无数据
Scan QR Code
1.Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
2.Department of Medicine Laboratory, the Second People’s Hospital of Lianyungang Affiliated to Kangda College of Nanjing Medical University, the Second People’s Hospital of Lianyungang City, Lianyungang 222000, China
3.Institute of Neuroscience, the First People’s Hospital of Lianyungang, Lianyungang 222000, China
Published: 15 November 2023 ,
Published Online: 10 August 2023 ,
Received: 17 January 2023 ,
Revised: 20 April 2023 ,
杨海涛,王彦,樊慧等.铜绿假单胞菌诱导的线粒体功能障碍以ROS依赖性的方式抑制促炎细胞因子分泌并增强小鼠巨噬细胞的细胞毒性[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2023,24(11):1027-1036.
HAITAO YANG, YAN WANG, HUI FAN, et al.
杨海涛,王彦,樊慧等.铜绿假单胞菌诱导的线粒体功能障碍以ROS依赖性的方式抑制促炎细胞因子分泌并增强小鼠巨噬细胞的细胞毒性[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2023,24(11):1027-1036. DOI: 10.1631/jzus.B2300051.
HAITAO YANG, YAN WANG, HUI FAN, et al.
随着铜绿假单胞菌(铜绿)的耐药性逐年增强,铜绿感染已经成为公共医疗卫生的重点关注问题。线粒体自噬及其介导的线粒体功能障碍在多种细菌感染中已被报道,但线粒体功能障碍在宿主调控铜绿感染中的作用尚不明确。因此,本研究建立铜绿刺激小鼠巨噬细胞感染模型和小鼠急性铜绿感染模型,探讨铜绿是否通过诱导线粒体自噬改变线粒体功能,进而影响宿主免疫炎症反应和细胞毒性,并通过监测生存率和肺组织病理学变化进一步确定线粒体自噬在小鼠铜绿体内感染模型中的作用。结果表明,铜绿引起小鼠腹腔巨噬细胞线粒体功能障碍,并通过线粒体自噬途径清除铜绿刺激引起的活性氧(ROS)累积,从而抑制铜绿引起的促炎性细胞因子分泌并增强细胞毒性。体内实验进一步确认线粒体自噬在铜绿体内感染中的作用。
铜绿假单胞菌线粒体线粒体自噬促炎性细胞因子
Aishwarya R, Alam S, Abdullah CS, et al., 2020. Pleiotropic effects of mdivi-1 in altering mitochondrial dynamics, respiration, and autophagy in cardiomyocytes. Redox Biol, 36:101660. https://doi.org/10.1016/j.redox.2020.101660https://doi.org/10.1016/j.redox.2020.101660
Andrieux P, Chevillard C, Cunha-Neto E, et al., 2021. Mitochondria as a cellular hub in infection and inflammation. Int J Mol Sci, 22(21):11338. https://doi.org/10.3390/ijms222111338https://doi.org/10.3390/ijms222111338
Azam MW, Khan AU, 2019. Updates on the pathogenicity status of Pseudomonas aeruginosa. Drug Discov Today, 24(1):350-359. https://doi.org/10.1016/j.drudis.2018.07.003https://doi.org/10.1016/j.drudis.2018.07.003
Banoth B, Cassel SL, 2018. Mitochondria in innate immune signaling. Transl Res, 202:52-68. https://doi.org/10.1016/j.trsl.2018.07.014https://doi.org/10.1016/j.trsl.2018.07.014
Chai YH, Xu JF, 2020. How does Pseudomonas aeruginosa affect the progression of bronchiectasis? Clin Microbiol Infect, 26(3):313-318. https://doi.org/10.1016/j.cmi.2019.07.010https://doi.org/10.1016/j.cmi.2019.07.010
Chen C, Zhou QJ, Li ZY, et al., 2022. Hyperglycemia induces corneal endothelial dysfunction through attenuating mitophagy. Exp Eye Res, 215:108903. https://doi.org/10.1016/j.exer.2021.108903https://doi.org/10.1016/j.exer.2021.108903
Deng QC, Wang Y, Zhang YQ, et al., 2015. Pseudomonas aeruginosa triggers macrophage autophagy to escape intracellular killing by activation of the NLRP3 inflammasome. Infect Immun, 84(1):56-66. https://doi.org/10.1128/iai.00945-15https://doi.org/10.1128/iai.00945-15
Deo P, Chow SH, Han ML, et al., 2020. Mitochondrial dysfunction caused by outer membrane vesicles from Gram-negative bacteria activates intrinsic apoptosis and inflammation. Nat Microbiol, 5(11):1418-1427. https://doi.org/10.1038/s41564-020-0773-2https://doi.org/10.1038/s41564-020-0773-2
Gluschko A, Farid A, Herb M, et al., 2022. Macrophages target Listeria monocytogenes by two discrete non-canonical autophagy pathways. Autophagy, 18(5):1090-1107. https://doi.org/10.1080/15548627.2021.1969765https://doi.org/10.1080/15548627.2021.1969765
Jangra V, Sharma N, Chhillar AK, 2022. Therapeutic approaches for combating Pseudomonas aeruginosa infections. Microbes Infect, 24(4):104950. https://doi.org/10.1016/j.micinf.2022.104950https://doi.org/10.1016/j.micinf.2022.104950
Jariyamana N, Chuveera P, Dewi A, et al., 2021. Effects of N-acetyl cysteine on mitochondrial ROS, mitochondrial dynamics, and inflammation on lipopolysaccharide-treated human apical papilla cells. Clin Oral Investig, 25(6):3919-3928. https://doi.org/10.1007/s00784-020-03721-7https://doi.org/10.1007/s00784-020-03721-7
Jurado-Martín I, Sainz-Mejías M, McClean S, 2021. Pseudomonas aeruginosa: an audacious pathogen with an adaptable arsenal of virulence factors. Int J Mol Sci, 22(6):3128. https://doi.org/10.3390/ijms22063128https://doi.org/10.3390/ijms22063128
Krakauer T, 2019. Inflammasomes, autophagy, and cell death: the trinity of innate host defense against intracellular bacteria. Mediators Inflamm, 2019:2471215. https://doi.org/10.1155/2019/2471215https://doi.org/10.1155/2019/2471215
Lin QS, Li S, Jiang N, et al., 2019. PINK1-parkin pathway of mitophagy protects against contrast-induced acute kidney injury via decreasing mitochondrial ROS and NLRP3 inflammasome activation. Redox Biol, 26:101254. https://doi.org/10.1016/j.redox.2019.101254https://doi.org/10.1016/j.redox.2019.101254
Ornatowski W, Lu Q, Yegambaram M, et al., 2020. Complex interplay between autophagy and oxidative stress in the development of pulmonary disease. Redox Biol, 36:101679. https://doi.org/10.1016/j.redox.2020.101679https://doi.org/10.1016/j.redox.2020.101679
Palikaras K, Lionaki E, Tavernarakis N, 2018. Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nat Cell Biol, 20(9):1013-1022. https://doi.org/10.1038/s41556-018-0176-2https://doi.org/10.1038/s41556-018-0176-2
Pang Z, Raudonis R, Glick BR, et al., 2019. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv, 37(1):177-192. https://doi.org/10.1016/j.biotechadv.2018.11.013https://doi.org/10.1016/j.biotechadv.2018.11.013
Patoli D, Mignotte F, Deckert V, et al., 2020. Inhibition of mitophagy drives macrophage activation and antibacterial defense during sepsis. J Clin Invest, 130(11):5858-5874. https://doi.org/10.1172/jci130996https://doi.org/10.1172/jci130996
Pickles S, Vigié P, Youle RJ, 2018. Mitophagy and quality control mechanisms in mitochondrial maintenance. Curr Biol, 28(4):R170-R185. https://doi.org/10.1016/j.cub.2018.01.004https://doi.org/10.1016/j.cub.2018.01.004
Raghu G, Berk M, Campochiaro PA, et al., 2021. The multifaceted therapeutic role of N-acetylcysteine (NAC) in disorders characterized by oxidative stress. Curr Neuropharmacol, 19(8):1202-1224. https://doi.org/10.2174/1570159x19666201230144109https://doi.org/10.2174/1570159x19666201230144109
Ramond E, Jamet A, Coureuil M, et al., 2019. Pivotal role of mitochondria in macrophage response to bacterial pathogens. Front Immunol, 10:2461. https://doi.org/10.3389/fimmu.2019.02461https://doi.org/10.3389/fimmu.2019.02461
Reynolds D, Kollef M, 2021. The epidemiology and pathogenesis and treatment of Pseudomonas aeruginosa infections: an update. Drugs, 81(18):2117-2131. https://doi.org/10.1007/s40265-021-01635-6https://doi.org/10.1007/s40265-021-01635-6
Roxas JL, Ramamurthy S, Cocchi K, et al., 2022. Enteropathogenic Escherichia coli regulates host-cell mitochondrial morphology. Gut Microbes, 14(1):2143224. https://doi.org/10.1080/19490976.2022.2143224https://doi.org/10.1080/19490976.2022.2143224
Silwal P, Kim JK, Kim YJ, et al., 2020. Mitochondrial reactive oxygen species: double-edged weapon in host defense and pathological inflammation during infection. Front Immunol, 11:1649. https://doi.org/10.3389/fimmu.2020.01649https://doi.org/10.3389/fimmu.2020.01649
Stefano GB, Ptacek R, Ptackova H, et al., 2021. Selective neuronal mitochondrial targeting in SARS-CoV-2 infection affects cognitive processes to induce ‘brain fog’ and results in behavioral changes that favor viral survival. Med Sci Monit, 27:e930886. https://doi.org/10.12659/msm.930886https://doi.org/10.12659/msm.930886
Su LJ, Zhang JH, Gomez H, et al., 2023. Mitochondria ROS and mitophagy in acute kidney injury. Autophagy, 19(2):401-414. https://doi.org/10.1080/15548627.2022.2084862https://doi.org/10.1080/15548627.2022.2084862
Sun LL, Shao YN, You MX, et al., 2022. ROS-mediated BNIP3-dependent mitophagy promotes coelomocyte survival in Apostichopus japonicus in response to Vibrio splendidus infection. Zool Res, 43(2):285-300. https://doi.org/10.24272/j.issn.2095-8137.2021.460https://doi.org/10.24272/j.issn.2095-8137.2021.460
Tsai ML, Tsai YG, Lin YC, et al., 2022. IL-25 induced ROS-mediated M2 macrophage polarization via AMPK-associated mitophagy. Int J Mol Sci, 23(1):3. https://doi.org/10.3390/ijms23010003https://doi.org/10.3390/ijms23010003
Voth S, Gwin M, Francis CM, et al., 2020. Virulent Pseudomonas aeruginosa infection converts antimicrobial amyloids into cytotoxic prions. FASEB J, 34(7):9156-9179. https://doi.org/10.1096/fj.202000051RRRhttps://doi.org/10.1096/fj.202000051RRR
Wang KR, Ma HW, Liu H, et al., 2019. The glycoprotein and nucleocapsid protein of hantaviruses manipulate autophagy flux to restrain host innate immune responses. Cell Rep, 27(7):2075-2091.e5. https://doi.org/10.1016/j.celrep.2019.04.061https://doi.org/10.1016/j.celrep.2019.04.061
Yoo SM, Jung YK, 2018. A molecular approach to mitophagy and mitochondrial dynamics. Mol Cells, 41(1):18-26. https://doi.org/10.14348/molcells.2018.2277https://doi.org/10.14348/molcells.2018.2277
Zhang W, Kazeem BB, Yang H, et al., 2021. Aeromonas sobria regulates proinflammatory immune response in mouse macrophages via activating the MAPK, AKT, and NF-κB pathways. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 22(9):782-790. https://doi.org/10.1631/jzus.B2100456https://doi.org/10.1631/jzus.B2100456
Zhang X, Wang YR, Gong PT, et al., 2022. Neospora caninum evades immunity via inducing host cell mitophagy to inhibit production of proinflammatory cytokines in a ROS-dependent manner. Front Immunol, 13:827004. https://doi.org/10.3389/fimmu.2022.827004https://doi.org/10.3389/fimmu.2022.827004
Zhang YF, Yao YK, Qiu XX, et al., 2019. Listeria hijacks host mitophagy through a novel mitophagy receptor to evade killing. Nat Immunol, 20(4):433-446. https://doi.org/10.1038/s41590-019-0324-2https://doi.org/10.1038/s41590-019-0324-2
0
Views
65
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution