无数据
Scan for full text
1.Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
2.Key Laboratory of Reproduction and Genetics in Ningxia, Ningxia Medical University, Yinchuan 750004, China
Published: 15 April 2024 ,
Received: 28 February 2023 ,
Revised: 29 July 2023 ,
付旭锋,韩杭,杨宏等.Nrf2介导的生精细胞铁死亡参与了聚苯乙烯纳米塑料导致的小鼠雄性生殖毒性[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2024,25(04):307-323.
Xufeng FU, Hang HAN, Hong YANG, et al. Nrf2-mediated ferroptosis of spermatogenic cells involved in male reproductive toxicity induced by polystyrene nanoplastics in mice. [J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology) 25(4):307-323(2024)
付旭锋,韩杭,杨宏等.Nrf2介导的生精细胞铁死亡参与了聚苯乙烯纳米塑料导致的小鼠雄性生殖毒性[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2024,25(04):307-323. DOI: 10.1631/jzus.B2300138.
Xufeng FU, Hang HAN, Hong YANG, et al. Nrf2-mediated ferroptosis of spermatogenic cells involved in male reproductive toxicity induced by polystyrene nanoplastics in mice. [J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology) 25(4):307-323(2024) DOI: 10.1631/jzus.B2300138.
由于大量塑料废弃物的排放和一次性口罩的广泛使用,所产生的微塑料(MPs)和纳米塑料(NPs)已被认为是有害物质,但它们对健康的具体影响仍不确定。本研究将荧光标记的聚苯乙烯纳米塑料(PS-NPs)注射到小鼠体内以确定NPs在体内的分布和潜在的毒性作用,通过动物活体成像发现PS-NPs在小鼠睾丸中有明显积累。因此,本文研究了PS-NPs对雄性小鼠生殖系统和对生精细胞的毒性作用及机制。通过雄性小鼠灌胃暴露50 nm和90 nm的PS-NPs后,其生精能力受到影响且生精细胞受损;在体外暴露发现,PS-NPs会影响精母细胞系GC-2的存活;利用RNA-seq进一步分析其毒理机制,发现PS-NPs通过铁死亡途径影响GC-2细胞;通过线粒体形态、Fe
2+
水平、脂质过氧化、线粒体膜电位和不稳定铁等方面评价了PS-NPs引起GC-2细胞铁死亡的表型,进一步明确铁死亡抑制剂Fer-1可以逆转铁死亡表型。随后,发现Nrf2在PS-NPs诱导GC-2细胞铁死亡中起重要作用,并且抑制Nrf2后可加剧PS-NPs诱导的GC-2细胞铁死亡。最后,通过体内实验进一步证实了Nrf2在PS-NPs诱导的雄性生殖毒性中发挥保护作用。因此,本研究表明,PS-NPs通过引起Nrf2介导的生精细胞铁死亡进而导致小鼠雄性生殖功能障碍。
Microplastics (MPs) and nanoplastics (NPs) have become hazardous materials due to the massive amount of plastic waste and disposable masks
but their specific health effects remain uncertain. In this study
fluorescence-labeled polystyrene NPs (PS-NPs) were injected into the circulatory systems of mice to determine the distribution and potential toxic effects of NPs in vivo. Interestingly
whole-body imaging found that PS-NPs accumulated in the testes of mice. Therefore
the toxic effects of PS-NPs on the reproduction systems and the spermatocytes cell line of male mice
and their mechanisms
were investigated. After oral exposure to PS-NPs
their spermatogenesis was affected and the spermatogenic cells were damaged. The spermatocyte cell line GC-2 was exposed to PS-NPs and analyzed using RNA sequencing (RNA-seq) to determine the toxic mechanisms; a ferroptosis pathway was found after PS-NP exposure. The phenomena and indicators of ferroptosis were then determined and verified by ferroptosis inhibitor ferrostatin-1 (Fer-1)
and it was also found that nuclear factor erythroid 2-related factor 2 (Nrf2) played an important role in spermatogenic cell ferroptosis induced by PS-NPs. Finally
it was confirmed in vivo that this mechanism of Nrf2 played a protective role in PS-NPs-induced male reproductive toxicity. This study demonstrated that PS-NPs induce male reproductive dysfunction in mice by causing spermatogenic cell ferroptosis dependent on Nrf2.
聚苯乙烯纳米塑料(PS-NPs)雄性生殖毒性铁死亡核因子e2相关因子2(Nrf2)
Polystyrene nanoplastics (PS-NPs)Reproductive toxicityFerroptosisNuclear factor erythroid 2-related factor 2 (Nrf2)
Amereh F, Babaei M, Eslami A, et al., 2020. The emerging risk of exposure to nano(micro)plastics on endocrine disturbance and reproductive toxicity: from a hypothetical scenario to a global public health challenge. Environ Pollut, 261:114158. https://doi.org/10.1016/j.envpol.2020.114158https://doi.org/10.1016/j.envpol.2020.114158
Archibong AE, Rideout ML, Harris KJ, et al., 2018. Oxidative stress in reproductive toxicology. Curr Opin Toxicol, 7:95-101. https://doi.org/10.1016/j.cotox.2017.10.004https://doi.org/10.1016/j.cotox.2017.10.004
Bisht S, Faiq M, Tolahunase M, et al., 2017. Oxidative stress and male infertility. Nat Rev Urol, 14(8):470-485. https://doi.org/10.1038/nrurol.2017.69https://doi.org/10.1038/nrurol.2017.69
Chen X, Comish PB, Tang DL, et al., 2021. Characteristics and biomarkers of ferroptosis. Front Cell Dev Biol, 9:637162. https://doi.org/10.3389/fcell.2021.637162https://doi.org/10.3389/fcell.2021.637162
Cortés C, Domenech J, Salazar M, et al., 2020. Nanoplastics as a potential environmental health factor: effects of polystyrene nanoparticles on human intestinal epithelial Caco-2 cells. Environ Sci Nano, 7(1):272-285. https://doi.org/10.1039/C9EN00523Dhttps://doi.org/10.1039/C9EN00523D
Deng YF, Zhang Y, Lemos B, et al., 2017. Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure. Sci Rep, 7:46687. https://doi.org/10.1038/srep46687https://doi.org/10.1038/srep46687
Dixon SJ, Lemberg KM, Lamprecht MR, et al., 2012. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell, 149(5):1060-1072. https://doi.org/10.1016/j.cell.2012.03.042https://doi.org/10.1016/j.cell.2012.03.042
Dodson M, Castro-Portuguez R, Zhang DD, 2019. NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol, 23:101107. https://doi.org/10.1016/j.redox.2019.101107https://doi.org/10.1016/j.redox.2019.101107
Du FN, Cai HW, Zhang Q, et al., 2020. Microplastics in take-out food containers. J Hazard Mater, 399:122969. https://doi.org/10.1016/j.jhazmat.2020.122969https://doi.org/10.1016/j.jhazmat.2020.122969
Du X, Zhang JJ, Liu L, et al., 2022. A novel anticancer property of Lycium barbarum polysaccharide in triggering ferroptosis of breast cancer cells. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 23(4):286-299. https://doi.org/10.1631/jzus.B2100748https://doi.org/10.1631/jzus.B2100748
Fendall LS, Sewell MA, 2009. Contributing to marine pollution by washing your face: microplastics in facial cleansers. Mar Pollut Bull, 58(8):1225-1228. https://doi.org/10.1016/j.marpolbul.2009.04.025https://doi.org/10.1016/j.marpolbul.2009.04.025
Fu XF, Liu L, Han H, et al., 2023. Integrated fecal microbiome and metabolome analysis explore the link between polystyrene nanoplastics exposure and male reproductive toxicity in mice. Environ Toxicol, 38(6):1277-1291. https://doi.org/10.1002/tox.23763https://doi.org/10.1002/tox.23763
Gasperi J, Wright SL, Dris R, et al., 2018. Microplastics in air: are we breathing it in? Curr Opin Environ Sci Health, 1:1-5. https://doi.org/10.1016/j.coesh.2017.10.002https://doi.org/10.1016/j.coesh.2017.10.002
Harada N, Kanayama M, Maruyama A, et al., 2011. Nrf2 regulates ferroportin 1-mediated iron efflux and counteracts lipopolysaccharide-induced ferroportin 1 mRNA suppression in macrophages. Arch Biochem Biophys, 508(1):101-109. https://doi.org/10.1016/j.abb.2011.02.001https://doi.org/10.1016/j.abb.2011.02.001
Hassannia B, Vandenabeele P, Berghe TV, 2019. Targeting ferroptosis to iron out cancer. Cancer Cell, 35(6):830-849. https://doi.org/10.1016/j.ccell.2019.04.002https://doi.org/10.1016/j.ccell.2019.04.002
Hernandez LM, Xu EG, Larsson HCE, et al., 2019. Plastic teabags release billions of microparticles and nanoparticles into tea. Environ Sci Technol, 53(21):12300-12310. https://doi.org/10.1021/acs.est.9b02540https://doi.org/10.1021/acs.est.9b02540
Huang C, Li BS, Xu KR, et al., 2017. Decline in semen quality among 30,636 young Chinese men from 2001 to 2015. Fertil Steril, 107(1):83-88.e2. https://doi.org/10.1016/j.fertnstert.2016.09.035https://doi.org/10.1016/j.fertnstert.2016.09.035
Imai H, Hakkaku N, Iwamoto R, et al., 2009. Depletion of selenoprotein GPx4 in spermatocytes causes male infertility in mice. J Biol Chem, 284(47):32522-32532. https://doi.org/10.1074/jbc.M109.016139https://doi.org/10.1074/jbc.M109.016139
Jiang L, Wang JM, Wang K, et al., 2021. RNF217 regulates iron homeostasis through its E3 ubiquitin ligase activity by modulating ferroportin degradation. Blood, 138(8):689-705. https://doi.org/10.1182/blood.2020008986https://doi.org/10.1182/blood.2020008986
Jin HB, Ma T, Sha XX, et al., 2021. Polystyrene microplastics induced male reproductive toxicity in mice. J Hazard Mater, 401:123430. https://doi.org/10.1016/j.jhazmat.2020.123430https://doi.org/10.1016/j.jhazmat.2020.123430
Jung BK, Han SW, Park SH, et al., 2020. Neurotoxic potential of polystyrene nanoplastics in primary cells originating from mouse brain. Neurotoxicology, 81:189-196. https://doi.org/10.1016/j.neuro.2020.10.008https://doi.org/10.1016/j.neuro.2020.10.008
Kedzierski M, Lechat B, Sire O, et al., 2020. Microplastic contamination of packaged meat: occurrence and associated risks. Food Packag Shelf Life, 24:100489. https://doi.org/10.1016/j.fpsl.2020.100489https://doi.org/10.1016/j.fpsl.2020.100489
Kerins MJ, Ooi A, 2018. The roles of NRF2 in modulating cellular iron homeostasis. Antioxid Redox Signal, 29(17):1756-1773. https://doi.org/10.1089/ars.2017.7176https://doi.org/10.1089/ars.2017.7176
Khan FR, Catarino AI, Clark NJ, 2022. The ecotoxicological consequences of microplastics and co-contaminants in aquatic organisms: a mini-review. Emerg Top Life Sci, 6(4):339-348. https://doi.org/10.1042/ETLS20220014https://doi.org/10.1042/ETLS20220014
Kim MJ, Yun GJ, Kim SE, 2021. Metabolic regulation of ferroptosis in cancer. Biology, 10(2):83. https://doi.org/10.3390/biology10020083https://doi.org/10.3390/biology10020083
Levine H, Jørgensen N, Martino-Andrade A, et al., 2017. Temporal trends in sperm count: a systematic review and meta-regression analysis. Hum Reprod Update, 23(6):646-659. https://doi.org/10.1093/humupd/dmx022https://doi.org/10.1093/humupd/dmx022
Li SB, He YP, Chen KX, et al., 2021. RSL3 drives ferroptosis through NF-κB pathway activation and GPX4 depletion in glioblastoma. Oxid Med Cell Longev, 2021:2915019. https://doi.org/10.1155/2021/2915019https://doi.org/10.1155/2021/2915019
Li YM, Liu ZQ, Yang Y, et al., 2021. Effects of nanoplastics on energy metabolism in the oriental river prawn (Macrobrachium nipponense). Environ Pollut, 268:115890. https://doi.org/10.1016/j.envpol.2020.115890https://doi.org/10.1016/j.envpol.2020.115890
Liu ZX, Lv XY, Yang BW, et al., 2021. Tetrachlorobenzoquinone exposure triggers ferroptosis contributing to its neurotoxicity. Chemosphere, 264:128413. https://doi.org/10.1016/j.chemosphere.2020.128413https://doi.org/10.1016/j.chemosphere.2020.128413
Lu J, Zhao YN, Liu MT, et al., 2021. Toward improved human health: Nrf2 plays a critical role in regulating ferroptosis. Food Funct, 12(20):9583-9606. https://doi.org/10.1039/d1fo01036khttps://doi.org/10.1039/d1fo01036k
Lusher A, Hollman P, Mendoza-Hill J, 2017. Microplastics in Fisheries and Aquaculture: Status of Knowledge on Their Occurrence and Implications for Aquatic Organisms and Food Safety. FAO Fisheries and Aquaculture Technical Paper No. 615, Food and Agriculture Organization of the United Nations, Madrid.
Meng XM, Zhang JW, Wang WJ, et al., 2022. Effects of nano- and microplastics on kidney: physicochemical properties, bioaccumulation, oxidative stress and immunoreaction. Chemosphere, 288(Pt 3):132631. https://doi.org/10.1016/j.chemosphere.2021.132631https://doi.org/10.1016/j.chemosphere.2021.132631
Miotto G, Rossetto M, di Paolo ML, et al., 2020. Insight into the mechanism of ferroptosis inhibition by ferrostatin-1. Redox Biol, 28:101328. https://doi.org/10.1016/j.redox.2019.101328https://doi.org/10.1016/j.redox.2019.101328
Nair AB, Jacob S, 2016. A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm, 7(2):27-31. https://doi.org/10.4103/0976-0105.177703https://doi.org/10.4103/0976-0105.177703
Oßmann BE, Sarau G, Holtmannspötter H, et al., 2018. Small-sized microplastics and pigmented particles in bottled mineral water. Water Res, 141:307-316. https://doi.org/10.1016/j.watres.2018.05.027https://doi.org/10.1016/j.watres.2018.05.027
Park MW, Cha HW, Kim J, et al., 2021. NOX4 promotes ferroptosis of astrocytes by oxidative stress-induced lipid peroxidation via the impairment of mitochondrial metabolism in Alzheimer’s diseases. Redox Biol, 41:101947. https://doi.org/10.1016/j.redox.2021.101947https://doi.org/10.1016/j.redox.2021.101947
Ragusa A, Svelato A, Santacroce C, et al., 2021. Plasticenta: first evidence of microplastics in human placenta. Environ Int, 146:106274. https://doi.org/10.1016/j.envint.2020.106274https://doi.org/10.1016/j.envint.2020.106274
Riedelberger M, Penninger P, Tscherner M, et al., 2020. Type I interferon response dysregulates host iron homeostasis and enhances Candida glabrata infection. Cell Host Microbe, 27(3):454-466.e8. https://doi.org/10.1016/j.chom.2020.01.023https://doi.org/10.1016/j.chom.2020.01.023
Rist S, Baun A, Hartmann NB, 2017. Ingestion of micro- and nanoplastics in Daphnia magna ‒ quantification of body burdens and assessment of feeding rates and reproduction. Environ Pollut, 228:398-407. https://doi.org/10.1016/j.envpol.2017.05.048https://doi.org/10.1016/j.envpol.2017.05.048
Schulte RT, Ohl DA, Sigman M, et al., 2010. Sperm DNA damage in male infertility: etiologies, assays, and outcomes. J Assist Reprod Genet, 27(1):3-12. https://doi.org/10.1007/s10815-009-9359-xhttps://doi.org/10.1007/s10815-009-9359-x
Shukla S, Khan R, Saxena A, et al., 2022. Microplastics from face masks: a potential hazard post Covid-19 pandemic. Chemosphere, 302:134805. https://doi.org/10.1016/j.chemosphere.2022.134805https://doi.org/10.1016/j.chemosphere.2022.134805
Song XH, Long DX, 2020. Nrf2 and ferroptosis: a new research direction for neurodegenerative diseases. Front Neurosci, 14:267. https://doi.org/10.3389/fnins.2020.00267https://doi.org/10.3389/fnins.2020.00267
Stockwell BR, Jiang XJ, Gu W, 2020. Emerging mechanisms and disease relevance of ferroptosis. Trends Cell Biol, 30(6):478-490. https://doi.org/10.1016/j.tcb.2020.02.009https://doi.org/10.1016/j.tcb.2020.02.009
Sun XF, Ou ZH, Chen RC, et al., 2016. Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology, 63(1):173-184. https://doi.org/10.1002/hep.28251https://doi.org/10.1002/hep.28251
Tang DL, Chen X, Kang R, et al., 2021. Ferroptosis: molecular mechanisms and health implications. Cell Res, 31(2):107-125. https://doi.org/10.1038/s41422-020-00441-1https://doi.org/10.1038/s41422-020-00441-1
Tao SS, Liu PF, Luo G, et al., 2017. p97 negatively regulates NRF2 by extracting ubiquitylated NRF2 from the KEAP1-CUL3 E3 complex. Mol Cell Biol, 37(8):e00660-16. https://doi.org/10.1128/MCB.00660-16https://doi.org/10.1128/MCB.00660-16
Ursini F, Maiorino M, 2020. Lipid peroxidation and ferroptosis: the role of GSH and GPx4. Free Radic Biol Med, 152:175-185. https://doi.org/10.1016/j.freeradbiomed.2020.02.027https://doi.org/10.1016/j.freeradbiomed.2020.02.027
Wang LW, Wu WM, Bolan NS, et al., 2021. Environmental fate, toxicity and risk management strategies of nanoplastics in the environment: current status and future perspectives. J Hazard Mater, 401:123415. https://doi.org/10.1016/j.jhazmat.2020.123415https://doi.org/10.1016/j.jhazmat.2020.123415
Wang Z, An CJ, Chen XJ, et al., 2021. Disposable masks release microplastics to the aqueous environment with exacerbation by natural weathering. J Hazard Mater, 417:126036. https://doi.org/10.1016/j.jhazmat.2021.126036https://doi.org/10.1016/j.jhazmat.2021.126036
Xu DH, Ma YH, Han XD, et al., 2021. Systematic toxicity evaluation of polystyrene nanoplastics on mice and molecular mechanism investigation about their internalization into Caco-2 cells. J Hazard Mater, 417:126092. https://doi.org/10.1016/j.jhazmat.2021.126092https://doi.org/10.1016/j.jhazmat.2021.126092
Xu MK, Halimu G, Zhang QR, et al., 2019. Internalization and toxicity: a preliminary study of effects of nanoplastic particles on human lung epithelial cell. Sci Total Environ, 694:133794. https://doi.org/10.1016/j.scitotenv.2019.133794https://doi.org/10.1016/j.scitotenv.2019.133794
Yee MSL, Hii LW, Looi CK, et al., 2021. Impact of microplastics and nanoplastics on human health. Nanomaterials, 11(2):496. https://doi.org/10.3390/nano11020496https://doi.org/10.3390/nano11020496
Yin K, Wang Y, Zhao HJ, et al., 2021. A comparative review of microplastics and nanoplastics: toxicity hazards on digestive, reproductive and nervous system. Sci Total Environ, 774:145758. https://doi.org/10.1016/j.scitotenv.2021.145758https://doi.org/10.1016/j.scitotenv.2021.145758
Yin LS, Wen XF, Huang DL, et al., 2021. Interactions between microplastics/nanoplastics and vascular plants. Environ Pollut, 290:117999. https://doi.org/10.1016/j.envpol.2021.117999https://doi.org/10.1016/j.envpol.2021.117999
Yong CQY, Valiyaveettil S, Tang BL, 2020. Toxicity of microplastics and nanoplastics in mammalian systems. Int J Environ Res Public Health, 17(5):1509. https://doi.org/10.3390/ijerph17051509https://doi.org/10.3390/ijerph17051509
Yosri N, Khalifa SAM, Guo ZM, et al., 2021. Marine organisms: pioneer natural sources of polysaccharides/proteins for green synthesis of nanoparticles and their potential applications. Int J Biol Macromol, 193:1767-1798. https://doi.org/10.1016/j.ijbiomac.2021.10.229https://doi.org/10.1016/j.ijbiomac.2021.10.229
Zegers-Hochschild F, Adamson GD, Dyer S, et al, 2017. The international glossary on infertility and fertility care, 2017. Fertil Steril, 108(3):393-406. https://doi.org/10.1016/j.fertnstert.2017.06.005https://doi.org/10.1016/j.fertnstert.2017.06.005
0
Views
17
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution