无数据
Scan for full text
1.Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
Qianming CHEN, Yahui WANG, Jing SHUAI. Current status and future prospects of stomatology research. [J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology) 24(10):853-867(2023)
Qianming CHEN, Yahui WANG, Jing SHUAI. Current status and future prospects of stomatology research. [J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology) 24(10):853-867(2023) DOI: 10.1631/jzus.B2200702.
随着口腔医学研究在全球范围内不断扩展,口腔医学现以解决临床问题为导向,重点通过临床流行病学、口腔微生态表征和动物模型的建立来阐明口腔与系统性疾病的临床相关性和潜在机制。材料科学及组织工程与口腔医学的跨学科整合有望通过推动创新材料发展和技术研发,更好地解决如种植体周围炎、软硬组织缺损和牙本质过敏等目前最普遍、最具挑战性的临床问题。随着人工智能、5G和大数据等应用技术的快速发展,“智能口腔”正在兴起,以便搭建更好的临床诊断和管理模式,加快教育改革,推动科研发展。基于此,本文综述了口腔医学目前的研究现状,并列举了上述3个方面未来的发展前景和局限性,旨在为口腔医学更准确的病因探索、新颖的治疗方法建立和丰富的大数据分析提供依据,从而促进研究成果向服务于临床医生和民众的实际应用转化。
Research in stomatology (dental medicine) continues to expand globally and is oriented towards solving clinical issues, focusing on clarifying the clinical relevance and potential mechanisms of oral–systemic connections via clinical epidemiology, oral microecological characterization, and the establishment of animal models. Interdisciplinary integration of materials science and tissue engineering with stomatology is expected to lead to the creation of innovative materials and technologies to better resolve the most prevalent and challenging clinical issues such as peri-implantitis, soft and hard tissue defects, and dentin hypersensitivity. With the rapid development of artificial intelligence (AI), 5th generation mobile communication technology (5G), and big data applications, “intelligent stomatology” is emerging to build models for better clinical diagnosis and management, accelerate the reform of education, and support the growth and advancement of scientific research. Here, we summarized the current research status, and listed the future prospects and limitations of these three aspects, aiming to provide a basis for more accurate etiological exploration, novel treatment methods, and abundant big data analysis in stomatology to promote the translation of research achievements into practical applications for both clinicians and the public.
口腔医学牙医学系统性疾病材料新型技术
StomatologyDental medicineSystemic diseaseMaterialInnovative technique
Abbassy MA, Watari I, Bakry AS, et al., 2015. Diabetes detrimental effects on enamel and dentine formation. J Dent, 43(5):589-596. https://doi.org/10.1016/j.jdent.2015.01.005https://doi.org/10.1016/j.jdent.2015.01.005
Ahad A, Tahir M, Aman Sheikh M, et al., 2020. Technologies trend towards 5G network for smart health-care using IoT: a review. Sensors (Basel), 20(14):4047. https://doi.org/10.3390/s20144047https://doi.org/10.3390/s20144047
Angst PDM, Dutra DAM, Manso IS, et al., 2020. Association between oral health-related quality of life and periodontal status in patients with leukemia. Int Dent J, 70(5):381-387. https://doi.org/10.1111/idj.12576https://doi.org/10.1111/idj.12576
Arany PR, 2016. Craniofacial wound healing with photobiomodulation therapy: new insights and current challenges. J Dent Res, 95(9):977-984. https://doi.org/10.1177/0022034516648939https://doi.org/10.1177/0022034516648939
Barak S, Oettinger-Barak O, Machtei EE, et al., 2007. Evidence of periopathogenic microorganisms in placentas of women with preeclampsia. J Periodontol, 78(4):670-676. https://doi.org/10.1902/jop.2007.060362https://doi.org/10.1902/jop.2007.060362
Bastos MF, Brilhante FV, Gonçalves TED, et al., 2010. Hypertension may affect tooth-supporting alveolar bone quality: a study in rats. J Periodontol, 81(7):1075-1083. https://doi.org/10.1902/jop.2010.090705https://doi.org/10.1902/jop.2010.090705
Belda-Ferre P, Alcaraz LD, Cabrera-Rubio R, et al., 2012. The oral metagenome in health and disease. ISME J, 6(1):46-56. https://doi.org/10.1038/ismej.2011.85https://doi.org/10.1038/ismej.2011.85
Bingham CO III, Moni M, 2013. Periodontal disease and rheumatoid arthritis: the evidence accumulates for complex pathobiologic interactions. Curr Opin Rheumatol, 25(3):345-353. https://doi.org/10.1097/BOR.0b013e32835fb8echttps://doi.org/10.1097/BOR.0b013e32835fb8ec
Casamassimo PS, Flaitz CM, Hammersmith K, et al., 2018. Recognizing the relationship between disorders in the oral cavity and systemic disease. Pediatr Clin North Am, 65(5):1007-1032. https://doi.org/10.1016/j.pcl.2018.05.009https://doi.org/10.1016/j.pcl.2018.05.009
Casarin RCV, Barbagallo A, Meulman T, et al., 2013. Subgingival biodiversity in subjects with uncontrolled type-2 diabetes and chronic periodontitis. J Periodontal Res, 48(1):30-36. https://doi.org/10.1111/j.1600-0765.2012.01498.xhttps://doi.org/10.1111/j.1600-0765.2012.01498.x
Castro-Raucci LMS, Francischini MS, Teixeira LN, et al., 2016. Titanium with nanotopography induces osteoblast differentiation by regulating endogenous bone morphogenetic protein expression and signaling pathway. J Cell Biochem, 117(7):1718-1726. https://doi.org/10.1002/jcb.25469https://doi.org/10.1002/jcb.25469
Cheng K, Sun Y, Wan HP, et al., 2015. Improved light-induced cell detachment on rutile TiO2 nanodot films. Acta Biomater, 26:347-354. https://doi.org/10.1016/j.actbio.2015.08.026https://doi.org/10.1016/j.actbio.2015.08.026
Cheng K, Wang TT, Yu ML, et al., 2016. Effects of RGD immobilization on light-induced cell sheet detachment from TiO2 nanodots films. Mater Sci Eng C Mater Biol Appl, 63:240-246. https://doi.org/10.1016/j.msec.2016.02.072https://doi.org/10.1016/j.msec.2016.02.072
Costalonga M, Herzberg MC, 2014. The oral microbiome and the immunobiology of periodontal disease and caries. Immunol Lett, 162(2):22-38. https://doi.org/10.1016/j.imlet.2014.08.017https://doi.org/10.1016/j.imlet.2014.08.017
de Medeiros Vanderlei JMTM, Messora MR, Fernandes PG, et al., 2013. Arterial hypertension perpetuates alveolar bone loss. Clin Exp Hypertens, 35(1):1-5. https://doi.org/10.3109/10641963.2012.683969https://doi.org/10.3109/10641963.2012.683969
Díaz-Zúñiga J, More J, Melgar-Rodríguez S, et al., 2020. Alzheimer’s disease-like pathology triggered by Porphyromonas gingivalis in wild type rats is serotype dependent. Front Immunol, 11:588036. https://doi.org/10.3389/fimmu.2020.588036https://doi.org/10.3389/fimmu.2020.588036
Elias GP, dos Santos OAM, Sassaki KT, et al., 2006. Dental mineralization and salivary activity are reduced in offspring of spontaneously hypertensive rats (SHR). J Appl Oral Sci, 14(4):253-259. https://doi.org/10.1590/s1678-77572006000400008https://doi.org/10.1590/s1678-77572006000400008
Fan XZ, Alekseyenko AV, Wu J, et al., 2018. Human oral microbiome and prospective risk for pancreatic cancer: a population-based nested case-control study. Gut, 67(1):120-127. https://doi.org/10.1136/gutjnl-2016-312580https://doi.org/10.1136/gutjnl-2016-312580
Gao L, Xu TS, Huang G, et al., 2018. Oral microbiomes: more and more importance in oral cavity and whole body. Protein Cell, 9(5):488-500. https://doi.org/10.1007/s13238-018-0548-1https://doi.org/10.1007/s13238-018-0548-1
Guillaume-Gentil O, Gabi M, Zenobi-Wong M, et al., 2011a. Electrochemically switchable platform for the micro-patterning and release of heterotypic cell sheets. Biomed Microdevices, 13(1):221-230. https://doi.org/10.1007/s10544-010-9487-1https://doi.org/10.1007/s10544-010-9487-1
Guillaume-Gentil O, Semenov OV, Zisch AH, et al., 2011b. pH-controlled recovery of placenta-derived mesenchymal stem cell sheets. Biomaterials, 32(19):4376-4384. https://doi.org/10.1016/j.biomaterials.2011.02.058https://doi.org/10.1016/j.biomaterials.2011.02.058
Gupta R, Srivastava D, Sahu M, et al., 2021. Artificial intelligence to deep learning: machine intelligence approach for drug discovery. Mol Divers, 25(3):1315-1360. https://doi.org/10.1007/s11030-021-10217-3https://doi.org/10.1007/s11030-021-10217-3
Haraszthy VI, Zambon JJ, Trevisan M, et al., 2000. Identification of periodontal pathogens in atheromatous plaques. J Periodontol, 71(10):1554-1560. https://doi.org/10.1902/jop.2000.71.10.1554https://doi.org/10.1902/jop.2000.71.10.1554
Hench LL, Thompson I, 2010. Twenty-first century challenges for biomaterials. J R Soc Interface, 7(S4):S379-S391. https://doi.org/10.1098/rsif.2010.0151.focushttps://doi.org/10.1098/rsif.2010.0151.focus
Hijazi K, Lowe T, Meharg C, et al., 2015. Mucosal microbiome in patients with recurrent aphthous stomatitis. J Dent Res, 94(S3):87S-94S. https://doi.org/10.1177/0022034514565458https://doi.org/10.1177/0022034514565458
Hong Y, Yu MF, Weng WJ, et al., 2013. Light-induced cell detachment for cell sheet technology. Biomaterials, 34(1):11-18. https://doi.org/10.1016/j.biomaterials.2012.09.043https://doi.org/10.1016/j.biomaterials.2012.09.043
Hotchkiss KM, Reddy GB, Hyzy SL, et al., 2016. Titanium surface characteristics, including topography and wettability, alter macrophage activation. Acta Biomater, 31:425-434. https://doi.org/10.1016/j.actbio.2015.12.003https://doi.org/10.1016/j.actbio.2015.12.003
Hung CC, Chaya A, Liu K, et al., 2019. The role of magnesium ions in bone regeneration involves the canonical Wnt signaling pathway. Acta Biomater, 98:246-255. https://doi.org/10.1016/j.actbio.2019.06.001https://doi.org/10.1016/j.actbio.2019.06.001
Jing JG, Chen SS, Lu QH, 2019. Gradient photothermal field for precisely directing cell sheet detachment. Adv Biosyst, 3(5):e1800334. https://doi.org/10.1002/adbi.201800334https://doi.org/10.1002/adbi.201800334
Kamer AR, Craig RG, Pirraglia E, et al., 2009. TNF-α and antibodies to periodontal bacteria discriminate between Alzheimer’s disease patients and normal subjects. J Neuroimmunol, 216(1-2):92-97. https://doi.org/10.1016/j.jneuroim.2009.08.013https://doi.org/10.1016/j.jneuroim.2009.08.013
Kilian M, 2018. The oral microbiome – friend or foe? Eur J Oral Sci, 126(S1):5-12. https://doi.org/10.1111/eos.12527https://doi.org/10.1111/eos.12527
Koren O, Spor A, Felin J, et al., 2011. Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proc Natl Acad Sci USA, 108(S1):4592-4598. https://doi.org/10.1073/pnas.1011383107https://doi.org/10.1073/pnas.1011383107
Krishnan K, Chen T, Paster BJ, 2017. A practical guide to the oral microbiome and its relation to health and disease. Oral Dis, 23(3):276-286. https://doi.org/10.1111/odi.12509https://doi.org/10.1111/odi.12509
Kwon HB, Park YS, Han JS, 2018. Augmented reality in dentistry: a current perspective. Acta Odontol Scand, 76(7):497-503. https://doi.org/10.1080/00016357.2018.1441437https://doi.org/10.1080/00016357.2018.1441437
Leite CLA, Redins CA, Vasquez EC, et al., 2005. Experimental-induced periodontitis is exacerbated in spontaneously hypertensive rats. Clin Exp Hypertens, 27(6):523-531. https://doi.org/10.1081/CEH-200067688https://doi.org/10.1081/CEH-200067688
León R, Silva N, Ovalle A, et al., 2007. Detection of Porphyromonas gingivalis in the amniotic fluid in pregnant women with a diagnosis of threatened premature labor. J Periodontol, 78(7):1249-1255. https://doi.org/10.1902/jop.2007.060368https://doi.org/10.1902/jop.2007.060368
Li JPO, Liu HR, Ting DSJ, et al., 2021. Digital technology, tele-medicine and artificial intelligence in ophthalmology: a global perspective. Prog Retin Eye Res, 82:100900. https://doi.org/10.1016/j.preteyeres.2020.100900https://doi.org/10.1016/j.preteyeres.2020.100900
Li Y, Wang K, Zhang B, et al., 2019. Salivary mycobiome dysbiosis and its potential impact on bacteriome shifts and host immunity in oral lichen planus. Int J Oral Sci, 11(2):13. https://doi.org/10.1038/s41368-019-0045-2https://doi.org/10.1038/s41368-019-0045-2
Lin DJ, Yang LS, Wen LL, et al., 2021. Crosstalk between the oral microbiota, mucosal immunity, and the epithelial barrier regulates oral mucosal disease pathogenesis. Mucosal Immunol, 14(6):1247-1258. https://doi.org/10.1038/s41385-021-00413-7https://doi.org/10.1038/s41385-021-00413-7
Mager DL, Haffajee AD, Devlin PM, et al., 2005. The salivary microbiota as a diagnostic indicator of oral cancer: a descriptive, non-randomized study of cancer-free and oral squamous cell carcinoma subjects. J Transl Med, 3:27. https://doi.org/10.1186/1479-5876-3-27https://doi.org/10.1186/1479-5876-3-27
Marruganti C, Discepoli N, Gaeta C, et al., 2021. Dental caries occurrence in inflammatory bowel disease patients: a systematic review and meta-analysis. Caries Res, 55(5):485-495. https://doi.org/10.1159/000519170https://doi.org/10.1159/000519170
Masters K, 2019. Artificial intelligence in medical education. Med Teach, 41(9):976-980. https://doi.org/10.1080/0142159X.2019.1595557https://doi.org/10.1080/0142159X.2019.1595557
Matsha TE, Prince Y, Davids S, et al., 2020. Oral microbiome signatures in diabetes mellitus and periodontal disease. J Dent Res, 99(6):658-665. https://doi.org/10.1177/0022034520913818https://doi.org/10.1177/0022034520913818
Matsumoto S, Okabe Y, Setoyama H, et al., 1998. Inflammatory bowel disease-like enteritis and caecitis in a senescence accelerated mouse P1/Yit strain. Gut, 43(1):71-78. https://doi.org/10.1136/gut.43.1.71https://doi.org/10.1136/gut.43.1.71
Mohan A, Wara UU, Shaikh MTA, et al., 2021. Telesurgery and robotics: an improved and efficient era. Cureus, 13(3):e14124. https://doi.org/10.7759/cureus.14124https://doi.org/10.7759/cureus.14124
Na J, Song SY, Kim JD, et al., 2018. Protein-engineered large area adipose-derived stem cell sheets for wound healing. Sci Rep, 8:15869. https://doi.org/10.1038/s41598-018-34119-xhttps://doi.org/10.1038/s41598-018-34119-x
Park JC, Su CX, Jung IH, et al., 2011. Mechanism of alveolar bone loss in a collagen-induced arthritis model in mice. J Clin Periodontol, 38(2):122-130. https://doi.org/10.1111/j.1600-051X.2010.01645.xhttps://doi.org/10.1111/j.1600-051X.2010.01645.x
Paster BJ, Olsen I, Aas JA, et al., 2006. The breadth of bacterial diversity in the human periodontal pocket and other oral sites. Periodontol 2000, 42:80-87. https://doi.org/10.1111/j.1600-0757.2006.00174.xhttps://doi.org/10.1111/j.1600-0757.2006.00174.x
Pietropaoli D, del Pinto R, Corridoni D, et al., 2014. Occurrence of spontaneous periodontal disease in the SAMP1/YitFc murine model of Crohn disease. J Periodontol, 85(12):1799-1805. https://doi.org/10.1902/jop.2014.140316https://doi.org/10.1902/jop.2014.140316
Poyton RO, Ball KA, 2011. Therapeutic photobiomodulation: nitric oxide and a novel function of mitochondrial cytochrome c oxidase. Discov Med, 11(57):154-159.
Qian XS, Zhang S, Duan L, et al., 2021. Periodontitis deterior
ates cognitive function and impairs neurons and glia in a mouse model of Alzheimer’s disease. J Alzheimers Dis, 79(4):1785-1800. https://doi.org/10.3233/JAD-201007https://doi.org/10.3233/JAD-201007
Ramamurthy NS, Greenwald RA, Celiker MY, et al., 2005. Experimental arthritis in rats induces biomarkers of periodontitis which are ameliorated by gene therapy with tissue inhibitor of matrix metalloproteinases. J Periodontol, 76(2):229-233. https://doi.org/10.1902/jop.2005.76.2.229https://doi.org/10.1902/jop.2005.76.2.229
Refai AK, Textor M, Brunette DM, et al., 2004. Effect of titanium surface topography on macrophage activation and secretion of proinflammatory cytokines and chemokines. J Biomed Mater Res A, 70(2):194-205. https://doi.org/10.1002/jbm.a.30075https://doi.org/10.1002/jbm.a.30075
Riviere GR, Riviere KH, Smith KS, 2002. Molecular and immunological evidence of oral Treponema in the human brain and their association with Alzheimer’s disease. Oral Microbiol Immunol, 17(2):113-118. https://doi.org/10.1046/j.0902-0055.2001.00100.xhttps://doi.org/10.1046/j.0902-0055.2001.00100.x
Rogler G, Singh A, Kavanaugh A, et al., 2021. Extraintestinal manifestations of inflammatory bowel disease: current concepts, treatment, and implications for disease management. Gastroenterology, 161(4):1118-1132. https://doi.org/10.1053/j.gastro.2021.07.042https://doi.org/10.1053/j.gastro.2021.07.042
Saghiri MA, Karamifar K, Fakharzadeh A, et al., 2020. Effect of diabetes on tubular density and push-out bond strength of mineral trioxide aggregate to dentin. J Endod, 46(11):1584-1591. https://doi.org/10.1016/j.joen.2020.07.025https://doi.org/10.1016/j.joen.2020.07.025
Saghiri MA, Sheibani N, Kawai T, et al., 2022. Diabetes negatively affects tooth enamel and dentine microhardness: an in-vivo study. Arch Oral Biol, 139:105434. https://doi.org/10.1016/j.archoralbio.2022.105434https://doi.org/10.1016/j.archoralbio.2022.105434
Said HS, Suda W, Nakagome S, et al., 2014. Dysbiosis of salivary microbiota in inflammatory bowel disease and its association with oral immunological biomarkers. DNA Res, 21(1):15-25. https://doi.org/10.1093/dnares/dst037https://doi.org/10.1093/dnares/dst037
Sano T, Matsuura T, Ozaki K, et al., 2011. Dental caries and caries-related periodontitis in type 2 diabetic mice. Vet Pathol, 48(2):506-512. https://doi.org/10.1177/0300985810380394https://doi.org/10.1177/0300985810380394
Scher JU, Ubeda C, Equinda M, et al., 2012. Periodontal disease and the oral microbiota in new-onset rheumatoid arthritis. Arthritis Rheum, 64(10):3083-3094. https://doi.org/10.1002/art.34539https://doi.org/10.1002/art.34539
Schwendicke F, Singh T, Lee JH, et al., 2021. Artificial intelligence in dental research: checklist for authors, reviewers, readers. J Dent, 107:103610. https://doi.org/10.1016/j.jdent.2021.103610https://doi.org/10.1016/j.jdent.2021.103610
Shan T, Tay FR, Gu L, 2021. Application of artificial intelligence in dentistry. J Dent Res, 100(3):232-244. https://doi.org/10.1177/0022034520969115https://doi.org/10.1177/0022034520969115
Shang JJ, Yang QB, Zhao HY, et al., 2013. Preliminary molecu
lar analysis of bacterial composition in periapical lesions with primary endodontic infections of deciduous teeth. Chin Med J (Engl), 126(16):3112-3117. https://doi.org/10.3760/cma.j.issn.0366-6999.20131214https://doi.org/10.3760/cma.j.issn.0366-6999.20131214
Shen X, Shen X, Li B, et al., 2021. Abnormal macrophage polarization impedes the healing of diabetes-associated tooth sockets. Bone, 143:115618. https://doi.org/10.1016/j.bone.2020.115618https://doi.org/10.1016/j.bone.2020.115618
Shi Y, Shen DN, Zheng HY, et al., 2019. Therapeutic management of demineralized dentin surfaces using a mineralizing adhesive to seal and mineralize dentin, dentinal tubules, and odontoblast processes. ACS Biomater Sci Eng, 5(10):5481-5488. https://doi.org/10.1021/acsbiomaterials.9b00619https://doi.org/10.1021/acsbiomaterials.9b00619
Splieth CH, Tachou A, 2013. Epidemiology of dentin hypersensitivity. Clin Oral Investig, 17(S1):3-8. https://doi.org/10.1007/s00784-012-0889-8https://doi.org/10.1007/s00784-012-0889-8
Srinivasan K, Viswanad B, Asrat L, et al., 2005. Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening. Pharmacol Res, 52(4):313-320. https://doi.org/10.1016/j.phrs.2005.05.004https://doi.org/10.1016/j.phrs.2005.05.004
Taniguchi N, Fujibayashi S, Takemoto M, et al., 2016. Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: an in vivo experiment. Mater Sci Eng C Mater Biol Appl, 59:690-701. https://doi.org/10.1016/j.msec.2015.10.069https://doi.org/10.1016/j.msec.2015.10.069
Tsukasaki M, Takayanagi H, 2019. Osteoimmunology: evolving concepts in bone-immune interactions in health and disease. Nat Rev Immunol, 19(10):626-642. https://doi.org/10.1038/s41577-019-0178-8https://doi.org/10.1038/s41577-019-0178-8
Turnbaugh PJ, Ley RE, Hamady M, et al., 2007. The human microbiome project. Nature, 449(7164):804-810. https://doi.org/10.1038/nature06244https://doi.org/10.1038/nature06244
Uchibori S, Sekiya T, Sato T, et al., 2020. Suppression of tooth movement-induced sclerostin expression using β-adrenergic receptor blockers. Oral Dis, 26(3):621-629. https://doi.org/10.1111/odi.13280https://doi.org/10.1111/odi.13280
Wang HR, Xiao ZH, Yang J, et al., 2017. Oriented and ordered biomimetic remineralization of the surface of demineralized dental enamel using HAP@ACP nanoparticles guided by glycine. Sci Rep, 7:40701. https://doi.org/10.1038/srep40701https://doi.org/10.1038/srep40701
Wang XJ, Xu SQ, Zhou SW, et al., 2016. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomaterials, 83:127-141. https://doi.org/10.1016/j.biomaterials.2016.01.012https://doi.org/10.1016/j.biomaterials.2016.01.012
Wang Y, Jiang ZW, Yu K, et al., 2017. Improved osseointegrating functionality of cell sheets on anatase TiO2 nanoparticle surfaces. RSC Adv, 7(57):35845-35853. https://doi.org/10.1039/C7RA05134Dhttps://doi.org/10.1039/C7RA05134D
Wu ZF, Wang XK, Wang Z, et al., 2017. Self-etch adhesive as a carrier for ACP nanoprecursors to deliver biomimetic remineralization. ACS Appl Mater Interfaces, 9(21):17710-17717. https://doi.org/10.1021/acsami.7b01719https://doi.org/10.1021/acsami.7b01719
Xiao E, Mattos M, Vieira GHA, et al., 2017. Diabetes enhances IL-17 expression and alters the oral microbiome to increase its pathogenicity. Cell Host Microbe, 22(1):120-128.e4. https://doi.org/10.1016/j.chom.2017.06.014https://doi.org/10.1016/j.chom.2017.06.014
Yan XM, Yang MX, Liu J, et al., 2015. Discovery and validation of potential bacterial biomarkers for lung cancer. Am J Cancer Res, 5(10):3111-3122.
Yang YH, Cai QY, Shu XO, et al., 2019. Prospective study of oral microbiome and colorectal cancer risk in low-income and African American populations. Int J Cancer, 144(10):2381-2389. https://doi.org/10.1002/ijc.31941https://doi.org/10.1002/ijc.31941
Yu DM, Guo S, Yu M, et al., 2022. Immunomodulation and osseointegration activities of Na2TiO3 nanorods-arrayed coatings doped with different Sr content. Bioact Mater, 10:323-334. https://doi.org/10.1016/j.bioactmat.2021.08.033https://doi.org/10.1016/j.bioactmat.2021.08.033
Zaid H, Ismael-Shanak S, Michaeli A, et al., 2012. Computerized modeling techniques predict the 3D structure of H4R: facts and fiction. Front Biosci (Landmark Ed), 17(1):232-247. https://doi.org/10.2741/3924https://doi.org/10.2741/3924
Zhang X, Zhang DY, Jia HJ, et al., 2015. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat Med, 21(8):895-905. https://doi.org/10.1038/nm.3914https://doi.org/10.1038/nm.3914
Zhang YH, Wang X, Li HX, et al., 2018. Human oral microbiota and its modulation for oral health. Biomed Pharmacother, 99:883-893. https://doi.org/10.1016/j.biopha.2018.01.146https://doi.org/10.1016/j.biopha.2018.01.146
Zhong FS, Xing J, Li XT, et al., 2018. Artificial intelligence in drug design. Sci China Life Sci, 61(10):1191-1204. https://doi.org/10.1007/s11427-018-9342-2https://doi.org/10.1007/s11427-018-9342-2
Zhu XH, Shao LZ, Liu ZY, et al., 2023. MRI-derived radiomics models for evaluation of diagnosis, aggressiveness, and prognosis in prostate cancer. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 24(8):663-681. https://doi.org/10.1631/jzus.B2200619https://doi.org/10.1631/jzus.B2200619
0
Views
49
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution