无数据
Scan for full text
1.Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
2.Department of Clinical Laboratory, Zhejiang Rongjun Hospital, Jiaxing 314000, China
3.Department of Clinical Laboratory, Huzhou First People Hospital, Huzhou 313000, China
4.Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou 310016, China
5.Department of Pulmonary and Critical Care Medicine, Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
Qing QIU, Chenghao WU, Wenxiao TANG, et al. Development and validation of a risk-prediction model for immune-related adverse events in patients with non-small-cell lung cancer receiving PD-1/PD-L1 inhibitors. [J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology) 24(10):935-942(2023)
Qing QIU, Chenghao WU, Wenxiao TANG, et al. Development and validation of a risk-prediction model for immune-related adverse events in patients with non-small-cell lung cancer receiving PD-1/PD-L1 inhibitors. [J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology) 24(10):935-942(2023) DOI: 10.1631/jzus.B2200631.
在非小细胞肺癌(NSCLC)患者中,程序性细胞死亡蛋白-1/程序性细胞死亡蛋白-配体1(PD-1/PD-L1)抑制剂治疗后的免疫相关不良事件(irAEs)已被广泛报道。然而,在NSCLC患者中缺少PD-1/PD-L1抑制剂使用后发生irAEs的预测模型。本回顾性研究纳入了357例接受PD-1/PD-L1抑制剂治疗的NSCLC患者,从电子病历系统中收集了治疗前一周内患者的基线人口统计学特征和实验室参数。通过随访采集患者PD-1/PD-L1抑制剂治疗后发生irAEs的情况及长期预后,包括无进展生存期(PFS)和总生存期(OS)。首先,应用Cox比例风险回归模型探究irAEs(≥2级)与长期预后的相关性。然后,构建并验证irAEs(≥2级)的预测模型,按照入组时间顺序以6∶4的比例将患者分为训练集和验证集。在训练集中,通过Cox回归模型筛选出与PD-1/PD-L1抑制剂治疗后发生irAEs(≥2级)相关的变量。根据回归系数确定每个变量的得分并构建irAEs风险预测模型。最后,在训练集和验证集中分别使用受试者工作特征曲线和校准曲线评估预测模型的判别能力和校准度。使用Kaplan-Meier曲线和Cox模型评估irAEs(≥2级)风险预测模型与长期预后(PFS和OS)的相关性。我们建立并验证了基于全身免疫炎症指数、身体质量指数和年龄的irAEs风险预测模型,以帮助医生早期评估接受PD-1/PD-L1抑制剂的NSCLC患者发生irAEs(≥2级)的风险,且发生irAEs(≥2级)与患者的较好的PFS和OS明显相关。
非小细胞肺癌PD-1/PD-L1抑制剂免疫相关性不良事件全身免疫炎症指数身体质量指数年龄
Biswas T, Kang KH, Gawdi R, et al., 2020. Using the systemic immune-inflammation index (SII) as a mid-treatment marker for survival among patients with stage-III locally advanced non-small cell lung cancer (NSCLC). Int J Environ Res Public Health, 17(21):7995. https://doi.org/10.3390/ijerph17217995https://doi.org/10.3390/ijerph17217995
Castelo-Branco C, Soveral I, 2014. The immune system and aging: a review. Gynecol Endocrinol, 30(1):16-22. https://doi.org/10.3109/09513590.2013.852531https://doi.org/10.3109/09513590.2013.852531
Champiat S, Lambotte O, Barreau E, et al., 2016. Management of immune checkpoint blockade dysimmune toxicities: a collaborative position paper. Ann Oncol, 27(4):559-574. https://doi.org/10.1093/annonc/mdv623https://doi.org/10.1093/annonc/mdv623
Cortellini A, Chiari R, Ricciuti B, et al., 2019. Correlations between the immune-related adverse events spectrum and efficacy of anti-PD1 immunotherapy in NSCLC patients. Clin Lung Cancer, 20(4):237-247.e1. https://doi.org/10.1016/j.cllc.2019.02.006https://doi.org/10.1016/j.cllc.2019.02.006
Cortellini A, Bersanelli M, Santini D, et al., 2020. Another side of the association between body mass index (BMI) and clinical outcomes of cancer patients receiving programmed cell death protein-1 (PD-1)/programmed cell death-ligand 1 (PD-L1) checkpoint inhibitors: a multicentre analysis of immune-related adverse events. Eur J Cancer, 128:17-26. https://doi.org/10.1016/j.ejca.2019.12.031https://doi.org/10.1016/j.ejca.2019.12.031
Daly LE, Power DG, O'Reilly Á, et al., 2017. The impact of body composition parameters on ipilimumab toxicity and survival in patients with metastatic melanoma. Br J Cancer, 116(3):310-317. https://doi.org/10.1038/bjc.2016.431https://doi.org/10.1038/bjc.2016.431
Deurenberg P, Yap M, van Staveren WA, 1998. Body mass index and percent body fat: a meta analysis among different ethnic groups. Int J Obes, 22(12):1164-1171. https://doi.org/10.1038/sj.ijo.0800741https://doi.org/10.1038/sj.ijo.0800741
Doroshow DB, Sanmamed MF, Hastings K, et al., 2019. Immunotherapy in non-small cell lung cancer: facts and hopes. Clin Cancer Res, 25(15):4592-4602. https://doi.org/10.1158/1078-0432.Ccr-18-1538https://doi.org/10.1158/1078-0432.Ccr-18-1538
Dvorak HF, 2015. Tumor stroma, tumor blood vessels, and antiangiogenesis therapy. Cancer J, 21(4):237-243. https://doi.org/10.1097/ppo.0000000000000124https://doi.org/10.1097/ppo.0000000000000124
Eun Y, Kim IY, Sun JM, et al., 2019. Risk factors for immune-related adverse events associated with anti-PD-1 pembrolizumab. Sci Rep, 9:14039. https://doi.org/10.1038/s41598-019-50574-6https://doi.org/10.1038/s41598-019-50574-6
Gao ZR, Ling X,Y Shi CY, et al., 2022. Tumor immune checkpoints and their associated inhibitors. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 23(10):823-843. https://doi.org/10.1631/jzus.B2200195https://doi.org/10.1631/jzus.B2200195
Georgiadis MS, Steinberg SM, Hankins LA, et al., 1995. Obesity and therapy-related toxicity in patients treated for small-cell lung cancer. J Natl Cancer Inst, 87(5):361-366. https://doi.org/10.1093/jnci/87.5.361https://doi.org/10.1093/jnci/87.5.361
Hu B, Yang XR, Xu Y, et al., 2014. Systemic immune-inflammation index predicts prognosis of patients after curative resection for hepatocellular carcinoma. Clin Cancer Res, 20(23):6212-6222. https://doi.org/10.1158/1078-0432.Ccr-14-0442https://doi.org/10.1158/1078-0432.Ccr-14-0442
Huang YQ, Soon YY, Aminkeng F, et al., 2022. Risk factors for immune-related adverse events from anti-PD-1 or anti-PD-L1 treatment in an Asian cohort of nonsmall cell lung cancer patients. Int J Cancer, 150(4):636-644. https://doi.org/10.1002/ijc.33822https://doi.org/10.1002/ijc.33822
Kugel CH III, Douglass SM, Webster MR, et al., 2018. Age correlates with response to anti-PD1, reflecting age-related differences in intratumoral effector and regulatory T-cell populations. Clin Cancer Res, 24(21):5347-5356. https://doi.org/10.1158/1078-0432.Ccr-18-1116https://doi.org/10.1158/1078-0432.Ccr-18-1116
Kumar V, Chaudhary N, Garg M, et al., 2017. Current diagnosis and management of immune related adverse events (irAEs) induced by immune checkpoint inhibitor therapy. Front Pharmacol, 8:49. https://doi.org/10.3389/fphar.2017.00049https://doi.org/10.3389/fphar.2017.00049
Li NL, 2016. Platelets in cancer metastasis: to help the “villain” to do evil. Int J Cancer, 138(9):2078-2087. https://doi.org/10.1002/ijc.29847https://doi.org/10.1002/ijc.29847
Maillet D, Corbaux P, Stelmes JJ, et al., 2020. Association between immune-related adverse events and long-term survival outcomes in patients treated with immune checkpoint inhibitors. Eur J Cancer, 132:61-70. https://doi.org/10.1016/j.ejca.2020.03.017https://doi.org/10.1016/j.ejca.2020.03.017
Mantovani A, Allavena P, Sica A, et al., 2008. Cancer-related inflammation. Nature, 454(7203):436-444. https://doi.org/10.1038/nature07205https://doi.org/10.1038/nature07205
Mirsoian A, Murphy WJ, 2015. Obesity and cancer immunotherapy toxicity. Immunotherapy, 7(4):319-322. https://doi.org/10.2217/imt.15.12https://doi.org/10.2217/imt.15.12
Nishino M, Giobbie-Hurder A, Hatabu H, et al., 2016. Incidence of programmed cell death 1 inhibitor-related pneumonitis in patients with advanced cancer: a systematic review and meta-analysis. JAMA Oncol, 2(12):1607-1616. https://doi.org/10.1001/jamaoncol.2016.2453https://doi.org/10.1001/jamaoncol.2016.2453
O'Kane GM, Labbé C, Doherty MK, et al., 2017. Monitoring and management of immune-related adverse events associated with programmed cell death protein-1 axis inhibitors in lung cancer. Oncologist, 22(1):70-80. https://doi.org/10.1634/theoncologist.2016-0164https://doi.org/10.1634/theoncologist.2016-0164
Pardoll DM, 2012. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer, 12(4):252-264. https://doi.org/10.1038/nrc3239https://doi.org/10.1038/nrc3239
Pawelec G, 2018. Unexpected benefits of aging for favorable responses to PD-1 blockade in melanoma? Clin Cancer Res, 24(21):5193-5194. https://doi.org/10.1158/1078-0432.Ccr-18-1475https://doi.org/10.1158/1078-0432.Ccr-18-1475
Peng LH, Wang Y, Liu F, et al., 2020. Peripheral blood markers predictive of outcome and immune-related adverse events in advanced non-small cell lung cancer treated with PD-1 inhibitors. Cancer Immunol Immunother, 69(9):1813-1822. https://doi.org/10.1007/s00262-020-02585-whttps://doi.org/10.1007/s00262-020-02585-w
Puzanov I, Diab A, Abdallah K, et al., 2017. Managing toxicities associated with immune checkpoint inhibitors: consensus recommendations from the Society for Immunotherapy of Cancer (SITC) Toxicity Management Working Group. J Immunother Cancer, 5(1):95. https://doi.org/10.1186/s40425-017-0300-zhttps://doi.org/10.1186/s40425-017-0300-z
Song P, Zhang DD, Cui XX, et al., 2020. Meta-analysis of immune-related adverse events of immune checkpoint inhibitor therapy in cancer patients. Thorac Cancer, 11(9):2406-2430. https://doi.org/10.1111/1759-7714.13541https://doi.org/10.1111/1759-7714.13541
von Itzstein MS, Khan S, Gerber DE, 2020. Investigational biomarkers for checkpoint inhibitor immune-related adverse event prediction and diagnosis. Clin Chem, 66(6):779-793. https://doi.org/10.1093/clinchem/hvaa081https://doi.org/10.1093/clinchem/hvaa081
Wang Q, Li SB, Qiao SM, et al., 2021. Changes in T lymphocyte subsets in different tumors before and after radiotherapy: a meta-analysis. Front Immunol, 12:648652. https://doi.org/10.3389/fimmu.2021.648652https://doi.org/10.3389/fimmu.2021.648652
Zamora C, Riudavets M, Anguera G, et al., 2021. Circulating leukocyte-platelet complexes as a predictive biomarker for the development of immune-related adverse events in advanced non-small cell lung cancer patients receiving anti-PD-(L)1 blocking agents. Cancer Immunol Immunother, 70(6):1691-1704. https://doi.org/10.1007/s00262-020-02793-4https://doi.org/10.1007/s00262-020-02793-4
0
Views
2
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution