无数据
Scan for full text
1.The First Affiliated Hospital of Ningbo University, Ningbo 315000, China
2.Ningbo Medical Center Lihuili Hospital, Ningbo 315000, China
纸质出版日期: 2024-07-15 ,
网络出版日期: 2024-06-05 ,
收稿日期: 2023-12-21 ,
修回日期: 2024-03-21 ,
尹学青,阮新忠,朱永猛等.磁共振金角径向采样动态增强成像预测胃癌患者腹腔游离癌细胞[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2024,25(07):617-627.
Xueqing YIN, Xinzhong RUAN, Yongmeng ZHU, et al. Prediction of peritoneal free cancer cells in gastric cancer patients by golden-angle radial sampling dynamic contrast-enhanced magnetic resonance imaging[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2024,25(7):617-627.
尹学青,阮新忠,朱永猛等.磁共振金角径向采样动态增强成像预测胃癌患者腹腔游离癌细胞[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2024,25(07):617-627. DOI: 10.1631/jzus.B2300929.
Xueqing YIN, Xinzhong RUAN, Yongmeng ZHU, et al. Prediction of peritoneal free cancer cells in gastric cancer patients by golden-angle radial sampling dynamic contrast-enhanced magnetic resonance imaging[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2024,25(7):617-627. DOI: 10.1631/jzus.B2300929.
胃癌腹腔游离癌细胞可对疾病进展和患者预后产生不利影响。本研究旨在探讨金角径向采样动态增强磁共振成像(GRASP DCE-MRI)预测胃癌患者腹膜游离癌细胞存在的可行性。对胃癌患者进行术前磁共振成像(MRI)扫描和灌注后处理,并采集患者术前腹腔灌洗标本进行检测。根据患者入组顺序将其分为实验组及验证组,将实验组数据进行多元回归分析并筛选有意义的变量,建立预测腹膜灌洗液阳性率的nomogram预测模型,并根据验证组数据对模型的有效性进行验证。研究发现,GRASP DCE-MR预测的腹膜灌洗细胞学(PLC)阳性病例比例与实际的PLC检测结果无统计学差异。肿瘤T分期、肿瘤厚度和灌注参数容积转移常数(
K
trans
)均是腹膜灌洗液阳性的独立预测因子。用这些预测因子构建的nomogram模型可以帮助临床医生更好地预测胃癌患者腹膜游离癌细胞存在的风险。
Objective
2
Peritoneal free cancer cells can negatively impact disease progression and patient outcomes in gastric cancer. This study aimed to investigate the feasibility of using golden-angle radial sampling dynamic contrast-enhanced magnetic resonance imaging (GRASP DCE-MRI) to predict the presence of peritoneal free cancer cells in gastric cancer patients.
Methods
2
All enrolled patients were consecutively divided into analysis and validation groups. Preoperative magnetic resonance imaging (MRI) scans and perfusion were performed in patients with gastric cancer undergoing surgery
and peritoneal lavage specimens were collected for examination. Based on the peritoneal lavage cytology (PLC) results
patients were divided into negative and positive lavage fluid groups. The data collected included clinical and MR information. A nomogram prediction model was constructed to predict the positive rate of peritoneal lavage fluid
and the validity of the model was verified based on data from the verification group.
Results
2
There was no statistical difference between the proportion of PLC-positive cases predicted by GRASP DCE-MR and the actual PLC test. MR tumor stage
tumor thickness
and perfusion parameter Tofts-Ketty model volume transfer constant (
K
trans
) were independent predictors of positive peritoneal lavage fluid. The nomogram model featured a concordance index (
C
-index) of 0.785 and 0.742 for the modeling and validation groups
respectively.
Conclusions
2
GRASP DCE-MR could effectively predict peritoneal free cancer cells in gastric cancer patients. The nomogram model constructed using these predictors may help clinicians to better predict the risk of peritoneal free cancer cells being present in gastric cancer patients.
胃癌磁共振金角径向采样诺模图模型腹膜游离癌细胞
Gastric cancerMagnetic resonanceGolden-angle radial samplingNomogram modelPeritoneal free cancer cells
Bell LK, Ainsworth NL, Lee SH, et al., 2011. MRI & MRS assessment of the role of the tumour microenvironment in response to therapy. NMR Biomed, 24(6):612-635. https://doi.org/10.1002/nbm.1720https://doi.org/10.1002/nbm.1720
Benkert T, Tian Y, Huang CC, et al., 2018. Optimization and validation of accelerated golden-angle radial sparse MRI reconstruction with self-calibrating GRAPPA operator gridding. Magn Reson Med, 80(1):286-293. https://doi.org/10.1002/mrm.27030https://doi.org/10.1002/mrm.27030
Borggreve AS, Goense L, Brenkman HJF, et al., 2019. Imaging strategies in the management of gastric cancer: current role and future potential of MRI. Br J Radiol, 92(1097):20181044. https://doi.org/10.1259/bjr.20181044https://doi.org/10.1259/bjr.20181044
Brenkman HJF, Gertsen EC, Vegt E, et al., 2018. Evaluation of PET and laparoscopy in staging advanced gastric cancer: a multicenter prospective study (PLASTIC-study). BMC Cancer, 18:450. https://doi.org/10.1186/s12885-018-4367-9https://doi.org/10.1186/s12885-018-4367-9
Chandarana H, Feng L, Block TK, et al., 2013. Free-breathing contrast-enhanced multiphase MRI of the liver using a combination of compressed sensing, parallel imaging, and golden-angle radial sampling. Invest Radiol, 48(1):10-16. https://doi.org/10.1097/RLI.0b013e318271869chttps://doi.org/10.1097/RLI.0b013e318271869c
de Andrade JP, Mezhir JJ, 2014. The critical role of peritoneal cytology in the staging of gastric cancer: an evidence-based review. J Surg Oncol, 110(3):291-297. https://doi.org/10.1002/jso.23632https://doi.org/10.1002/jso.23632
del Arco CD, Muñoz LE, Medina LO, et al., 2022. Clinicopathological differences, risk factors and prognostic scores for western patients with intestinal and diffuse-type gastric cancer. World J Gastrointest Oncol, 14(6):1162-1174. https://doi.org/10.4251/wjgo.v14.i6.1162https://doi.org/10.4251/wjgo.v14.i6.1162
Feng L, 2022. Golden-angle radial MRI: basics, advances, and applications. J Magn Reson Imaging, 56(1):45-62. https://doi.org/10.1002/jmri.28187https://doi.org/10.1002/jmri.28187
Feng L, Grimm R, Block KT, et al., 2014. Golden-angle radial sparse parallel MRI: combination of compressed sensing, parallel imaging, and golden-angle radial sampling for fast and flexible dynamic volumetric MRI. Magn Reson Med, 72(3):707-717. https://doi.org/10.1002/mrm.24980https://doi.org/10.1002/mrm.24980
Huang Z, Xie DH, Guo L, et al., 2015. The utility of MRI for pre-operative T and N staging of gastric carcinoma: a systematic review and meta-analysis. Br J Radiol, 88(1050):20140552. https://doi.org/10.1259/bjr.20140552https://doi.org/10.1259/bjr.20140552
Ito S, Nakanishi H, Kodera Y, et al., 2005. Prospective validation of quantitative CEA mRNA detection in peritoneal washes in gastric carcinoma patients. Br J Cancer, 93(9):986-992. https://doi.org/10.1038/sj.bjc.6602802https://doi.org/10.1038/sj.bjc.6602802
Jamel S, Markar SR, Malietzis G, et al., 2018. Prognostic significance of peritoneal lavage cytology in staging gastric cancer: systematic review and meta-analysis. Gastric Cancer, 21(1):10-18. https://doi.org/10.1007/s10120-017-0749-yhttps://doi.org/10.1007/s10120-017-0749-y
Japanese Gastric Cancer Association, 2011. Japanese classification of gastric carcinoma: 3rd English edition. Gastric Cancer, 14(2):101-112. https://doi.org/10.1007/s10120-011-0041-5https://doi.org/10.1007/s10120-011-0041-5
Japanese Gastric Cancer Association, 2021. Japanese gastric cancer treatment guidelines 2018 (5th edition). Gastric Cancer, 24(1):1-21. https://doi.org/10.1007/s10120-020-01042-yhttps://doi.org/10.1007/s10120-020-01042-y
la Torre M, Ferri M, Giovagnoli MR, et al., 2010. Peritoneal wash cytology in gastric carcinoma. Prognostic significance and therapeutic consequences. Eur J Surg Oncol, 36(10):982-986. https://doi.org/10.1016/j.ejso.2010.06.007https://doi.org/10.1016/j.ejso.2010.06.007
Leach MO, Morgan B, Tofts PS, et al., 2012. Imaging vascular function for early stage clinical trials using dynamic contrast-enhanced magnetic resonance imaging. Eur Radiol, 22(7):1451-1464. https://doi.org/10.1007/s00330-012-2446-xhttps://doi.org/10.1007/s00330-012-2446-x
Li HH, Zhu H, Yue L, et al., 2018. Feasibility of free-breathing dynamic contrast-enhanced MRI of gastric cancer using a golden-angle radial stack-of-stars VIBE sequence: comparison with the conventional contrast-enhanced breath-hold 3D VIBE sequence. Eur Radiol, 28(5):1891-1899. https://doi.org/10.1007/s00330-017-5193-1https://doi.org/10.1007/s00330-017-5193-1
Ma JL, Shen H, Kapesa L, et al., 2016. Lauren classification and individualized chemotherapy in gastric cancer. Oncol Lett, 11(5):2959-2964. https://doi.org/10.3892/ol.2016.4337https://doi.org/10.3892/ol.2016.4337
Ma L, Xu XW, Zhang M, et al., 2017. Dynamic contrast-enhanced MRI of gastric cancer: correlations of the pharmacokinetic parameters with histological type, Lauren classification, and angiogenesis. Magn Reson Imaging, 37:27-32. https://doi.org/10.1016/j.mri.2016.11.004https://doi.org/10.1016/j.mri.2016.11.004
Mezhir JJ, Shah MA, Jacks LM, et al., 2010. Positive peritoneal cytology in patients with gastric cancer: natural history and outcome of 291 patients. Ann Surg Oncol, 17(12):3173-3180. https://doi.org/10.1245/s10434-010-1183-0https://doi.org/10.1245/s10434-010-1183-0
Offersen BV, Borre M, Overgaard J, 2003. Quantification of angiogenesis as a prognostic marker in human carcinomas: a critical evaluation of histopathological methods for estimation of vascular density. Eur J Cancer, 39(7):881-890. https://doi.org/10.1016/s0959-8049(02)00663-9https://doi.org/10.1016/s0959-8049(02)00663-9
Oh-E H, Tanaka S, Kitadai Y, et al., 2001. Angiogenesis at the site of deepest penetration predicts lymph node metastasis of submucosal colorectal cancer. Dis Colon Rectum, 44(8):1129-1136. https://doi.org/10.1007/BF02234633https://doi.org/10.1007/BF02234633
Riihimäki M, Hemminki A, Sundquist K, et al., 2016. Metastatic spread in patients with gastric cancer. Oncotarget, 7(32):52307-52316. https://doi.org/10.18632/oncotarget.10740https://doi.org/10.18632/oncotarget.10740
Song SB, Xue YW, 2015. Clinicopathological factor analysis of positive cells in peritoneal lavage of gastric carcinoma. Chin J Gastrointest Surg, 18(11):1128-1131 (in Chinese). https://doi.org/10.3760/cma.j.issn.1671-0274.2015.11.015https://doi.org/10.3760/cma.j.issn.1671-0274.2015.11.015
Sun F, Feng M, Guan WX, 2017. Mechanisms of peritoneal dissemination in gastric cancer (review). Oncol Lett, 14(6):6991-6998. https://doi.org/10.3892/ol.2017.7149https://doi.org/10.3892/ol.2017.7149
Teo QQ, Thng CH, Koh TS, et al., 2014. Dynamic contrast-enhanced magnetic resonance imaging: applications in oncology. Clin Oncol (R Coll Radiol), 26(10):e9-e20. https://doi.org/10.1016/j.clon.2014.05.014https://doi.org/10.1016/j.clon.2014.05.014
To EMC, Chan WY, Chow C, et al., 2003. Gastric cancer cell detection in peritoneal washing: cytology versus RT-PCR for CEA transcripts. Diagn Mol Pathol, 12(2):88-95. https://doi.org/10.1097/00019606-200306000-00004https://doi.org/10.1097/00019606-200306000-00004
Tsuda K, Hori S, Murakami T, et al., 1995. Intramural invasion of gastric cancer: evaluation by CT with water-filling method. J Comput Assist Tomogr, 19(6):941-947. https://doi.org/10.1097/00004728-199511000-00019https://doi.org/10.1097/00004728-199511000-00019
Valletti M, Eshmuminov D, Gnecco N, et al., 2021. Gastric cancer with positive peritoneal cytology: survival benefit after induction chemotherapy and conversion to negative peritoneal cytology. World J Surg Oncol, 19:245. https://doi.org/10.1186/s12957-021-02351-xhttps://doi.org/10.1186/s12957-021-02351-x
Wang YD, Wu P, Mao JD, et al., 2007. Relationship between vascular invasion and microvessel density and micrometastasis. World J Gastroenterol, 13(46):6269-6273. https://doi.org/10.3748/wjg.v13.i46.6269https://doi.org/10.3748/wjg.v13.i46.6269
Weidner N, 1998. Tumoural vascularity as a prognostic factor in cancer patients: the evidence continues to grow. J Pathol, 184(2):119-122. https://doi.org/10.1002/(SICI)1096-9896(199802)184:2<119::AID-PATH17>3.0.CO;2-Dhttps://doi.org/10.1002/(SICI)1096-9896(199802)184:2<119::AID-PATH17>3.0.CO;2-D
Wu CC, Li MN, Meng HB, et al., 2019. Analysis of status and countermeasures of cancer incidence and mortality in China. Sci China Life Sci, 62(5):640-647. https://doi.org/10.1007/s11427-018-9461-5https://doi.org/10.1007/s11427-018-9461-5
Xiao Y, Zhang J, He X, et al., 2014. Diagnostic values of carcinoembryonic antigen in predicting peritoneal recurrence after curative resection of gastric cancer: a meta-analysis. Ir J Med Sci, 183(4):557-564. https://doi.org/10.1007/s11845-013-1051-6https://doi.org/10.1007/s11845-013-1051-6
Xu SH, Feng LL, Chen YM, et al., 2019. Study on the sensitivity of multi-slice spiral CT in diagnosis of lymph node metastasis in different lymph node stations of gastric cancer. Chin J Gastrointest Surg, 22(10):984-989 (in Chinese). https://doi.org/10.3760/cma.j.issn.1671-0274.2019.10.015https://doi.org/10.3760/cma.j.issn.1671-0274.2019.10.015
Yashiro M, Chung YS, Nishimura S, et al., 1996. Fibrosis in the peritoneum induced by Scirrhous gastric cancer cells may act as “soil” for peritoneal dissemination. Cancer, 77(8):1668-1675. https://doi.org/10.1002/(SICI)1097-0142(19960415)77:8https://doi.org/10.1002/(SICI)1097-0142(19960415)77:8<1668::AID-CNCR37>3.0.CO;2-W
Yue J, Duan XF, Gong L, et al., 2017. Lymph node metastasis regularity and risk factors in 768 cardiac carcinoma patients. Chin J Gastrointest Surg, 20(11):1283-1287 (in Chinese). https://doi.org/10.3760/cma.j.issn.1671-0274.2017.11.015https://doi.org/10.3760/cma.j.issn.1671-0274.2017.11.015
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构