Abscisic acid-mediated cytosolic Ca2+ modulates triterpenoid accumulation of Ganoderma lucidum
Scan for full text
Alert me when the article has been cited
文章被引用时,请邮件提醒。
Submit
Correspondence|Updated:2024-01-19
|
Abscisic acid-mediated cytosolic Ca2+ modulates triterpenoid accumulation of Ganoderma lucidum
Abscisic acid-mediated cytosolic Ca2+ modulates triterpenoid accumulation of Ganoderma lucidum
脱落酸介导胞内Ca2+参与调控灵芝三萜积累
Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology)Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology)Vol. 24, Issue 12, Pages: 1174-1179(2023)
Affiliations:
College of Food Science, Shanxi Normal University, Taiyuan 030031, China
Arnesen JA, Jacobsen IH, Dyekjær JD, et al., 2022. Production of abscisic acid in the oleaginous yeast Yarrowia lipolytica. FEMS Yeast Res, 22(1):foac015. https://doi.org/10.1093/femsyr/foac015https://doi.org/10.1093/femsyr/foac015
Cui ML, Yang HY, He GQ, 2017. Apoptosis induction of colorectal cancer cells HTL-9 in vitro by the transformed products of soybean isoflavones by Ganoderma lucidum. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 18(12):1101-1112. https://doi.org/10.1631/jzus.B1700189https://doi.org/10.1631/jzus.B1700189
Kong LY, Chen P, Chang C, 2023. Drought resistance and ginsenosides biosynthesis in response to abscisic acid in Panax ginseng C. A. Meyer. Int J Mol Sci, 24(11):9194. https://doi.org/10.3390/ijms24119194https://doi.org/10.3390/ijms24119194
Li KK, Prada J, Damineli DSC, et al., 2021. An optimized genetically encoded dual reporter for simultaneous ratio imaging of Ca2+ and H+ reveals new insights into ion signaling in plants. New Phytol, 230(6):2292-2310. https://doi.org/10.1111/nph.17202https://doi.org/10.1111/nph.17202
MacRobbie EAC, 2000. ABA activates multiple Ca2+ fluxes in stomatal guard cells, triggering vacuolar K+(Rb+) release. Proc Natl Acad Sci USA, 97(22):12361-12368. https://doi.org/10.1073/pnas.220417197https://doi.org/10.1073/pnas.220417197
Marusig D, Tombesi S, 2020. Abscisic acid mediates drought and salt stress responses in Vitis vinifera—a review. Int J Mol Sci, 21(22):8648. https://doi.org/10.3390/ijms21228648https://doi.org/10.3390/ijms21228648
Parveen A, Ahmar S, Kamran M, et al., 2021. Abscisic acid signaling reduced transpiration flow, regulated Na+ ion homeostasis and antioxidant enzyme activities to induce salinity tolerance in wheat (Triticum aestivum L.) seedlings. Environ Technol Innov, 24:101808. https://doi.org/10.1016/j.eti.2021.101808https://doi.org/10.1016/j.eti.2021.101808
Peskan-Berghöfer T, Vilches-Barro A, Müller TM, et al., 2015. Sustained exposure to abscisic acid enhances the colonization potential of the mutualist fungus Piriformospora indica on Arabidopsis thaliana roots. New Phytol, 208(3):873-886. https://doi.org/10.1111/nph.13504https://doi.org/10.1111/nph.13504
Ren A, Shi L, Zhu J, et al., 2019. Shedding light on the mechanisms underlying the environmental regulation of secondary metabolite ganoderic acid in Ganoderma lucidum using physiological and genetic methods. Fungal Genet Biol, 128:43-48. https://doi.org/10.1016/j.fgb.2019.03.009https://doi.org/10.1016/j.fgb.2019.03.009
Siebeneichler TJ, Crizel RL, Camozatto GH, et al., 2020. The postharvest ripening of strawberry fruits induced by abscisic acid and sucrose differs from their in vivo ripening. Food Chem, 317:126407. https://doi.org/10.1016/j.foodchem.2020.126407https://doi.org/10.1016/j.foodchem.2020.126407
Xu GM, Yang SQ, Meng LH, et al., 2018. The plant hormone abscisic acid regulates the growth and metabolism of endophytic fungus Aspergillus nidulans. Sci Rep, 8:6504. https://doi.org/10.1038/s41598-018-24770-9https://doi.org/10.1038/s41598-018-24770-9
Xu LL, Lai YL, Wang L, et al., 2011. Effects of abscisic acid and nitric oxide on trap formation and trapping of nematodes by the fungus Drechslerella stenobrocha AS6.1. Fungal Biol, 115(2):97-101. https://doi.org/10.1016/j.funbio.2010.10.006https://doi.org/10.1016/j.funbio.2010.10.006
Yin J, Sun L, Li Y, et al., 2020. Functional identification of BpMYB21 and BpMYB61 transcription factors responding to MeJA and SA in birch triterpenoid synthesis. BMC Plant Biol, 20:374. https://doi.org/10.1186/s12870-020-02521-1https://doi.org/10.1186/s12870-020-02521-1
Zehra A, Choudhary S, Wani KI, et al., 2020. Exogenous abscisic acid mediates ROS homeostasis and maintains glandular trichome to enhance artemisinin biosynthesis in Artemisia annua under copper toxicity. Plant Physiol Biochem, 156:125-134. https://doi.org/10.1016/j.plaphy.2020.08.048https://doi.org/10.1016/j.plaphy.2020.08.048
Zhang DH, Li N, Yu XY, et al., 2017. Overexpression of the homologous lanosterol synthase gene in ganoderic acid biosynthesis in Ganoderma lingzhi. Phytochemistry, 134:46-53. https://doi.org/10.1016/j.phytochem.2016.11.006https://doi.org/10.1016/j.phytochem.2016.11.006