://doi.org/10.3390/cancers11091258
Muñoz M, Rosso M, Coveñas R, 2020. Triple negative breast cancer: how neurokinin-1 receptor antagonists could be used as a new therapeutic approach. Mini Rev Med Chem, 20(5):408-417. https://doi.org/10.2174/1389557519666191112152642https://doi.org/10.2174/1389557519666191112152642
Muñoz MF, Argüelles S, Rosso M, et al., 2022. The neurokinin-1 receptor is essential for the viability of human glioma cells: a possible target for treating glioblastoma. Biomed Res Int, 2022:6291504. https://doi.org/10.1155/2022/6291504https://doi.org/10.1155/2022/6291504
Mura S, Nicolas J, Couvreur P, 2013. Stimuli-responsive nanocarriers for drug delivery. Nat Mater, 12(11):991-1003. https://doi.org/10.1038/nmat3776https://doi.org/10.1038/nmat3776
Nizam E, Erin N, 2018. Differential consequences of neurokinin receptor 1 and 2 antagonists in metastatic breast carcinoma cells; effects independent of substance P. Biomed Pharmacother, 108:263-270. https://doi.org/10.1016/j.biopha.2018.09.013https://doi.org/10.1016/j.biopha.2018.09.013
Noronha V, Bhattacharjee A, Patil VM, et al., 2020. Aprepitant for cough suppression in advanced lung cancer: a randomized trial. Chest, 157(6):1647-1655. https://doi.org/10.1016/j.chest.2019.11.048https://doi.org/10.1016/j.chest.2019.11.048
The Novel Coronavirus Pneumonia Emergency Response Epidemiology Team, 2020. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19)—China, 2020. China CDC Wkly, 2(8):113-122. https://doi.org/10.46234/ccdcw2020.032https://doi.org/10.46234/ccdcw2020.032
Olivieri F, Prattichizzo F, Giuliani A, et al., 2021. miR-21 and miR-146a: the micrornas of inflammaging and age-related diseases. Ageing Res Rev, 70:101374. https://doi.org/10.1016/j.arr.2021.101374https://doi.org/10.1016/j.arr.2021.101374
Olver I, Shelukar S, Thompson KC, 2007. Nanomedicines in the treatment of emesis during chemotherapy: focus on aprepitant. Int J Nanomedicine, 2(1):13-18. https://doi.org/10.2147/nano.2007.2.1.13https://doi.org/10.2147/nano.2007.2.1.13
Quartara L, Altamura M, 2006. Tachykinin receptors antagonists: from research to clinic. Curr Drug Targets, 7(8):975-992. https://doi.org/10.2174/138945006778019381https://doi.org/10.2174/138945006778019381
Ramanujam D, Schön AP, Beck C, et al., 2021. MicroRNA-21-dependent macrophage-to-fibroblast signaling determines the cardiac response to pressure overload. Circulation, 143(15):1513-1525. https://doi.org/10.1161/circulationaha.120.050682https://doi.org/10.1161/circulationaha.120.050682
Ramírez-García PD, Retamal JS, Shenoy P, et al., 2019. A pH-responsive nanoparticle targets the neurokinin 1 receptor in endosomes to prevent chronic pain. Nat Nanotechnol, 14(12):1150-1159. https://doi.org/10.1038/s41565-019-0568-xhttps://doi.org/10.1038/s41565-019-0568-x
Ratti E, Bettica P, Alexander R, et al., 2013. Full central neurokinin-1 receptor blockade is required for efficacy in depression: evidence from orvepitant clinical studies. J Psychopharmacol, 27(5):424-434. https://doi.org/10.1177/0269881113480990https://doi.org/10.1177/0269881113480990
Reinoso-Arija R, López-Ramírez C, Jimenez-Ruiz JA, et al., 2021. Effectiveness of aprepitant in post-acute COVID19 syndrome. Clin Case Rep, 9(9):e04646. https://doi.org/10.1002/ccr3.4646https://doi.org/10.1002/ccr3.4646
Ridhurkar DN, Ansari KA, Kumar D, et al., 2013. Inclusion complex of aprepitant with cyclodextrin: evaluation of physico-chemical and pharmacokinetic properties. Drug Dev Ind Pharm, 39(11):1783-1792. https://doi.org/10.3109/03639045.2012.737331https://doi.org/10.3109/03639045.2012.737331
Robinson P, Kasembeli M, Bharadwaj U, et al., 2016. Substance P receptor signaling mediates doxorubicin-induced cardiomyocyte apoptosis and triple-negative breast cancer chemoresistance. Biomed Res Int, 2016:1959270. https://doi.org/10.1155/2016/1959270https://doi.org/10.1155/2016/1959270
Roos C, Dahlgren D, Berg S, et al., 2017. In vivo mechanisms of intestinal drug absorption from aprepitant nanoformulations. Mol Pharm, 14(12):4233-4242. https://doi.org/10.1021/acs.molpharmaceut.7b00294https://doi.org/10.1021/acs.molpharmaceut.7b00294
Rouen PA, White ML, 2018. Dry eye disease: prevalence, assessment, and management. Home Healthc Now, 36(2):74-83. https://doi.org/10.1097/nhh.0000000000000652https://doi.org/10.1097/nhh.0000000000000652
Shi Y, Wang X, Meng Y, et al., 2021. A novel mechanism of endoplasmic reticulum stress- and c-Myc-degradation-mediated therapeutic benefits of antineurokinin-1 receptor drugs in colorectal cancer. Adv Sci (Weinh), 8(21):e2101936. https://doi.org/10.1002/advs.202101936https://doi.org/10.1002/advs.202101936
Schöppe J, Ehrenmann J, Klenk C, et al., 2019. Crystal structures of the human neurokinin 1 receptor in complex with clinically used antagonists. Nat Commun, 10:17. https://doi.org/10.1038/s41467-018-07939-8https://doi.org/10.1038/s41467-018-07939-8
Singh S, Kumaravel S, Dhole S, et al., 2021. Neuropeptide substance P enhances inflammation-mediated tumor signaling pathways and migration and proliferation of head and neck cancers. Indian J Surg Oncol, 12 (S1):93-102. https://doi.org/10.1007/s13193-020-01210-7https://doi.org/10.1007/s13193-020-01210-7
Smith JA, Harle A, Dockry R, et al., 2021. Aprepitant for cough in lung cancer. A randomized placebo-controlled trial and mechanistic insights. Am J Respir Crit Care Med, 203(6):737-745. https://doi.org/10.1164/rccm.202006-2359OChttps://doi.org/10.1164/rccm.202006-2359OC
Sosnik A, Seremeta KP, 2015. Advantages and challenges of the spray-drying technology for the production of pure drug particles and drug-loaded polymeric carriers. Adv Colloid Interface Sci, 223:40-54. https://doi.org/10.1016/j.cis.2015.05.003https://doi.org/10.1016/j.cis.2015.05.003
Steinhoff MS, von Mentzer B, Geppetti P, et al., 2014. Tachykinins and their receptors: contributions to physiological control and the mechanisms of disease. Physiol Rev, 94(1):265-301. https://doi.org/10.1152/physrev.00031.2013https://doi.org/10.1152/physrev.00031.2013
Sugano K, Terada K, 2015. Rate- and extent-limiting factors of oral drug absorption: theory and applications. J Pharm Sci, 104(9):2777-2788. https://doi.org/10.1002/jps.24391https://doi.org/10.1002/jps.24391
Taketani Y, Dohlman T, Chen YH, et al., 2019. Restoration of regulatory T cell function in dry eye disease by targeting substance P/neurokinin 1 receptor. Invest Ophthalmol Vis Sci, 60(9):306. https://doi.org/10.1016/j.ajpath.2020.05.011https://doi.org/10.1016/j.ajpath.2020.05.011
Tang YJ, Liu JJ, Zhang DY, et al., 2020. Cytokine storm in COVID-19: the current evidence and treatment strategies. Front Immunol, 11:1708. https://doi.org/10.3389/fimmu.2020.01708https://doi.org/10.3389/fimmu.2020.01708
Tattersall FD, Rycroft W, Francis B, et al., 1996. Tachykinin NK1 receptor antagonists act centrally to inhibit emesis induced by the chemotherapeutic agent cisplatin in ferrets. Neuropharmacology, 35(8):1121-1129. https://doi.org/10.1016/s0028-3908(96)00020-2https://doi.org/10.1016/s0028-3908(96)00020-2
Thom C, Ehrenmann J, Vacca S, et al., 2021. Structures of neurokinin 1 receptor in complex with Gq and Gs proteins reveal substance P binding mode and unique activation features. Sci Adv, 7(50):eabk2872. https://doi.org/10.1126/sciadv.abk2872https://doi.org/10.1126/sciadv.abk2872
Un H, Ugan RA, Kose D, et al., 2020. A novel effect of Aprepitant: protection for cisplatin-induced nephrotoxicity and hepatotoxicity. Eur J Pharmacol, 880:173168. https://doi.org/10.1016/j.ejphar.2020.173168https://doi.org/10.1016/j.ejphar.2020.173168
Wan PX, Su WR, Zhang YY, et al., 2020. LncRNA H19 initiates microglial pyroptosis and neuronal death in retinal ischemia/reperfusion injury. Cell Death Differ, 27:176-191. https://doi.org/10.1038/s41418-019-0351-4https://doi.org/10.1038/s41418-019-0351-4
Wang XL, He Y, Mackowiak B, et al., 2021. MicroRNAs as regulators, biomarkers and therapeutic targets in liver diseases. Gut, 70(4):784-795. https://doi.org/10.1136/gutjnl-2020-322526https://doi.org/10.1136/gutjnl-2020-322526
Widiapradja A, Manteufel EJ, Dehlin HM, et al., 2019. Regulation of cardiac mast cell maturation and function by the neurokinin-1 receptor in the fibrotic heart. Sci Rep, 9:11004. https://doi.org/10.1038/s41598-019-47369-0https://doi.org/10.1038/s41598-019-47369-0
Wu HZ, Cheng XE, Huang FY, et al., 2020. Aprepitant sensitizes acute myeloid leukemia cells to the cytotoxic effects of cytosine arabinoside in vitro and in vivo. Drug Des Devel Ther, 14:2413-2422. https://doi.org/10.2147/dddt.S244648https://doi.org/10.2147/dddt.S244648
Yamamoto H, 1993. Preserved endothelial function in the spastic segment of the human epicardial coronary artery in patients with variant angina—role of substance P in evaluating endothelial function. Eur Heart J, 14(Suppl I):118-122.
Yanai R, Nishida T, Hatano M, et al., 2020. Role of the neurokinin-1 receptor in the promotion of corneal epithelial wound healing by the peptides FGLM-NH2 and SSSR in neurotrophic keratopathy. Invest Ophthalmol Vis Sci, 61(8):29. https://doi.org/10.1167/iovs.61.8.29https://doi.org/10.1167/iovs.61.8.29
Yang Y, Zhou W, Xu XQ, et al., 2021. Aprepitant inhibits JNK and p38/MAPK to attenuate inflammation and suppresses inflammatory pain. Front Pharmacol, 12:811584. https://doi.org/10.3389/fphar.2021.811584https://doi.org/10.3389/fphar.2021.811584
Yeo S, An J, Park C, et al., 2020. Design and characterization of phosphatidylcholine-based solid dispersions of aprepitant for enhanced solubility and dissolution. Pharmaceutics, 12(5):407. https://doi.org/10.3390/pharmaceutics12050407https://doi.org/10.3390/pharmaceutics12050407
Zhang XW, Xing HJ, Zhao Y, et al., 2018. Pharmaceutical dispersion techniques for dissolution and bioavailability enhancement of poorly water-soluble drugs. Pharmaceutics, 10(3):74. https://doi.org/10.3390/pharmaceutics10030074https://doi.org/10.3390/pharmaceutics10030074
Zhang XW, Li L, Hu WQ, et al., 2022. Neurokinin-1 receptor promotes non-small cell lung cancer progression through transactivation of EGFR. Cell Death Dis, 13:41. https://doi.org/10.1038/s41419-021-04485-yhttps://doi.org/10.1038/s41419-021-04485-y
Zhao XN, Bai ZZ, Li CH, et al., 2020. The NK-1R antagonist aprepitant prevents LPS-induced oxidative stress and inflammation in RAW264.7 macrophages. Drug Des Devel Ther, 14:1943-1952. https://doi.org/10.2147/dddt.S244099https://doi.org/10.2147/dddt.S244099
0
Views
7
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution