无数据
Scan for full text
1.Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610000, China
2.School of Medicine, University of Electronic Science and Technology of China, Chengdu 610000, China
3.Department of Oncology, School of Clinical Medicine, Southwest Medical University, Luzhou 646000, China
Man YANG, Yurou CHE, Kezhen LI, et al. Detection and quantitative analysis of tumor-associated tertiary lymphoid structures. [J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology) 24(9):779-795(2023)
Man YANG, Yurou CHE, Kezhen LI, et al. Detection and quantitative analysis of tumor-associated tertiary lymphoid structures. [J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology) 24(9):779-795(2023) DOI: 10.1631/jzus.B2200605.
肿瘤相关的三级淋巴结构(TLS),主要由B细胞和T细胞群体有机聚集形成于肿瘤组织范围内的异位淋巴组织。在肿瘤中,TLS的存在与免疫治疗的反应性和肿瘤预后密切相关。因其具有广阔的临床应用前景,研究者一直在积极探索。许多研究都试图破译TLS的形成机制、结构组成、诱导生成、预测标记物和临床利用。与此同时,用科学的方法定性和定量描述TLS,对其研究至关重要。在检测方面,苏木精-伊红染色法(H&E)染色、多重免疫组化、多重免疫荧光和12趋化因子基因特征是被认可的方法。然而在TLS的定量分析方面,例如TLS的绝对计数、组成TLS的细胞分析、TLS的结构特征、空间位置、密度、成熟度等,目前尚无标准方法。本研究回顾了TLS检测和定量分析的最新研究进展,提出了TLS评估的新方向,并解决了TLS在临床上的定量应用问题。
Tumor-associated tertiary lymphoid structures (TLSs) are ectopic lymphoid formations within tumor tissue, with mainly B and T cell populations forming the organic aggregates. The presence of TLSs in tumors has been strongly associated with patient responsiveness to immunotherapy regimens and improving tumor prognosis. Researchers have been motivated to actively explore TLSs due to their bright clinical application prospects. Various studies have attempted to decipher TLSs regarding their formation mechanism, structural composition, induction generation, predictive markers, and clinical utilization. Meanwhile, the scientific approaches to qualitative and quantitative descriptions are crucial for TLS studies. In terms of detection, hematoxylin and eosin (H&E), multiplex immunohistochemistry (mIHC), multiplex immunofluorescence (mIF), and 12-chemokine gene signature have been the top approved methods. However, no standard methods exist for the quantitative analysis of TLSs, such as absolute TLS count, analysis of TLS constituent cells, structural features, TLS spatial location, density, and maturity. This study reviews the latest research progress on TLS detection and quantification, proposes new directions for TLS assessment, and addresses issues for the quantitative application of TLSs in the clinic.
三级淋巴结构(TLS)肿瘤微环境趋化因子特征空间转录组学人工智能影像组学
Tertiary lymphoid structureTumor microenvironmentChemokine signatureSpatial omicsArtificial intelligenceRadiomics
Abels E, Pantanowitz L, Aeffner F, et al., 2019. Computational pathology definitions, best practices, and recommendations for regulatory guidance: a white paper from the Digital Pathology Association. J Pathol, 249(3):286-294. https://doi.org/10.1002/path.5331https://doi.org/10.1002/path.5331
Ager A, 2017. High endothelial venules and other blood vessels: critical regulators of lymphoid organ development and function. Front Immunol, 8:45. https://doi.org/10.3389/fimmu.2017.00045https://doi.org/10.3389/fimmu.2017.00045
Ahmed A, Köhler S, Klotz R, et al., 2022. Tertiary lymphoid structures and their association to immune phenotypes and circulatory IL2 levels in pancreatic ductal adenocarcinoma. Oncoimmunology, 11:2027148. https://doi.org/10.1080/2162402X.2022.2027148https://doi.org/10.1080/2162402X.2022.2027148
Amaria RN, Reddy SM, Tawbi HA, et al., 2018. Neoadjuvant immune checkpoint blockade in high-risk resectable melanoma. Nat Med, 24(11):1649-1654. https://doi.org/10.1038/s41591-018-0197-1https://doi.org/10.1038/s41591-018-0197-1
Anthimopoulos M, Christodoulidis S, Ebner L, et al., 2016. Lung pattern classification for interstitial lung diseases using a deep convolutional neural network. IEEE Trans Med Imaging, 35(5):1207-1216. https://doi.org/10.1109/TMI.2016.2535865https://doi.org/10.1109/TMI.2016.2535865
Barmpoutis P, di Capite M, Kayhanian H, et al., 2021. Tertiary lymphoid structures (TLS) identification and density assessment on H&E-stained digital slides of lung cancer. PLoS ONE, 16(9):e0256907. https://doi.org/10.1371/journal.pone.0256907https://doi.org/10.1371/journal.pone.0256907
Bénézech C, Luu NT, Walker JA, et al., 2015. Inflammation-induced formation of fat-associated lymphoid clusters. Nat Immunol, 16(8):819-828. https://doi.org/10.1038/ni.3215https://doi.org/10.1038/ni.3215
Benzerdjeb N, Dartigues P, Kepenekian V, et al., 2021. Tertiary lymphoid structures in epithelioid malignant peritoneal mesothelioma are associated with neoadjuvant chemotherapy, but not with prognosis. Virchows Arch, 479(4):765-772. https://doi.org/10.1007/s00428-021-03099-1;https://doi.org/10.1007/s00428-021-03099-1;
Boivin G, Kalambaden P, Faget J, et al., 2018. Cellular composition and contribution of tertiary lymphoid structures to tumor immune infiltration and modulation by radiation therapy. Front Oncol, 8:256. https://doi.org/10.3389/fonc.2018.00256https://doi.org/10.3389/fonc.2018.00256
Braman NM, Etesami M, Prasanna P, et al., 2017. Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI. Breast Cancer Res, 19:57. https://doi.org/10.1186/s13058-017-0846-1https://doi.org/10.1186/s13058-017-0846-1
Buisseret L, Garaud S, de Wind A, et al., 2017. Tumor-infiltrating lymphocyte composition, organization and PD-1/PD-L1 expression are linked in breast cancer. OncoImmunology, 6(1):e1257452. https://doi.org/10.1080/2162402X.2016.1257452https://doi.org/10.1080/2162402X.2016.1257452
Cabrita R, Lauss M, Sanna A, et al., 2020. Tertiary lymphoid structures improve immunotherapy and survival in melanoma. Nature, 577(7791):561-565. https://doi.org/10.1038/s41586-019-1914-8https://doi.org/10.1038/s41586-019-1914-8
Cadiz F, Gormaz JG, Burotto M, 2018. Breast cancer staging: is TNM ready to evolve? J Glob Oncol, 4:1-3. https://doi.org/10.1200/JGO.17.00004https://doi.org/10.1200/JGO.17.00004
Calderaro J, Petitprez F, Becht E, et al., 2019. Intra-tumoral tertiary lymphoid structures are associated with a low risk of early recurrence of hepatocellular carcinoma. J Hepatol, 70(1):58-65. https://doi.org/10.1016/j.jhep.2018.09.003https://doi.org/10.1016/j.jhep.2018.09.003
Chan HP, Samala RK, Hadjiiski LM, et al., 2020. Deep learning in medical image analysis. In: Lee G, Fujita H (Eds.), Deep Learning in Medical Image Analysis: Challenges and Applications. Springer, Cham, p.3-21. https://doi.org/10.1007/978-3-030-33128-3_1https://doi.org/10.1007/978-3-030-33128-3_1
Chaurio RA, Anadon CM, Costich TL, et al., 2022. TGF-β- mediated silencing of genomic organizer SATB1 promotes Tfh cell differentiation and formation of intra-tumoral tertiary lymphoid structures. Immunity, 55(1):115-128.e9. https://doi.org/10.1016/j.immuni.2021.12.007https://doi.org/10.1016/j.immuni.2021.12.007
Clubb JHA, Kudling TV, Heiniö C, et al., 2022. Adenovirus encoding tumor necrosis factor alpha and interleukin 2 induces a tertiary lymphoid structure signature in immune checkpoint inhibitor refractory head and neck cancer. Front Immunol, 13:794251. https://doi.org/10.3389/fimmu.2022.794251https://doi.org/10.3389/fimmu.2022.794251
Colbeck EJ, Ager A, Gallimore A, et al., 2017. Tertiary lymphoid structures in cancer: drivers of antitumor immunity, immunosuppression, or bystander sentinels in disease? Front Immunol, 8:1830. https://doi.org/10.3389/fimmu.2017.01830https://doi.org/10.3389/fimmu.2017.01830
Coppola D, Nebozhyn M, Khalil F, et al., 2011. Unique ectopic lymph node-like structures present in human primary colorectal carcinoma are identified by immune gene array profiling. Am J Pathol, 179(1):37-45. https://doi.org/10.1016/j.ajpath.2011.03.007https://doi.org/10.1016/j.ajpath.2011.03.007
Coudray N, Ocampo PS, Sakellaropoulos T, et al., 2018. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat Med, 24(10):1559-1567. https://doi.org/10.1038/s41591-018-0177-5https://doi.org/10.1038/s41591-018-0177-5
Cui M, Zhang DY, 2021. Artificial intelligence and computational pathology. Lab Invest, 101(4):412-422. https://doi.org/10.1038/s41374-020-00514-0https://doi.org/10.1038/s41374-020-00514-0
Daum S, Hagen H, Naismith E, et al., 2021. The role of anti-angiogenesis in the treatment landscape of non-small cell lung cancer ‒ new combinational approaches and strategies of neovessel inhibition. Front Cell Dev Biol, 8:610903. https://doi.org/10.3389/fcell.2020.610903https://doi.org/10.3389/fcell.2020.610903
de Chaisemartin L, Goc J, Damotte D, et al., 2011. Characterization of chemokines and adhesion molecules associated with T cell presence in tertiary lymphoid structures in human lung cancer. Cancer Res, 71(20):6391-6399. https://doi.org/10.1158/0008-5472.CAN-11-0952https://doi.org/10.1158/0008-5472.CAN-11-0952
de Silva NS, Klein U, 2015. Dynamics of B cells in germinal centres. Nat Rev Immunol, 15(3):137-148. https://doi.org/10.1038/nri3804https://doi.org/10.1038/nri3804
Deguchi S, Tanaka H, Suzuki S, et al., 2022. Clinical relevance of tertiary lymphoid structures in esophageal squamous cell carcinoma. BMC Cancer, 22:699. https://doi.org/10.1186/s12885-022-09777-whttps://doi.org/10.1186/s12885-022-09777-w
Delvecchio FR, Fincham REA, Spear S, et al., 2021. Pancreatic cancer chemotherapy is potentiated by induction of tertiary lymphoid structures in mice. Cell Mol Gastroenterol Hepatol, 12(5):1543-1565. https://doi.org/10.1016/j.jcmgh.2021.06.023https://doi.org/10.1016/j.jcmgh.2021.06.023
Deteix C, Attuil-Audenis V, Duthey A, et al., 2010. Intragraft Th17 infiltrate promotes lymphoid neogenesis and hastens clinical chronic rejection. J Immunol, 184(9):5344-5351. https://doi.org/10.4049/jimmunol.0902999https://doi.org/10.4049/jimmunol.0902999
di Caro G, Bergomas F, Grizzi F, et al., 2014. Occurrence of tertiary lymphoid tissue is associated with T-cell infiltration and predicts better prognosis in early-stage colorectal cancers. Clin Cancer Res, 20(8):2147-2158. https://doi.org/10.1158/1078-0432.CCR-13-2590https://doi.org/10.1158/1078-0432.CCR-13-2590
Dieu-Nosjean MC, Antoine M, Danel C, et al., 2008. Long-term survival for patients with non-small-cell lung cancer with intratumoral lymphoid structures. J Clin Oncol, 26(27):4410-4417. https://doi.org/10.1200/JCO.2007.15.0284https://doi.org/10.1200/JCO.2007.15.0284
Dieu-Nosjean MC, Goc J, Giraldo NA, et al., 2014. Tertiary lymphoid structures in cancer and beyond. Trends Immunol, 35(11):571-580. https://doi.org/10.1016/j.it.2014.09.006https://doi.org/10.1016/j.it.2014.09.006
Dieu-Nosjean MC, Giraldo NA, Kaplon H, et al., 2016. Tertiary lymphoid structures, drivers of the anti-tumor responses in human cancers. Immunol Rev, 271(1):260-275. https://doi.org/10.1111/imr.12405https://doi.org/10.1111/imr.12405
Ding GY, Ma JQ, Yun JP, et al., 2022. Distribution and density of tertiary lymphoid structures predict clinical outcome in intrahepatic cholangiocarcinoma. J Hepatol, 76(3):608-618. https://doi.org/10.1016/j.jhep.2021.10.030https://doi.org/10.1016/j.jhep.2021.10.030
Drayton DL, Liao S, Mounzer RH, et al., 2006. Lymphoid organ development: from ontogeny to neogenesis. Nat Immunol, 7(4):344-353. https://doi.org/10.1038/ni1330https://doi.org/10.1038/ni1330
Eberl G, Marmon S, Sunshine MJ, et al., 2004. An essential function for the nuclear receptor RORγt in the generation of fetal lymphoid tissue inducer cells. Nat Immunol, 5(1):64-73. https://doi.org/10.1038/ni1022https://doi.org/10.1038/ni1022
Finkin S, Yuan DT, Stein I, et al., 2015. Ectopic lymphoid structures function as microniches for tumor progenitor cells in hepatocellular carcinoma. Nat Immunol, 16(12):1235-1244. https://doi.org/10.1038/ni.3290https://doi.org/10.1038/ni.3290
Fridman WH, Zitvogel L, Sautès-Fridman C, et al., 2017. The immune contexture in cancer prognosis and treatment. Nat Rev Clin Oncol, 14(12):717-734. https://doi.org/10.1038/nrclinonc.2017.101https://doi.org/10.1038/nrclinonc.2017.101
Furtado GC, Marinkovic T, Martin AP, et al., 2007. Lymphotoxin β receptor signaling is required for inflammatory lymphangiogenesis in the thyroid. Proc Natl Acad Sci USA, 104(12):5026-5031. https://doi.org/10.1073/pnas.0606697104https://doi.org/10.1073/pnas.0606697104
Gago da Graça C, van Baarsen LGM, Mebius RE, 2021. Tertiary lymphoid structures: diversity in their development, composition, and role. J Immunol, 206(2):273-281. https://doi.org/10.4049/jimmunol.2000873https://doi.org/10.4049/jimmunol.2000873
Galon J, Costes A, Sanchez-Cabo F, et al., 2006. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science, 313(5795):1960-1964. https://doi.org/10.1126/science.1129139https://doi.org/10.1126/science.1129139
Germain C, Gnjatic S, Tamzalit F, et al., 2014. Presence of B cells in tertiary lymphoid structures is associated with a protective immunity in patients with lung cancer. Am J Respir Crit Care Med, 189(7):832-844. https://doi.org/10.1164/rccm.201309-1611OChttps://doi.org/10.1164/rccm.201309-1611OC
Girard JP, Moussion C, Förster R, 2012. HEVs, lymphatics and homeostatic immune cell trafficking in lymph nodes. Nat Rev Immunol, 12(11):762-773. https://doi.org/10.1038/nri3298https://doi.org/10.1038/nri3298
Goc J, Germain C, Vo-Bourgais TKD, et al., 2014. Dendritic cells in tumor-associated tertiary lymphoid structures signal a Th1 cytotoxic immune contexture and license the positive prognostic value of infiltrating CD8+ T cells. Cancer Res, 74(3):705-715. https://doi.org/10.1158/0008-5472.CAN-13-1342https://doi.org/10.1158/0008-5472.CAN-13-1342
Groeneveld CS, Fontugne J, Cabel L, et al., 2021. Tertiary lymphoid structures marker CXCL13 is associated with better survival for patients with advanced-stage bladder cancer treated with immunotherapy. Eur J Cancer, 148:181-189. https://doi.org/10.1016/j.ejca.2021.01.036https://doi.org/10.1016/j.ejca.2021.01.036
Guedj K, Khallou-Laschet J, Clement M, et al., 2014. M1 macrophages act as LTβR-independent lymphoid tissue inducer cells during atherosclerosis-related lymphoid neogenesis. Cardiovasc Res, 101(3):434-443. https://doi.org/10.1093/cvr/cvt263https://doi.org/10.1093/cvr/cvt263
Gupta S, Zugazagoitia J, Martinez-Morilla S, et al., 2020. Digital quantitative assessment of PD-L1 using digital spatial profiling. Lab Invest, 100(10):1311-1317. https://doi.org/10.1038/s41374-020-0424-5https://doi.org/10.1038/s41374-020-0424-5
Hattori A, Takamochi K, Oh S, et al., 2019. New revisions and current issues in the eighth edition of the TNM classification for non-small cell lung cancer. Jpn J Clin Oncol, 49(1):3-11. https://doi.org/10.1093/jjco/hyy142https://doi.org/10.1093/jjco/hyy142
Helmink BA, Reddy SM, Gao JJ, et al., 2020. B cells and tertiary lymphoid structures promote immunotherapy response. Nature, 577(7791):549-555. https://doi.org/10.1038/s41586-019-1922-8https://doi.org/10.1038/s41586-019-1922-8
Horeweg N, Workel HH, Loiero D, et al., 2022. Tertiary lymphoid structures critical for prognosis in endometrial cancer patients. Nat Commun, 13:1373. https://doi.org/10.1038/s41467-022-29040-xhttps://doi.org/10.1038/s41467-022-29040-x
Hoyt CC, 2021. Multiplex immunofluorescence and multispectral imaging: forming the basis of a clinical test platform for immuno-oncology. Front Mol Biosci, 8:674747. https://doi.org/10.3389/fmolb.2021.674747https://doi.org/10.3389/fmolb.2021.674747
Jones GW, Hill DG, Jones SA, 2016. Understanding immune cells in tertiary lymphoid organ development: it is all starting to come together. Front Immunol, 7:401. https://doi.org/10.3389/fimmu.2016.00401https://doi.org/10.3389/fimmu.2016.00401
Kang WD, Feng ZC, Luo JW, et al., 2021. Tertiary lymphoid structures in cancer: the double-edged sword role in antitumor immunity and potential therapeutic induction strategies. Front Immunol, 12:689270. https://doi.org/10.3389/fimmu.2021.689270https://doi.org/10.3389/fimmu.2021.689270
Koenig A, Thaunat O, 2016. Lymphoid neogenesis and tertiary lymphoid organs in transplanted organs. Front Immunol, 7:646. https://doi.org/10.3389/fimmu.2016.00646https://doi.org/10.3389/fimmu.2016.00646
Ladányi A, Kiss J, Somlai B, et al., 2007. Density of DC-LAMP+ mature dendritic cells in combination with activated T lymphocytes infiltrating primary cutaneous melanoma is a strong independent prognostic factor. Cancer Immunol Immunother, 56(9):1459-1469. https://doi.org/10.1007/s00262-007-0286-3https://doi.org/10.1007/s00262-007-0286-3
Laidlaw BJ, Cyster JG, 2021. Transcriptional regulation of memory B cell differentiation. Nat Rev Immunol, 21(4):209-220. https://doi.org/10.1038/s41577-020-00446-2https://doi.org/10.1038/s41577-020-00446-2
Li H, Wang JJ, Liu HL, et al., 2020. Existence of intratumoral tertiary lymphoid structures is associated with immune cells infiltration and predicts better prognosis in early-stage hepatocellular carcinoma. Aging, 12(4):3451-3472. https://doi.org/10.18632/aging.102821https://doi.org/10.18632/aging.102821
Li H, Liu HL, Fu HY, et al., 2021. Peritumoral tertiary lymphoid structures correlate with protective immunity and improved prognosis in patients with hepatocellular carcinoma. Front Immunol, 12:648812. https://doi.org/10.3389/fimmu.2021.648812https://doi.org/10.3389/fimmu.2021.648812
Li PX, Liang Y, Zeng BZ, et al., 2022. Preoperative prediction of intra-tumoral tertiary lymphoid structures based on CT in hepatocellular cancer. Eur J Radiol, 151:110309. https://doi.org/10.1016/j.ejrad.2022.110309https://doi.org/10.1016/j.ejrad.2022.110309
Li QX, Liu XQ, Wang DK, et al., 2020. Prognostic value of tertiary lymphoid structure and tumour infiltrating lymphocytes in oral squamous cell carcinoma. Int J Oral Sci, 12:24. https://doi.org/10.1038/s41368-020-00092-3https://doi.org/10.1038/s41368-020-00092-3
Li R, Berglund A, Zemp L, et al., 2021. The 12-CK score: global measurement of tertiary lymphoid structures. Front Immunol, 12:694079. https://doi.org/10.3389/fimmu.2021.694079https://doi.org/10.3389/fimmu.2021.694079
Li RT, Huang X, Yang WM, et al., 2022. Tertiary lymphoid structures favor outcome in resected esophageal squamous cell carcinoma. J Pathol Clin Res, 8(5):422-435. https://doi.org/10.1002/cjp2.281https://doi.org/10.1002/cjp2.281
Liao S, Ruddle NH, 2006. Synchrony of high endothelial venules and lymphatic vessels revealed by immunization. J Immunol, 177(5):3369-3379. https://doi.org/10.4049/jimmunol.177.5.3369https://doi.org/10.4049/jimmunol.177.5.3369
Liu X, Tsang JYS, Hlaing T, et al., 2017. Distinct tertiary lymphoid structure associations and their prognostic relevance in HER2 positive and negative breast cancers. Oncologist, 22(11):1316-1324. https://doi.org/10.1634/theoncologist.2017-0029https://doi.org/10.1634/theoncologist.2017-0029
Lochner M, Ohnmacht C, Presley L, et al., 2011. Microbiota-induced tertiary lymphoid tissues aggravate inflammatory disease in the absence of RORγt and LTi cells. J Exp Med, 208(1):125-134. https://doi.org/10.1084/jem.20100052https://doi.org/10.1084/jem.20100052
Lucchesi D, Bombardieri M, 2013. The role of viruses in autoreactive B cell activation within tertiary lymphoid structures in autoimmune diseases. J Leukoc Biol, 94(6):1191-1199. https://doi.org/10.1189/jlb.0413240https://doi.org/10.1189/jlb.0413240
Luther SA, Bidgol A, Hargreaves DC, et al., 2002. Differing activities of homeostatic chemokines CCL19, CCL21, and CXCL12 in lymphocyte and dendritic cell recruitment and lymphoid neogenesis. J Immunol, 169(1):424-433. https://doi.org/10.4049/jimmunol.169.1.424https://doi.org/10.4049/jimmunol.169.1.424
Manzo A, Bombardieri M, Humby F, et al., 2010. Secondary and ectopic lymphoid tissue responses in rheumatoid arthritis: from inflammation to autoimmunity and tissue damage/remodeling. Immunol Rev, 233(1):267-285. https://doi.org/10.1111/j.0105-2896.2009.00861.xhttps://doi.org/10.1111/j.0105-2896.2009.00861.x
Marliot F, Chen XY, Kirilovsky A, et al., 2020a. Analytical validation of the Immunoscore and its associated prognostic value in patients with colon cancer. J Immunother Cancer, 8(1):e000272. https://doi.org/10.1136/jitc-2019-000272https://doi.org/10.1136/jitc-2019-000272
Marliot F, Lafontaine L, Galon J, 2020b. Immunoscore assay for the immune classification of solid tumors: technical aspects, improvements and clinical perspectives. Methods Enzymol, 636:109-128. https://doi.org/10.1016/bs.mie.2019.07.018https://doi.org/10.1016/bs.mie.2019.07.018
Martinet L, Garrido I, Filleron T, et al., 2011. Human solid tumors contain high endothelial venules: association with T- and B-lymphocyte infiltration and favorable prognosis in breast cancer. Cancer Res, 71(17):5678-5687. https://doi.org/10.1158/0008-5472.CAN-11-0431https://doi.org/10.1158/0008-5472.CAN-11-0431
Martinet L, Filleron T, le Guellec S, et al., 2013. High endothelial venule blood vessels for tumor-infiltrating lymphocytes are associated with lymphotoxin β-producing dendritic cells in human breast cancer. J Immunol, 191(4):2001-2008. https://doi.org/10.4049/jimmunol.1300872https://doi.org/10.4049/jimmunol.1300872
Meier D, Bornmann C, Chappaz S, et al., 2007. Ectopic lymphoid-organ development occurs through interleukin 7-mediated enhanced survival of lymphoid-tissue-inducer cells. Immunity, 26(5):643-654. https://doi.org/10.1016/j.immuni.2007.04.009https://doi.org/10.1016/j.immuni.2007.04.009
Messina JL, Fenstermacher DA, Eschrich S, et al., 2012. 12-Chemokine gene signature identifies lymph node-like structures in melanoma: potential for patient selection for immunotherapy? Sci Rep, 2:765. https://doi.org/10.1038/srep00765https://doi.org/10.1038/srep00765
Meylan M, Petitprez F, Becht E, et al., 2022. Tertiary lymphoid structures generate and propagate anti-tumor antibody-producing plasma cells in renal cell cancer. Immunity, 55(3):527-541.e5. https://doi.org/10.1016/j.immuni.2022.02.001https://doi.org/10.1016/j.immuni.2022.02.001
Mueller CG, Nayar S, Campos J, et al., 2018. Molecular and cellular requirements for the assembly of tertiary lymphoid structures. In: Owens B, Lakins M (Eds.), Stromal Immunology. Springer, Cham, p.55-72. https://doi.org/10.1007/978-3-319-78127-3_4https://doi.org/10.1007/978-3-319-78127-3_4
Nakamura M, Magara T, Kano S, et al., 2022. Tertiary lymphoid structures and chemokine landscape in virus-positive and virus-negative Merkel cell carcinoma. Front Oncol, 12:811586. https://doi.org/10.3389/fonc.2022.811586https://doi.org/10.3389/fonc.2022.811586
Nawaz S, Yuan YY, 2016. Computational pathology: exploring the spatial dimension of tumor ecology. Cancer Lett, 380(1):296-303. https://doi.org/10.1016/j.canlet.2015.11.018https://doi.org/10.1016/j.canlet.2015.11.018
Neyt K, Perros F, GeurtsvanKessel CH, et al., 2012. Tertiary lymphoid organs in infection and autoimmunity. Trends Immunol, 33(6):297-305. https://doi.org/10.1016/j.it.2012.04.006https://doi.org/10.1016/j.it.2012.04.006
Pagès F, Mlecnik B, Marliot F, et al., 2018. International validation of the consensus Immunoscore for the classification of colon cancer: a prognostic and accuracy study. Lancet, 391(10135):2128-2139. https://doi.org/10.1016/S0140-6736(18)30789-Xhttps://doi.org/10.1016/S0140-6736(18)30789-X
Peters A, Pitcher LA, Sullivan JM, et al., 2011. Th17 cells induce ectopic lymphoid follicles in central nervous system tissue inflammation. Immunity, 35(6):986-996. https://doi.org/10.1016/j.immuni.2011.10.015https://doi.org/10.1016/j.immuni.2011.10.015
Petitprez F, de Reyniès A, Keung EZ, et al., 2020. B cells are associated with survival and immunotherapy response in sarcoma. Nature, 577(7791):556-560. https://doi.org/10.1038/s41586-019-1906-8https://doi.org/10.1038/s41586-019-1906-8
Pimenta EM, Barnes BJ, 2014. Role of Tertiary lymphoid structures (TLS) in anti-tumor immunity: potential tumor-induced cytokines/chemokines that regulate TLS formation in epithelial-derived cancers. Cancers, 6(2):969-997. https://doi.org/10.3390/cancers6020969https://doi.org/10.3390/cancers6020969
Pipi E, Nayar S, Gardner DH, et al., 2018. Tertiary lymphoid structures: autoimmunity goes local. Front Immunol, 9:1952. https://doi.org/10.3389/fimmu.2018.01952https://doi.org/10.3389/fimmu.2018.01952
Pitzalis C, Jones GW, Bombardieri M, et al., 2014. Ectopic lymphoid-like structures in infection, cancer and autoimmunity. Nat Rev Immunol, 14(7):447-462. https://doi.org/10.1038/nri3700https://doi.org/10.1038/nri3700
Posch F, Silina K, Leibl S, et al., 2018. Maturation of tertiary lymphoid structures and recurrence of stage II and III colorectal cancer. OncoImmunology, 7(2):e1378844. https://doi.org/10.1080/2162402X.2017.1378844https://doi.org/10.1080/2162402X.2017.1378844
Prabhakaran S, Rizk VT, Ma ZJ, et al., 2017. Evaluation of invasive breast cancer samples using a 12-chemokine gene expression score: correlation with clinical outcomes. Breast Cancer Res, 19:71. https://doi.org/10.1186/s13058-017-0864-zhttps://doi.org/10.1186/s13058-017-0864-z
Qin M, Hamanishi J, Ukita M, et al., 2022. Tertiary lymphoid structures are associated with favorable survival outcomes in patients with endometrial cancer. Cancer Immunol Immunother, 71(6):1431-1442. https://doi.org/10.1007/s00262-021-03093-1https://doi.org/10.1007/s00262-021-03093-1
Rakaee M, Kilvaer TK, Jamaly S, et al., 2021. Tertiary lymphoid structure score: a promising approach to refine the TNM staging in resected non-small cell lung cancer. Br J Cancer, 124(10):1680-1689. https://doi.org/10.1038/s41416-021-01307-yhttps://doi.org/10.1038/s41416-021-01307-y
Ramos-Casals M, Brahmer JR, Callahan MK, et al., 2020. Immune-related adverse events of checkpoint inhibitors. Nat Rev Dis Primers, 6:38. https://doi.org/10.1038/s41572-020-0160-6https://doi.org/10.1038/s41572-020-0160-6
Randolph GJ, Bala S, Rahier JF, et al., 2016. Lymphoid aggregates remodel lymphatic collecting vessels that serve mesenteric lymph nodes in Crohn disease. Am J Pathol, 186(12):3066-3073. https://doi.org/10.1016/j.ajpath.2016.07.026https://doi.org/10.1016/j.ajpath.2016.07.026
Ren FP, Xie M, Gao J, et al., 2022. Tertiary lymphoid structures in lung adenocarcinoma: characteristics and related factors. Cancer Med, 11(15):2969-2977. https://doi.org/10.1002/cam4.4796https://doi.org/10.1002/cam4.4796
Rodriguez AB, Engelhard VH, 2020. Insights into tumor-associated tertiary lymphoid structures: novel targets for antitumor immunity and cancer immunotherapy. Cancer Immunol Res, 8(11):1338-1345. https://doi.org/10.1158/2326-6066.CIR-20-0432https://doi.org/10.1158/2326-6066.CIR-20-0432
Rodriguez AB, Peske JD, Woods AN, et al., 2021. Immune mechanisms orchestrate tertiary lymphoid structures in tumors via cancer-associated fibroblasts. Cell Rep, 36(3):109422. https://doi.org/10.1016/j.celrep.2021.109422https://doi.org/10.1016/j.celrep.2021.109422
Sautès-Fridman C, Petitprez F, Calderaro J, et al., 2019. Tertiary lymphoid structures in the era of cancer immunotherapy. Nat Rev Cancer, 19(6):307-325. https://doi.org/10.1038/s41568-019-0144-6https://doi.org/10.1038/s41568-019-0144-6
Schumacher TN, Thommen DS, 2022. Tertiary lymphoid structures in cancer. Science, 375(6576):eabf9419. https://doi.org/10.1126/science.abf9419https://doi.org/10.1126/science.abf9419
Siliņa K, Soltermann A, Attar FM, et al., 2018a. Germinal centers determine the prognostic relevance of tertiary lymphoid structures and are impaired by corticosteroids in lung squamous cell carcinoma. Cancer Res, 78(5):1308-1320. https://doi.org/10.1158/0008-5472.CAN-17-1987https://doi.org/10.1158/0008-5472.CAN-17-1987
Siliņa K, Burkhardt C, Casanova R, et al., 2018b. A quantitative pathology approach to analyze the development of human cancer-associated tertiary lymphoid structures. In: Dieu-Nosjean MC (Ed.), Tertiary Lymphoid Structures: Methods and Protocols. Humana Press, New York, p.71-86. https://doi.org/10.1007/978-1-4939-8709-2_5https://doi.org/10.1007/978-1-4939-8709-2_5
Sofopoulos M, Fortis SP, Vaxevanis CK, et al., 2019. The prognostic significance of peritumoral tertiary lymphoid structures in breast cancer. Cancer Immunol Immunother, 68(11):1733-1745. https://doi.org/10.1007/s00262-019-02407-8https://doi.org/10.1007/s00262-019-02407-8
Song IH, Heo SH, Bang WS, et al., 2017. Predictive value of tertiary lymphoid structures assessed by high endothelial venule counts in the neoadjuvant setting of triple-negative breast cancer. Cancer Res Treat, 49(2):399-407. https://doi.org/10.4143/crt.2016.215https://doi.org/10.4143/crt.2016.215
Tang J, Ramis-Cabrer D, Curull V, et al., 2020. B cells and tertiary lymphoid structures influence survival in lung cancer patients with resectable tumors. Cancers, 12(9):2644. https://doi.org/10.3390/cancers12092644https://doi.org/10.3390/cancers12092644
Thaunat O, Patey N, Caligiuri G, et al., 2010. Chronic rejection triggers the development of an aggressive intragraft immune response through recapitulation of lymphoid organogenesis. J Immunol, 185(1):717-728. https://doi.org/10.4049/jimmunol.0903589https://doi.org/10.4049/jimmunol.0903589
Tokunaga R, Nakagawa S, Sakamoto Y, et al., 2020. 12-Chemokine signature, a predictor of tumor recurrence in colorectal cancer. Int J Cancer, 147(2):532-541. https://doi.org/10.1002/ijc.32982https://doi.org/10.1002/ijc.32982
Trajkovski G, Ognjenovic L, Karadzov Z, et al., 2018. Tertiary lymphoid structures in colorectal cancers and their prognostic value. Open Access Maced J Med Sci, 6(10):1824-1828. https://doi.org/10.3889/oamjms.2018.341https://doi.org/10.3889/oamjms.2018.341
Tumeh PC, Harview CL, Yearley JH, et al., 2014. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature, 515(7528):568-571. https://doi.org/10.1038/nature13954https://doi.org/10.1038/nature13954
Vaidya P, Bera K, Patil PD, et al., 2020. Novel, non-invasive imaging approach to identify patients with advanced non-small cell lung cancer at risk of hyperprogressive disease with immune checkpoint blockade. J Immunother Cancer, 8(2):e001343. https://doi.org/10.1136/jitc-2020-001343https://doi.org/10.1136/jitc-2020-001343
van Dijk N, Gil-Jimenez A, Silina K, et al., 2020. Preoperative ipilimumab plus nivolumab in locoregionally advanced urothelial cancer: the NABUCCO trial. Nat Med, 26(12):1839-1844. https://doi.org/10.1038/s41591-020-1085-zhttps://doi.org/10.1038/s41591-020-1085-z
Vanhersecke L, Brunet M, Guégan JP, et al., 2021. Mature tertiary lymphoid structures predict immune checkpoint inhibitor efficacy in solid tumors independently of PD-L1 expression. Nat Cancer, 2(8):794-802. https://doi.org/10.1038/s43018-021-00232-6https://doi.org/10.1038/s43018-021-00232-6
van Hooren L, Vaccaro A, Ramachandran M, et al., 2021. Agonistic CD40 therapy induces tertiary lymphoid structures but impairs responses to checkpoint blockade in glioma. Nat Commun, 12:4127. https://doi.org/10.1038/s41467-021-24347-7https://doi.org/10.1038/s41467-021-24347-7
van Rijthoven M, Balkenhol M, Siliņa K, et al., 2021. HookNet: multi-resolution convolutional neural networks for semantic segmentation in histopathology whole-slide images. Med Image Anal, 68:101890. https://doi.org/10.1016/j.media.2020.101890https://doi.org/10.1016/j.media.2020.101890
Van TM, Blank CU, 2019. A user’s perspective on GeoMxTM digital spatial profiling. Immunooncol Technol, 1:11-18. https://doi.org/10.1016/j.iotech.2019.05.001https://doi.org/10.1016/j.iotech.2019.05.001
Vondenhoff MF, Greuter M, Goverse G, et al., 2009. LTβR signaling induces cytokine expression and up-regulates lymphangiogenic factors in lymph node anlagen. J Immunol, 182(9):5439-5445. https://doi.org/10.4049/jimmunol.0801165https://doi.org/10.4049/jimmunol.0801165
Wang C, Huang ZX, Zhang M, et al., 2021. Prognostic value of tertiary lymphoid structures in early clinical stage oral tongue squamous cell carcinoma. J Oral Pathol Med, 50(8):776-784. https://doi.org/10.1111/jop.13215https://doi.org/10.1111/jop.13215
Wang DY, Salem JE, Cohen JV, et al., 2018. Fatal toxic effects associated with immune checkpoint inhibitors: a systematic review and meta-analysis. JAMA Oncol, 4(12):1721-1728. https://doi.org/10.1001/jamaoncol.2018.3923https://doi.org/10.1001/jamaoncol.2018.3923
Wang J, Foster A, Chin R, et al., 2002. The complementation of lymphotoxin deficiency with LIGHT, a newly discovered TNF family member, for the restoration of secondary lymphoid structure and function. Eur J Immunol, 32(7):1969-1979. https://doi.org/10.1002/1521-4141(200207)32:7<1969::AID-IMMU1969>3.0.CO;2-Mhttps://doi.org/10.1002/1521-4141(200207)32:7<1969::AID-IMMU1969>3.0.CO;2-M
Wang YC, Zhou SH, Yang F, et al., 2019. Treatment-related adverse events of PD-1 and PD-L1 inhibitors in clinical trials: a systematic review and meta-analysis. JAMA Oncol, 5(7):1008-1019. https://doi.org/10.1001/jamaoncol.2019.0393https://doi.org/10.1001/jamaoncol.2019.0393
Werner F, Wagner C, Simon M, et al., 2021. A standardized analysis of tertiary lymphoid structures in human melanoma: disease progression- and tumor site-associated changes with germinal center alteration. Front Immunol, 12:675146. https://doi.org/10.3389/fimmu.2021.675146https://doi.org/10.3389/fimmu.2021.675146
Wu YC, Cheng YF, Wang XD, et al., 2022. Spatial omics: navigating to the golden era of cancer research. Clin Transl Med, 12(1):e696. https://doi.org/10.1002/ctm2.696https://doi.org/10.1002/ctm2.696
Xu WH, Ma CG, Liu WR, et al., 2022. Prognostic value, DNA variation and immunologic features of a tertiary lymphoid structure-related chemokine signature in clear cell renal cell carcinoma. Cancer Immunol Immunother, 71(8):1923-1935. https://doi.org/10.1007/s00262-021-03123-yhttps://doi.org/10.1007/s00262-021-03123-y
Xu Y, Su GH, Ma D, et al., 2021. Technological advances in cancer immunity: from immunogenomics to single-cell analysis and artificial intelligence. Signal Transduct Target Ther, 6:312. https://doi.org/10.1038/s41392-021-00729-7https://doi.org/10.1038/s41392-021-00729-7
Zemp L, Berglund AE, Dhillon J, et al., 2021. The prognostic and predictive implications of the 12-chemokine score in muscle invasive bladder cancer. J Clin Oncol, 39(S6):466. https://doi.org/10.1200/JCO.2021.39.6_suppl.466https://doi.org/10.1200/JCO.2021.39.6_suppl.466
Zhang J, Wu ZR, Zhang X, et al., 2020. Machine learning: an approach to preoperatively predict PD-1/PD-L1 expression and outcome in intrahepatic cholangiocarcinoma using MRI biomarkers. ESMO Open, 5(6):e000910. https://doi.org/10.1136/esmoopen-2020-000910https://doi.org/10.1136/esmoopen-2020-000910
Zhang Y, Li J, Yang F, et al., 2022. Relationship and prognostic significance of IL-33, PD-1/PD-L1, and tertiary lymphoid structures in cervical cancer. J Leukoc Biol, 112(6):1591-1603. https://doi.org/10.1002/JLB.5MA0322-746Rhttps://doi.org/10.1002/JLB.5MA0322-746R
Zhou L, Xu B, Liu YS, et al., 2021. Tertiary lymphoid structure signatures are associated with survival and immunotherapy response in muscle-invasive bladder cancer. OncoImmunology, 10(1):1915574. https://doi.org/10.1080/2162402X.2021.1915574https://doi.org/10.1080/2162402X.2021.1915574
Zhou Q, Zhou ZY, Chen CM, et al., 2019. Grading of hepatocellular carcinoma using 3D SE-DenseNet in dynamic enhanced MR images. Comput Biol Med, 107:47-57. https://doi.org/10.1016/j.compbiomed.2019.01.026https://doi.org/10.1016/j.compbiomed.2019.01.026
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution