无数据
Scan for full text
Department of Animal Physiology and Developmental Biology, Adam Mickiewicz University, Poznań 61-614, Poland
Published: 15 May 2024 ,
Received: 29 May 2023 ,
Revised: 03 August 2023 ,
Marcin CHOLEWIŃSKI,Szymon CHOWAŃSKI,Jan LUBAWY等.昆虫生理中短神经肽F的功能研究进展[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2024,25(05):389-409.
Marcin CHOLEWIŃSKI, Szymon CHOWAŃSKI, Jan LUBAWY, et al. Short neuropeptide F in integrated insect physiology. [J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology) 25(5):389-409(2024)
Marcin CHOLEWIŃSKI,Szymon CHOWAŃSKI,Jan LUBAWY等.昆虫生理中短神经肽F的功能研究进展[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2024,25(05):389-409. DOI: 10.1631/jzus.B2300355.
Marcin CHOLEWIŃSKI, Szymon CHOWAŃSKI, Jan LUBAWY, et al. Short neuropeptide F in integrated insect physiology. [J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology) 25(5):389-409(2024) DOI: 10.1631/jzus.B2300355.
短神经肽F(sNPF)肽家族是参与调控昆虫体内各种生理过程的多功能神经激素。它们广泛分布于生物体中,但前体分子中的异构体数量因物种而异,从一个到四个不等。sNPF受体(sNPFR)属于G蛋白偶联受体家族,在多种昆虫目中已有表征,并被证明是哺乳动物泌乳素释放肽受体(PrPR)的同源物。sNPF信号通路通过与其他神经激素(例如类胰岛素肽、SIFamide和色素分散因子(PDFs))的相互作用以调控多种生理过程。其主要生理功能涉及摄食的调节,但观察到的效应因物种而异。sNPF还与觅食行为和嗅觉系统的调节相关。其对摄食及能量代谢的影响还可能间接影响其他重要过程,例如繁殖和发育。此外,这些神经激素还参与昆虫的运动活动和昼夜节律的调节。本文回顾并总结了昆虫中sNPF系统的现阶段研究进展。
The short neuropeptide F (sNPF) family of peptides is a multifunctional group of neurohormones involved in the regulation of various physiological processes in insects. They have been found in a broad spectrum of species
but the number of isoforms in the precursor molecule varies from one to four. The receptor for sNPF (sNPFR)
which belongs to the G protein-coupled receptor family
has been characterized in various insect orders and was shown to be an ortholog of the mammalian prolactin-releasing peptide receptor (PrPR). The sNPF signaling pathway interacts with other neurohormones such as insulin-like peptides
SIFamide
and pigment-dispersing factors (PDFs) to regulate various processes. The main physiological function of sNPF seems to be involved in the regulation of feeding
but the observed effects are species-specific. sNPF is also connected with the regulation of foraging behavior and the olfactory system. The influence of sNPF on feeding and thus energy metabolism may also indirectly affect other vital processes
such as reproduction and development. In addition
these neurohormones are involved in the regulation of locomotor activity and circadian rhythm in insects. This review summarizes the current state of knowledge about the sNPF system in insects.
昆虫神经肽无脊椎动物神经生物学短神经肽F(sNPF)摄食神经激素
Insect neuropeptideInvertebrate neurobiologyShort neuropeptide F (sNPF)FeedingNeurohormone
Ament SA, Velarde RA, Kolodkin MH, et al., 2011. Neuropeptide Y-like signalling and nutritionally mediated gene expression and behaviour in the honey bee. Insect Mol Biol, 20(3):335-345. https://doi.org/10.1111/j.1365-2583.2011.01068.xhttps://doi.org/10.1111/j.1365-2583.2011.01068.x
Amir MB, Shi Y, Cao HH, et al., 2022. Short neuropeptide F and its receptor regulate feeding behavior in pea aphid (Acyrthosiphon pisum). Insects, 13(3):282. https://doi.org/10.3390/insects13030282https://doi.org/10.3390/insects13030282
Bass C, Katanski C, Maynard B, et al., 2014. Conserved residues in RF-NH2 receptor models identify predicted contact sites in ligand‒receptor binding. Peptides, 53:278-285. https://doi.org/10.1016/j.peptides.2013.06.009https://doi.org/10.1016/j.peptides.2013.06.009
Bestea L, Paoli M, Arrufat P, et al., 2022a. The short neuropeptide F regulates appetitive but not aversive responsiveness in a social insect. iScience, 25(1):103619. https://doi.org/10.1016/j.isci.2021.103619https://doi.org/10.1016/j.isci.2021.103619
Bestea L, Briard E, Carcaud J, et al., 2022b. The short neuropeptide F (sNPF) promotes the formation of appetitive visual memories in honey bees. Biol Lett, 18(2):20210520. https://doi.org/10.1098/rsbl.2021.0520https://doi.org/10.1098/rsbl.2021.0520
Bigot L, Beets I, Dubos MP, et al., 2014. Functional characterization of a short neuropeptide F-related receptor in a lophotrochozoan, the mollusk Crassostrea gigas. J Exp Biol, 217(16):2974-2982. https://doi.org/10.1242/jeb.104067https://doi.org/10.1242/jeb.104067
Brockmann A, Annangudi SP, Richmond TA, et al., 2009. Quantitative peptidomics reveal brain peptide signatures of behavior. Proc Natl Acad Sci USA, 106(7):2383-2388. https://doi.org/10.1073/pnas.0813021106https://doi.org/10.1073/pnas.0813021106
Caers J, Peymen K, van Hiel MB, et al., 2016. Molecular characterization of a short neuropeptide F signaling system in the tsetse fly, Glossina morsitans morsitans. Gen Comp Endocrinol, 235:142-149. https://doi.org/10.1016/j.ygcen.2016.06.005https://doi.org/10.1016/j.ygcen.2016.06.005
Carlsson MA, Diesner M, Schachtner J, et al., 2010. Multiple neuropeptides in the Drosophila antennal lobe suggest complex modulatory circuits. J Comp Neurol, 518(16):3359-3380. https://doi.org/10.1002/cne.22405https://doi.org/10.1002/cne.22405
Carlsson MA, Enell LE, Nässel DR, 2013. Distribution of short neuropeptide F and its receptor in neuronal circuits related to feeding in larval Drosophila. Cell Tissue Res, 353(3):511-523. https://doi.org/10.1007/s00441-013-1660-4https://doi.org/10.1007/s00441-013-1660-4
Cerstiaens ANJA, Benfekih L, Zouiten H, et al., 1999. Led-NPF-1 stimulates ovarian development in locusts. Peptides, 20(1):39-44. https://doi.org/10.1016/s0196-9781(98)00152-1https://doi.org/10.1016/s0196-9781(98)00152-1
Chen ME, Pietrantonio PV, 2006. The short neuropeptide F‐like receptor from the red imported fire ant, Solenopsis invicta buren (Hymenoptera: Formicidae). Arch Insect Biochem Physiol, 61(4):195-208. https://doi.org/10.1002/arch.20103https://doi.org/10.1002/arch.20103
Chen WF, Shi W, Li LZ, et al., 2013. Regulation of sleep by the short neuropeptide F (sNPF) in Drosophila melanogaster. Insect Biochem Mol Biol, 43(9):809-819. https://doi.org/10.1016/j.ibmb.2013.06.003https://doi.org/10.1016/j.ibmb.2013.06.003
Chintapalli VR, Terhzaz S, Wang J, et al., 2012. Functional correlates of positional and gender-specific renal asymmetry in Drosophila. PLoS ONE, 7(4):e32577. https://doi.org/10.1371/journal.pone.0032577https://doi.org/10.1371/journal.pone.0032577
Christ P, Reifenrath A, Kahnt J, et al., 2017. Feeding-induced changes in allatostatin-A and short neuropeptide F in the antennal lobes affect odor-mediated host seeking in the yellow fever mosquito, Aedes aegypti. PLoS ONE, 12(11):e0188243. https://doi.org/10.1371/journal.pone.0188243https://doi.org/10.1371/journal.pone.0188243
Christ P, Hill SR, Schachtner J, et al., 2018. Functional characterization of mosquito short neuropeptide F receptors. Peptides, 103:31-39. https://doi.org/10.1016/j.peptides.2018.03.009https://doi.org/10.1016/j.peptides.2018.03.009
Cui HY, Zhao ZW, 2020. Structure and function of neuropeptide F in insects. J Integr Agric, 19(6):1429-1438. https://doi.org/10.1016/S2095-3119(19)62804-2https://doi.org/10.1016/S2095-3119(19)62804-2
de Loof A, Baggerman G, Breuer M, et al., 2001. Gonadotropins in insects: an overview. Arch Insect Biochem Physiol, 47(3):129-138. https://doi.org/10.1002/arch.1044https://doi.org/10.1002/arch.1044
des Marteaux L, Xi JL, Mano G, et al., 2022. Circadian clock outputs regulating insect photoperiodism: a potential role for glutamate transporter. Biochem Biophys Res Commun, 589:100-106. https://doi.org/10.1016/j.bbrc.2021.12.014https://doi.org/10.1016/j.bbrc.2021.12.014
Dillen S, Zels S, Verlinden H, et al., 2013. Functional characterization of the short neuropeptide F receptor in the desert locust, Schistocerca gregaria. PLoS ONE, 8(1):e53604. https://doi.org/10.1371/journal.pone.0053604https://doi.org/10.1371/journal.pone.0053604
Dillen S, Verdonck R, Zels S, et al., 2014. Identification of the short neuropeptide F precursor in the desert locust: evidence for an inhibitory role of sNPF in the control of feeding. Peptides, 53:134-139. https://doi.org/10.1016/j.peptides.2013.09.018https://doi.org/10.1016/j.peptides.2013.09.018
Dillen S, Chen ZW, Broeck JV, 2015. Assaying visual memory in the desert locust. Insects, 6(2):409-418. https://doi.org/10.3390/insects6020409https://doi.org/10.3390/insects6020409
Elphick MR, Mirabeau O, 2014. The evolution and variety of RFamide-type neuropeptides: insights from deuterostomian invertebrates. Front Endocrinol, 5:93. https://doi.org/10.3389/fendo.2014.00093https://doi.org/10.3389/fendo.2014.00093
Fadda M, Hasakiogullari I, Temmerman L, et al., 2019. Regulation of feeding and metabolism by neuropeptide F and short neuropeptide F in invertebrates. Front Endocrinol, 10:64. https://doi.org/10.3389/fendo.2019.00064https://doi.org/10.3389/fendo.2019.00064
Feng GP, Reale V, Chatwin H, et al., 2003. Functional characterization of a neuropeptide F-like receptor from Drosophila melanogaster. Eur J Neurosci, 18(2):227-238. https://doi.org/10.1046/j.1460-9568.2003.02719.xhttps://doi.org/10.1046/j.1460-9568.2003.02719.x
Gainetdinov RR, Premont RT, Bohn LM, et al., 2004. Desensitization of G protein-coupled receptors and neuronal functions. Annu Rev Neurosci, 27:107-144. https://doi.org/10.1146/annurev.neuro.27.070203.144206https://doi.org/10.1146/annurev.neuro.27.070203.144206
Garczynski SF, Brown MR, Crim JW, 2006. Structural studies of Drosophila short neuropeptide F: occurrence and receptor binding activity. Peptides, 27(3):575-582. https://doi.org/10.1016/j.peptides.2005.06.029https://doi.org/10.1016/j.peptides.2005.06.029
Garczynski SF, Crim JW, Brown MR, 2007. Characterization and expression of the short neuropeptide F receptor in the African malaria mosquito, Anopheles gambiae. Peptides, 28(1):109-118. https://doi.org/10.1016/j.peptides.2006.09.019https://doi.org/10.1016/j.peptides.2006.09.019
Hauser F, Cazzamali G, Williamson M, et al., 2008. A genome-wide inventory of neurohormone GPCRs in the red flour beetle Tribolium castaneum. Front Neuroendocrinol, 29(1):142-165. https://doi.org/10.1016/j.yfrne.2007.10.003https://doi.org/10.1016/j.yfrne.2007.10.003
Hewes RS, Taghert PH, 2001. Neuropeptides and neuropeptide receptors in the Drosophila melanogaster genome. Genome Res, 11(6):1126-1142. https://doi.org/10.1101/gr.169901https://doi.org/10.1101/gr.169901
Hong SH, Lee KS, Kwak SJ, et al., 2012. Minibrain/Dyrk1a regulates food intake through the Sir2-FOXO-sNPF/NPY pathway in Drosophila and mammals. PLoS Genet, 8(8):e1002857. https://doi.org/10.1371/journal.pgen.1002857https://doi.org/10.1371/journal.pgen.1002857
Hummon AB, Richmond TA, Verleyen P, et al., 2006. From the genome to the proteome: uncovering peptides in the Apis brain. Science, 314(5799):647-649. https://doi.org/10.1126/science.1124128https://doi.org/10.1126/science.1124128
Huybrechts J, de Loof A, Schoofs L, 2004. Diapausing Colorado potato beetles are devoid of short neuropeptide F I and II. Biochem Biophys Res Commun, 317(3):909-916. https://doi.org/10.1016/j.bbrc.2004.03.136https://doi.org/10.1016/j.bbrc.2004.03.136
Inagaki HK, Panse KM, Anderson DJ, 2014. Independent, reciprocal neuromodulatory control of sweet and bitter taste sensitivity during starvation in Drosophila. Neuron, 84(4):806-820. https://doi.org/10.1016/j.neuron.2014.09.032https://doi.org/10.1016/j.neuron.2014.09.032
Isaac RE, Taylor CA, Hamasaka Y, et al., 2004. Proctolin in the post-genomic era: new insights and challenges. Invert Neurosci, 5(2):51-64. https://doi.org/10.1007/s10158-004-0029-5https://doi.org/10.1007/s10158-004-0029-5
Jékely G, 2013. Global view of the evolution and diversity of metazoan neuropeptide signaling. Proc Natl Acad Sci USA, 110(21):8702-8707. https://doi.org/10.1073/pnas.1221833110https://doi.org/10.1073/pnas.1221833110
Jiang HB, Gui SH, Xu L, et al., 2017. The short neuropeptide F modulates olfactory sensitivity of Bactrocera dorsalis upon starvation. J Insect Physiol, 99:78-85. https://doi.org/10.1016/j.jinsphys.2017.03.012https://doi.org/10.1016/j.jinsphys.2017.03.012
Johard HAD, Enell LE, Gustafsson E, et al., 2008. Intrinsic neurons of Drosophila mushroom bodies express short neuropeptide F: relations to extrinsic neurons expressing different neurotransmitters. J Comp Neurol, 507(4):1479-1496. https://doi.org/10.1002/cne.21636https://doi.org/10.1002/cne.21636
Johard HAD, Yoishii T, Dircksen H, et al., 2009. Peptidergic clock neurons in Drosophila: ion transport peptide and short neuropeptide F in subsets of dorsal and ventral lateral neurons. J Comp Neurol, 516(1):59-73. https://doi.org/10.1002/cne.22099https://doi.org/10.1002/cne.22099
Juneau ZC, Stonemetz JM, Toma RF, et al., 2019. Optogenetic activation of short neuropeptide F (sNPF) neurons induces sleep in Drosophila melanogaster. Physiol Behav, 206:143-156. https://doi.org/10.1016/j.physbeh.2019.03.027https://doi.org/10.1016/j.physbeh.2019.03.027
Kahsai L, Kapan N, Dircksen H, et al., 2010. Metabolic stress responses in Drosophila are modulated by brain neurosecretory cells that produce multiple neuropeptides. PLoS ONE, 5(7):e11480. https://doi.org/10.1371/journal.pone.0011480https://doi.org/10.1371/journal.pone.0011480
Kahsai L, Carlsson MA, Winther ÅME, et al., 2012. Distribution of metabotropic receptors of serotonin, dopamine, GABA, glutamate, and short neuropeptide F in the central complex of Drosophila. Neuroscience, 208:11-26. https://doi.org/10.1016/j.neuroscience.2012.02.007https://doi.org/10.1016/j.neuroscience.2012.02.007
Kaneko Y, Hiruma K, 2014. Short neuropeptide F (sNPF) is a stage-specific suppressor for juvenile hormone biosynthesis by corpora allata, and a critical factor for the initiation of insect metamorphosis. Dev Biol, 393(2):312-319. https://doi.org/10.1016/j.ydbio.2014.07.014https://doi.org/10.1016/j.ydbio.2014.07.014
Kapan N, Lushchak OV, Luo JN, et al., 2012. Identified peptidergic neurons in the Drosophila brain regulate insulin-producing cells, stress responses and metabolism by coexpressed short neuropeptide F and corazonin. Cell Mol Life Sci, 69(23):4051-4066. https://doi.org/10.1007/s00018-012-1097-zhttps://doi.org/10.1007/s00018-012-1097-z
Kim WJ, Lee SG, Auge AC, et al., 2016. Sexually satiated male uses gustatory-to-neuropeptide integrative circuits to reduce time investment for mating. bioRxiv, preprint. https://doi.org/10.1101/088724https://doi.org/10.1101/088724
Knapek S, Kahsai L, Winther ÅME, et al., 2013. Short neuropeptide F acts as a functional neuromodulator for olfactory memory in Kenyon cells of Drosophila mushroom bodies. J Neurosci, 33(12):5340-5345. https://doi.org/10.1523/JNEUROSCI.2287-12.2013https://doi.org/10.1523/JNEUROSCI.2287-12.2013
Ko KI, Root CM, Lindsay SA, et al., 2015. Starvation promotes concerted modulation of appetitive olfactory behavior via parallel neuromodulatory circuits. eLife, 4:e08298. https://doi.org/10.7554/eLife.08298https://doi.org/10.7554/eLife.08298
Lee KS, You KH, Choo JK, et al., 2004. Drosophila short neuropeptide F regulates food intake and body size. J Biol Chem, 279(49):50781-50789. https://doi.org/10.1074/jbc.M407842200https://doi.org/10.1074/jbc.M407842200
Lee KS, Kwon OY, Lee JH, et al., 2008. Drosophila short neuropeptide F signalling regulates growth by ERK-mediated insulin signalling. Nat Cell Biol, 10(4):468-475. https://doi.org/10.1038/ncb1710https://doi.org/10.1038/ncb1710
Li HF, Huang XY, Yang YH, et al., 2022. The short neuropeptide F receptor regulates olfaction-mediated foraging behavior in the oriental fruit fly Bactrocera dorsalis (Hendel). Insect Biochem Mol Biol, 140:103697. https://doi.org/10.1016/j.ibmb.2021.103697https://doi.org/10.1016/j.ibmb.2021.103697
Liu B, Fu DY, Ning H, et al., 2021. Identification of the short neuropeptide F and short neuropeptide F receptor genes and their roles of food intake in Dendroctonus armandi. Insects, 12(9):844. https://doi.org/10.3390/insects12090844https://doi.org/10.3390/insects12090844
Liu YT, Liao SF, Veenstra JA, et al., 2016. Drosophila insulin-like peptide 1 (DILP1) is transiently expressed during non-feeding stages and reproductive dormancy. Sci Rep, 6:26620. https://doi.org/10.1038/srep26620https://doi.org/10.1038/srep26620
Lu HL, Pietrantonio PV, 2011. Immunolocalization of the short neuropeptide F receptor in queen brains and ovaries of the red imported fire ant (Solenopsis invicta Buren). BMC Neurosci, 12:57. https://doi.org/10.1186/1471-2202-12-57https://doi.org/10.1186/1471-2202-12-57
Ma Q, Cao Z, Yu YN, et al., 2017. Bombyx neuropeptide G protein‒coupled receptor A7 is the third cognate receptor for short neuropeptide F from silkworm. J Biol Chem, 292(50):20599-20612. https://doi.org/10.1074/jbc.M117.815191https://doi.org/10.1074/jbc.M117.815191
Marciniak P, Grodecki S, Konopińska D, et al., 2008. Structure‒activity relationships for the cardiotropic action of the Led-NPF-I peptide in the beetles Tenebrio molitor and Zophobas atratus. J Pept Sci, 14(3):329-334. https://doi.org/10.1002/psc.933https://doi.org/10.1002/psc.933
Marciniak P, Szymczak M, Rogalska L, et al., 2013. Developmental and myotropic effects of the Led-NPF-I peptide in tenebrionid beetles. Invertebr Reprod Dev, 57(4):309-315. https://doi.org/10.1080/07924259.2013.793218https://doi.org/10.1080/07924259.2013.793218
Marciniak P, Urbański A, Kudlewska M, et al., 2017. Peptide hormones regulate the physiological functions of reproductive organs in Tenebrio molitor males. Peptides, 98:35-42. https://doi.org/10.1016/j.peptides.2016.06.006https://doi.org/10.1016/j.peptides.2016.06.006
Marciniak P, Urbański A, Lubawy J, et al., 2020. Short neuropeptide F signaling regulates functioning of male reproductive system in Tenebrio molitor beetle. J Comp Physiol B, 190(5):521-534. https://doi.org/10.1007/s00360-020-01296-zhttps://doi.org/10.1007/s00360-020-01296-z
Marciniak P, Pacholska-Bogalska J, Ragionieri L, 2022. Neuropeptidomes of Tenebrio molitor L. and Zophobas atratus Fab. (Coleoptera, Polyphaga: Tenebrionidae). J Proteome Res, 21(10):2247-2260. https://doi.org/10.1021/acs.jproteome.1c00694https://doi.org/10.1021/acs.jproteome.1c00694
Martelli C, Pech U, Kobbenbring S, et al., 2017. SIFamide translates hunger signals into appetitive and feeding behavior in Drosophila. Cell Rep, 20(2):464-478. https://doi.org/10.1016/j.celrep.2017.06.043https://doi.org/10.1016/j.celrep.2017.06.043
Mertens I, Meeusen T, Huybrechts R, et al., 2002. Characterization of the short neuropeptide F receptor from Drosophila melanogaster. Biochem Biophys Res Commun, 297(5):1140-1148. https://doi.org/10.1016/s0006-291x(02)02351-3https://doi.org/10.1016/s0006-291x(02)02351-3
Mikani A, Wang QS, Takeda M, 2012. Brain-midgut short neuropeptide F mechanism that inhibits digestive activity of the American cockroach, Periplaneta americana upon starvation. Peptides, 34(1):135-144. https://doi.org/10.1016/j.peptides.2011.10.028https://doi.org/10.1016/j.peptides.2011.10.028
Mikani A, Watari Y, Takeda M, 2015. Brain-midgut cross-talk and autocrine metabolastat via the sNPF/CCAP negative feed-back loop in the American cockroach, Periplaneta americana. Cell Tissue Res, 362(3):481-496. https://doi.org/10.1007/s00441-015-2242-4https://doi.org/10.1007/s00441-015-2242-4
Mirabeau O, Joly JS, 2013. Molecular evolution of peptidergic signaling systems in bilaterians. Proc Natl Acad Sci USA, 110(22):E2028-E2037. https://doi.org/10.1073/pnas.1219956110https://doi.org/10.1073/pnas.1219956110
Myers EM, Yu JJ, Sehgal A, 2003. Circadian control of eclosion: interaction between a central and peripheral clock in Drosophila melanogaster. Curr Biol, 13(6):526-533. https://doi.org/10.1016/s0960-9822(03)00167-2https://doi.org/10.1016/s0960-9822(03)00167-2
Nagata S, Matsumoto S, Nakane T, et al., 2012. Effects of starvation on brain short neuropeptide F-1, -2, and -3 levels and short neuropeptide F receptor expression levels of the silkworm, Bombyx mori. Front Endocrinol, 3:3. https://doi.org/10.3389/fendo.2012.00003https://doi.org/10.3389/fendo.2012.00003
Nagy D, Cusumano P, Andreatta G, et al., 2019. Peptidergic signaling from clock neurons regulates reproductive dormancy in Drosophila melanogaster. PLoS Genet, 15(6):e1008158. https://doi.org/10.1371/journal.pgen.1008158https://doi.org/10.1371/journal.pgen.1008158
Nusbaum MP, Blitz DM, Marder E, 2017. Functional consequences of neuropeptide and small-molecule co-transmission. Nat Rev Neurosci, 18(7):389-403. https://doi.org/10.1038/nrn.2017.56https://doi.org/10.1038/nrn.2017.56
Nӓssel DR, 2018. Substrates for neuronal cotransmission with neuropeptides and small molecule neurotransmitters in Drosophila. Front Cell Neurosci, 12:83. https://doi.org/10.3389/fncel.2018.00083https://doi.org/10.3389/fncel.2018.00083
Nӓssel DR, Wegener C, 2011. A comparative review of short and long neuropeptide F signaling in invertebrates: any similarities to vertebrate neuropeptide Y signaling? Peptides, 32(6):1335-1355. https://doi.org/10.1016/j.peptides.2011.03.013https://doi.org/10.1016/j.peptides.2011.03.013
Nӓssel DR, Zandawala M, 2019. Recent advances in neuropeptide signaling in Drosophila, from genes to physiology and behavior. Prog Neurobiol, 179:101607. https://doi.org/10.1016/j.pneurobio.2019.02.003https://doi.org/10.1016/j.pneurobio.2019.02.003
Nӓssel DR, Enell LE, Santos JG, et al., 2008. A large population of diverse neurons in the Drosophila central nervous system expresses short neuropeptide F, suggesting multiple distributed peptide functions. BMC Neurosci, 9:90. https://doi.org/10.1186/1471-2202-9-90https://doi.org/10.1186/1471-2202-9-90
Onken H, Moffett SB, Moffett DF, 2004. The anterior stomach of larval mosquitoes (Aedes aegypti): effects of neuropeptides on transepithelial ion transport and muscular motility. J Exp Biol, 207(Pt 21):3731-3739. https://doi.org/10.1242/jeb.01208https://doi.org/10.1242/jeb.01208
Patke A, Young MW, Axelrod S, 2020. Molecular mechanisms and physiological importance of circadian rhythms. Nat Rev Mol Cell Biol, 21(2):67-84. https://doi.org/10.1038/s41580-019-0179-2https://doi.org/10.1038/s41580-019-0179-2
Peng X, Chen C, Huang YX, et al., 2021. Expression patterns and functional analysis of the short neuropeptide F and NPF receptor genes in Rhopalosiphum padi. Insect Sci, 28(4):952-964. https://doi.org/10.1111/1744-7917.12842https://doi.org/10.1111/1744-7917.12842
Pražienková V, Popelová A, Kuneš J, et al., 2019. Prolactin-releasing peptide: physiological and pharmacological properties. Int J Mol Sci, 20(21):5297. https://doi.org/10.3390/ijms20215297https://doi.org/10.3390/ijms20215297
Predel R, Neupert S, Garczynski SF, et al., 2010. Neuropeptidomics of the mosquito Aedes aegypti. J Proteome Res, 9(4):2006-2015. https://doi.org/10.1021/pr901187phttps://doi.org/10.1021/pr901187p
Reale V, Chatwin HM, Evans PD, 2004. The activation of G-protein gated inwardly rectifying K+ channels by a cloned Drosophila melanogaster neuropeptide F-like receptor. Eur J Neurosci, 19(3):570-576. https://doi.org/10.1111/j.0953-816x.2003.03141.xhttps://doi.org/10.1111/j.0953-816x.2003.03141.x
Root CM, Ko KI, Jafari A, et al., 2011. Presynaptic facilitation by neuropeptide signaling mediates odor-driven food search. Cell, 145(1):133-144. https://doi.org/10.1016/j.cell.2011.02.008https://doi.org/10.1016/j.cell.2011.02.008
Rosato E, Kyriacou CP, 2017. Staring at the clock face in Drosophila. Neuron, 94(6):1046-1048. https://doi.org/10.1016/j.neuron.2017.06.005https://doi.org/10.1016/j.neuron.2017.06.005
Schoofs L, Clynen E, Cerstiaens A, et al., 2001. Newly discovered functions for some myotropic neuropeptides in locusts. Peptides, 22(2):219-227. https://doi.org/10.1016/s0196-9781(00)00385-5https://doi.org/10.1016/s0196-9781(00)00385-5
Schoofs L, de Loof A, van Hiel MB, 2017. Neuropeptides as regulators of behavior in insects. Annu Rev Entomol, 62:35-52. https://doi.org/10.1146/annurev-ento-031616-035500https://doi.org/10.1146/annurev-ento-031616-035500
Selcho M, Millán C, Palacios-Muñoz A, et al., 2017. Central and peripheral clocks are coupled by a neuropeptide pathway in Drosophila. Nat Commun, 8:15563. https://doi.org/10.1038/ncomms15563https://doi.org/10.1038/ncomms15563
Shang YH, Donelson NC, Vecsey CG, et al., 2013. Short neuropeptide F is a sleep-promoting inhibitory modulator. Neuron, 80(1):171-183. https://doi.org/10.1016/j.neuron.2013.07.029https://doi.org/10.1016/j.neuron.2013.07.029
Shen R, Wang B, Giribaldi MG, et al., 2016. Neuronal energy-sensing pathway promotes energy balance by modulating disease tolerance. Proc Natl Acad Sci USA, 113(23):E3307-E3314. https://doi.org/10.1073/pnas.1606106113https://doi.org/10.1073/pnas.1606106113
Siegmund T, Korge G, 2001. Innervation of the ring gland of Drosophila melanogaster. J Comp Neurol, 431(4):481-491.https://doi.org/10.1002/1096-9861(20010319)431:4<481::AID-CNE1084>3.0.CO;2-7<481::AID-CNE1084>3.0.CO;2-7
Spittaels K, Verhaert P, Shaw C, et al., 1996. Insect neuropeptide F (NPF)-related peptides: isolation from colorado potato beetle (Leptinotarsa decemlineata) brain. Insect Biochem Mol Biol, 26(4):375-382. https://doi.org/10.1016/0965-1748(95)00104-2https://doi.org/10.1016/0965-1748(95)00104-2
Suh YS, Bhat S, Hong SH, et al., 2015. Genome-wide microRNA screening reveals that the evolutionary conserved miR-9a regulates body growth by targeting sNPFR1/NPYR. Nat Commun, 6:7693. https://doi.org/10.1038/ncomms8693https://doi.org/10.1038/ncomms8693
Tomioka K, Matsumoto A, 2015. Circadian molecular clockworks in non-model insects. Curr Opin Insect Sci, 7:58-64. https://doi.org/10.1016/j.cois.2014.12.006https://doi.org/10.1016/j.cois.2014.12.006
Toprak U, 2020. The role of peptide hormones in insect lipid metabolism. Front Physiol, 11:434. https://doi.org/10.3389/fphys.2020.00434https://doi.org/10.3389/fphys.2020.00434
Urbanski A, Rosinski G, 2018. Role of neuropeptides in the regulation of the insect immune system ‒ current knowledge and perspectives. Curr Protein Pept Sci, 19(12):1201-1213. https://doi.org/10.2174/1389203719666180809113706https://doi.org/10.2174/1389203719666180809113706
Vanden Broeck J, 2001. Neuropeptides and their precursors in the fruitfly, Drosophila melanogaster. Peptides, 22(2):241-254. https://doi.org/10.1016/S0196-9781(00)00376-4https://doi.org/10.1016/S0196-9781(00)00376-4
van Wielendaele P, Wynant N, Dillen S, et al., 2013. Neuropeptide F regulates male reproductive processes in the desert locust, Schistocerca gregaria. Insect Biochem Mol Biol, 43(3):252-259. https://doi.org/10.1016/j.ibmb.2012.12.004https://doi.org/10.1016/j.ibmb.2012.12.004
Vecsey CG, Pírez N, Griffith LC, 2014. The Drosophila neuropeptides PDF and sNPF have opposing electrophysiological and molecular effects on central neurons. J Neurophysiol, 111(5):1033-1045. https://doi.org/10.1152/jn.00712.2013https://doi.org/10.1152/jn.00712.2013
Veenstra JA, Lambrou G, 1995. Isolation of a novel RFamide peptide from the midgut of the American cockroach, Periplaneta americana. Biochem Biophys Res Commun, 213(2):519-524. https://doi.org/10.1006/bbrc.1995.2162https://doi.org/10.1006/bbrc.1995.2162
Walker RJ, Papaioannou S, Holden-Dye L, 2009. A review of FMRFamide- and RFamide-like peptides in metazoa. Invert Neurosci, 9(3-4):111-153. https://doi.org/10.1007/s10158-010-0097-7https://doi.org/10.1007/s10158-010-0097-7
Yamanaka N, Yamamoto S, Žitňan D, et al., 2008. Neuropeptide receptor transcriptome reveals unidentified neuroendocrine pathways. PLoS ONE, 3(8):e3048. https://doi.org/10.1371/journal.pone.0003048https://doi.org/10.1371/journal.pone.0003048
Yoshii T, Todo T, Wülbeck C, et al., 2008. Cryptochrome is present in the compound eyes and a subset of Drosophila’s clock neurons. J Comp Neurol, 508(6):952-966. https://doi.org/10.1002/cne.21702https://doi.org/10.1002/cne.21702
0
Views
41
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution