无数据
Scan QR Code
1.Chinese PLA Medical School, Beijing 100853, China
2.Department of Critical Care Medicine, the First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
3.Department of Emergency, the Second Hospital of Hebei Medical University, Shijiazhuang 050004, China
4.Department of Biochemistry, Chinese PLA Medical School, Beijing 100853, China
5.Department of Clinical Nutrition, the First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
6.Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Department of Nephrology, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
纸质出版日期: 2024-09-15 ,
收稿日期: 2023-12-07 ,
修回日期: 2024-03-10 ,
王敏,曹媛,李云等.烟酰胺单核苷酸的功能及其抗衰老作用的研究进展[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2024,25(09):723-735.
Min WANG, Yuan CAO, Yun LI, et al. Research advances in the function and anti-aging effects of nicotinamide mononucleotide[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2024,25(9):723-735.
王敏,曹媛,李云等.烟酰胺单核苷酸的功能及其抗衰老作用的研究进展[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2024,25(09):723-735. DOI: 10.1631/jzus.B2300886.
Min WANG, Yuan CAO, Yun LI, et al. Research advances in the function and anti-aging effects of nicotinamide mononucleotide[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2024,25(9):723-735. DOI: 10.1631/jzus.B2300886.
老龄化和年龄相关疾病已成为全球当代社会面临的重大挑战和沉重负担。解决这些问题是一项势在必行的任务,其目的是延缓衰老过程,并找到与年龄有关的退行性疾病的有效治疗方法。最近的研究强调了烟酰胺腺嘌呤二核苷酸(NAD
+
)在抗衰老领域的重要作用。经验证明,补充烟酰胺单核苷酸(NMN)可以提高体内NAD
+
水平,从而改善某些与年龄相关的退行性疾病。NMN的抗衰老机制主要在于其对细胞能量代谢的影响、对细胞凋亡的抑制、对免疫功能的调节和对基因组稳定性的保持,这些共同延缓了衰老进程。本文对NMN抗衰老机制的现有研究进行了批判性的回顾和评价,阐明了当前研究的内在局限性,并提出了抗衰老研究的新途径。
Aging and age-related ailments have emerged as critical challenges and great burdens within the global contemporary society. Addressing these concerns is an imperative task
with the aims of postponing the aging process and finding effective treatments for age-related degenerative diseases. Recent investigations have highlighted the significant roles of nicotinamide adenine dinucleotide (NAD
+
) in the realm of anti-aging. It has been empirically evidenced that supplementation with nicotinamide mononucleotide (NMN) can elevate NAD
+
levels in the body
thereby ameliorating certain age-related degenerative diseases. The p
rincipal anti-aging mechanisms of NMN essentially lie in its impact on cellular energy metabolism
inhibition of cell apoptosis
modulation of immune function
and preservation of genomic stability
which collectively contribute to the deferral of the aging process. This paper critically reviews and evaluates existing research on the anti-aging mechanisms of NMN
elucidates the inherent limitations of current research
and proposes novel avenues for anti-aging investigations.
烟酰胺单核苷酸(NMN)抗衰老能量代谢细胞凋亡DNA修复
Nicotinamide mononucleotide (NMN)Anti-agingEnergy metabolismApoptosisDNA repair
Abdellatif M, Sedej S, Kroemer G, 2021. NAD+ metabolism in cardiac health, aging, and disease. Circulation, 144(22):1795-1817. https://doi.org/10.1161/CIRCULATIONAHA.121.056589https://doi.org/10.1161/CIRCULATIONAHA.121.056589
Aflatounian A, Paris VR, Richani D, et al., 2022. Declining muscle NAD+ in a hyperandrogenism PCOS mouse model: possible role in metabolic dysregulation. Mol Metab, 65:101583. https://doi.org/10.1016/j.molmet.2022.101583https://doi.org/10.1016/j.molmet.2022.101583
Amjad S, Nisar S, Bhat AA, et al., 2021. Role of NAD+ in regulating cellular and metabolic signaling pathways. Mol Metab, 49:101195. https://doi.org/10.1016/j.molmet.2021.101195https://doi.org/10.1016/j.molmet.2021.101195
Bai P, Canto C, Brunyánszki A, et al., 2011a. PARP-2 regulates SIRT1 expression and whole-body energy expenditure. Cell Metab, 13(4):450-460. https://doi.org/10.1016/j.cmet.2011.03.013https://doi.org/10.1016/j.cmet.2011.03.013
Bai P, Canto C, Oudart H, et al., 2011b. PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab, 13(4):461-468. https://doi.org/10.1016/j.cmet.2011.03.004https://doi.org/10.1016/j.cmet.2011.03.004
Belenky P, Bogan KL, Brenner C, 2007. NAD+ metabolism in health and disease. Trends Biochem Sci, 32(1):12-19. https://doi.org/10.1016/j.tibs.2006.11.006https://doi.org/10.1016/j.tibs.2006.11.006
Bertoldo MJ, Listijono DR, Ho WHJ, et al., 2020. NAD+ repletion rescues female fertility during reproductive aging. Cell Rep, 30(6):1670-1681.e7. https://doi.org/10.1016/j.celrep.2020.01.058https://doi.org/10.1016/j.celrep.2020.01.058
Brito S, Baek JM, Cha B, et al., 2022. Nicotinamide mononucleotide reduces melanin production in aged melanocytes by inhibiting cAMP/Wnt signaling. J Dermatol Sci, 106(3):159-169. https://doi.org/10.1016/j.jdermsci.2022.05.002https://doi.org/10.1016/j.jdermsci.2022.05.002
Camacho-Pereira J, Tarrago MG, Chini CCS, et al., 2016. CD38 dictates age-related NAD decline and mitochondrial dysfunction through an SIRT3-dependent mechanism. Cell Metab, 23(6):1127-1139. https://doi.org/10.1016/j.cmet.2016.05.006https://doi.org/10.1016/j.cmet.2016.05.006
Chalkiadaki A, Guarente L, 2015. The multifaceted functions of sirtuins in cancer. Nat Rev Cancer, 15(10):608-624. https://doi.org/10.1038/nrc3985https://doi.org/10.1038/nrc3985
Chen XH, Amorim JA, Moustafa GA, et al., 2020. Neuroprotective effects and mechanisms of action of nicotinamide mononucleotide (NMN) in a photoreceptor degenerative model of retinal detachment. Aging, 12(24):24504-24521. https://doi.org/10.18632/aging.202453https://doi.org/10.18632/aging.202453
Chini CCS, Peclat TR, Warner GM, et al., 2020. CD38 ecto-enzyme in immune cells is induced during aging and regulates NAD+ and NMN levels. Nat Metab, 2(11):1284-1304. https://doi.org/10.1038/s42255-020-00298-zhttps://doi.org/10.1038/s42255-020-00298-z
Cohen MS, 2020. Interplay between compartmentalized NAD+ synthesis and consumption: a focus on the PARP family. Genes Dev, 34(5-6):254-262. https://doi.org/10.1101/gad.335109.119https://doi.org/10.1101/gad.335109.119
Covarrubias AJ, Perrone R, Grozio A, et al., 2021. NAD+ metabolism and its roles in cellular processes during ageing. Nat Rev Mol Cell Biol, 22(2):119-141. https://doi.org/10.1038/s41580-020-00313-xhttps://doi.org/10.1038/s41580-020-00313-x
Cros C, Margier M, Cannelle H, et al., 2022. Nicotinamide mononucleotide administration triggers macrophages reprogramming and alleviates inflammation during sepsis induced by experimental peritonitis. Front Mol Biosci, 9:895028. https://doi.org/10.3389/fmolb.2022.895028https://doi.org/10.3389/fmolb.2022.895028
de Vos M, Schreiber V, Dantzer F, 2012. The diverse roles and clinical relevance of PARPs in DNA damage repair: current state of the art. Biochem Pharmacol, 84(2):137-146. https://doi.org/10.1016/j.bcp.2012.03.018https://doi.org/10.1016/j.bcp.2012.03.018
di Stefano M, Nascimento-Ferreira I, Orsomando G, et al., 2015. A rise in NAD precursor nicotinamide mononucleotide (NMN) after injury promotes axon degeneration. Cell Death Differ, 22(5):731-742. https://doi.org/10.1038/cdd.2014.164https://doi.org/10.1038/cdd.2014.164
Fang EF, Scheibye-Knudsen M, Brace LE, et al., 2014. Defective mitophagy in XPA via PARP-1 hyperactivation and NAD+/SIRT1 reduction. Cell, 157(4):882-896. https://doi.org/10.1016/j.cell.2014.03.026https://doi.org/10.1016/j.cell.2014.03.026
Fang EF, Kassahun H, Croteau DL, et al., 2016. NAD+ replenishment improves lifespan and healthspan in ataxia telangiectasia models via mitophagy and DNA repair. Cell Metab, 24(4):566-581. https://doi.org/10.1016/j.cmet.2016.09.004https://doi.org/10.1016/j.cmet.2016.09.004
Fletcher RS, Ratajczak J, Doig CL, et al., 2017. Nicotinamide riboside kinases display redundancy in mediating nicotinamide mononucleotide and nicotinamide riboside metabolism in skeletal muscle cells. Mol Metab, 6(8):819-832. https://doi.org/10.1016/j.molmet.2017.05.011https://doi.org/10.1016/j.molmet.2017.05.011
Frederick DW, Loro E, Liu L, et al., 2016. Loss of NAD homeostasis leads to progressive and reversible degeneration of skeletal muscle. Cell Metab, 24(2):269-282. https://doi.org/10.1016/j.cmet.2016.07.005https://doi.org/10.1016/j.cmet.2016.07.005
Garten A, Grohmann T, Kluckova K, et al., 2019. Sorafenib-induced apoptosis in hepatocellular carcinoma is reversed by SIRT1. Int J Mol Sci, 20(16):4048. https://doi.org/10.3390/ijms20164048https://doi.org/10.3390/ijms20164048
Hou YJ, Lautrup S, Cordonnier S, et al., 2018. NAD+ supplementation normalizes key Alzheimer’s features and DNA damage responses in a new ad mouse model with introduced DNA repair deficiency. Proc Natl Acad Sci USA, 115(8):E1876-E1885. https://doi.org/10.1073/pnas.1718819115https://doi.org/10.1073/pnas.1718819115
Hsu CP, Oka S, Shao D, et al., 2009. Nicotinamide phosphoribosyltransferase regulates cell survival through NAD+ synthesis in cardiac myocytes. Circ Res, 105(5):481-491. https://doi.org/10.1161/circresaha.109.203703https://doi.org/10.1161/circresaha.109.203703
Huang P, Zhou Y, Tang WH, et al., 2022. Long-term treatment of Nicotinamide mononucleotide improved age-related diminished ovary reserve through enhancing the mitophagy level of granulosa cells in mice. J Nutr Biochem, 101:108911. https://doi.org/10.1016/j.jnutbio.2021.108911https://doi.org/10.1016/j.jnutbio.2021.108911
Imai SI, 2011. Dissecting systemic control of metabolism and aging in the NAD world: the importance of SIRT1 and NAMPT-mediated NAD biosynthesis. FEBS Lett, 585(11):1657-1662. https://doi.org/10.1016/j.febslet.2011.04.060https://doi.org/10.1016/j.febslet.2011.04.060
Irie J, Inagaki E, Fujita M, et al., 2020. Effect of oral administration of nicotinamide mononucleotide on clinical parameters and nicotinamide metabolite levels in healthy Japanese men. Endocr J, 67(2):153-160. https://doi.org/10.1507/endocrj.EJ19-0313https://doi.org/10.1507/endocrj.EJ19-0313
Jiang Y, Wang D, Zhang C, et al., 2023. Nicotinamide mononucleotide restores oxidative stress-related apoptosis of oocyte exposed to benzyl butyl phthalate in mice. Cell Prolif, 56(8):e13419. https://doi.org/10.1111/cpr.13419https://doi.org/10.1111/cpr.13419
Jiang YF, Liu TT, Lee CH, et al., 2020. The NAD+-mediated self-inhibition mechanism of pro-neurodegenerative SARM1. Nature, 588(7839):658-663. https://doi.org/10.1038/s41586-020-2862-zhttps://doi.org/10.1038/s41586-020-2862-z
Kane AE, Sinclair DA, 2018. Sirtuins and NAD+ in the development and treatment of metabolic and cardiovascular diseases. Circ Res, 123(7):868-885. https://doi.org/10.1161/circresaha.118.312498https://doi.org/10.1161/circresaha.118.312498
Li L, Han Q, Chen Y, et al., 2023. β-nicotinamide mononucleotide rescues the quality of aged oocyte and improves subsequent embryo development in pigs. PLoS ONE, 18(10):e0291640. https://doi.org/10.1371/journal.pone.0291640https://doi.org/10.1371/journal.pone.0291640
Luo CT, Ding WX, Yang CM, et al., 2022. Nicotinamide mononucleotide administration restores redox homeostasis via the Sirt3‒Nrf2 axis and protects aged mice from oxidative stress-induced liver injury. J Proteome Res, 21(7):1759-1770. https://doi.org/10.1021/acs.jproteome.2c00167https://doi.org/10.1021/acs.jproteome.2c00167
Margier M, Kuehnemann C, Hulo N, et al., 2023. Nicotinamide mononucleotide administration prevents doxorubicin-induced cardiotoxicity and loss in physical activity in mice. Cells, 12(1):108. https://doi.org/10.3390/cells12010108https://doi.org/10.3390/cells12010108
Meng F, Zhang YN, Du JY, et al., 2024. Nicotinamide mononucleotide maintains cytoskeletal stability and fortifies mitochondrial function to mitigate oocyte damage induced by triocresyl phosphate. Ecotoxicol Environ Saf, 275:116264. https://doi.org/10.1016/j.ecoenv.2024.116264https://doi.org/10.1016/j.ecoenv.2024.116264
Miao YL, Cui ZK, Gao Q, et al., 2020. Nicotinamide mononucleotide supplementation reverses the declining quality of maternally aged oocytes. Cell Rep, 32(5):107987. https://doi.org/10.1016/j.celrep.2020.107987https://doi.org/10.1016/j.celrep.2020.107987
Mills KF, Yoshida S, Stein LR, et al., 2016. Long-term administration of nicotinamide mononucleotide mitigates age-associated physiological decline in mice. Cell Metab, 24(6):795-806. https://doi.org/10.1016/j.cmet.2016.09.013https://doi.org/10.1016/j.cmet.2016.09.013
Monzel AS, Enríquez JA, Picard M, 2023. Multifaceted mitochondria: moving mitochondrial science beyond function and dysfunction. Nat Metab, 5(4):546-562. https://doi.org/10.1038/s42255-023-00783-1https://doi.org/10.1038/s42255-023-00783-1
Nomiyama T, Setoyama D, Yasukawa T, et al., 2022. Mitochondria metabolomics reveals a role of β-nicotinamide mononucleotide metabolism in mitochondrial DNA replication. J Biochem, 171(3):325-338. https://doi.org/10.1093/jb/mvab136https://doi.org/10.1093/jb/mvab136
Okabe K, Yaku K, Tobe K, et al., 2019. Implications of altered NAD metabolism in metabolic disorders. J Biomed Sci, 26:34. https://doi.org/10.1186/s12929-019-0527-8https://doi.org/10.1186/s12929-019-0527-8
Palmer AK, Jensen MD, 2022. Metabolic changes in aging humans: current evidence and therapeutic strategies. J Clin Invest, 132(16):e158451. https://doi.org/10.1172/jci158451https://doi.org/10.1172/jci158451
Piedra-Quintero ZL, Wilson Z, Nava P, et al., 2020. CD38: an immunomodulatory molecule in inflammation and autoimmunity. Front Immunol, 11:597959. https://doi.org/10.3389/fimmu.2020.597959https://doi.org/10.3389/fimmu.2020.597959
Poddar SK, Sifat AE, Haque S, et al., 2019. Nicotinamide mononucleotide: exploration of diverse therapeutic applications of a potential molecule. Biomolecules, 9:34. https://doi.org/10.3390/biom9010034https://doi.org/10.3390/biom9010034
Pu Q, Guo XX, Hu JJ, et al., 2022. Nicotinamide mononucleotide increases cell viability and restores tight junctions in high-glucose-treated human corneal epithelial cells via the SIRT1/Nrf2/HO-1 pathway. Biomed Pharmacother, 147:112659. https://doi.org/10.1016/j.biopha.2022.112659https://doi.org/10.1016/j.biopha.2022.112659
Revollo JR, Körner A, Mills KF, et al., 2007. Nampt/PBEF/visfatin regulates insulin secretion in β cells as a systemic NAD biosynthetic enzyme. Cell Metab, 6(5):363-375. https://doi.org/10.1016/j.cmet.2007.09.003https://doi.org/10.1016/j.cmet.2007.09.003
Sanada S, Komuro I, Kitakaze M, 2011. Pathophysiology of myocardial reperfusion injury: preconditioning, postconditioning, and translational aspects of protective measures. Am J Physiol Heart Circ Physiol, 301(5):H1723-H1741. https://doi.org/10.1152/ajpheart.00553.2011https://doi.org/10.1152/ajpheart.00553.2011
Shen Q, Zhang SJ, Xue YZ, et al., 2021. Biological synthesis of nicotinamide mononucleotide. Biotechnol Lett, 43(12):2199-2208. https://doi.org/10.1007/s10529-021-03191-1https://doi.org/10.1007/s10529-021-03191-1
Singh AK, Mohanty A, Kumar SL, et al., 2024. Diminished NAD+ levels and activation of retrotransposons promote postovulatory aged oocyte (POAO) death. Cell Death Discov, 10:104. https://doi.org/10.1038/s41420-024-01876-whttps://doi.org/10.1038/s41420-024-01876-w
Surjana D, Halliday GM, Martin AJ, et al., 2012. Oral nicotinamide reduces actinic keratoses in phase II double-blinded randomized controlled trials. J Invest Dermatol, 132(5):1497-1500. https://doi.org/10.1038/jid.2011.459https://doi.org/10.1038/jid.2011.459
Surjana D, Halliday GM, Damian DL, 2013. Nicotinamide enhances repair of ultraviolet radiation-induced DNA damage in human keratinocytes and ex vivo skin. Carcinogenesis, 34(5):1144-1149. https://doi.org/10.1093/carcin/bgt017https://doi.org/10.1093/carcin/bgt017
Takeda K, Okumura K, 2021. Nicotinamide mononucleotide augments the cytotoxic activity of natural killer cells in young and elderly mice. Biomed Res, 42(5):173-179. https://doi.org/10.2220/biomedres.42.173https://doi.org/10.2220/biomedres.42.173
Thompson BC, Surjana D, Halliday GM, et al., 2014. Nicotinamide enhances repair of ultraviolet radiation-induced DNA damage in primary melanocytes. Exp Dermatol, 23(7):509-511. https://doi.org/10.1111/exd.12430https://doi.org/10.1111/exd.12430
Tong D, Schiattarella GG, Jiang N, et al., 2021. NAD+ repletion reverses heart failure with preserved ejection fraction. Circ Res, 128(11):1629-1641. https://doi.org/10.1161/CIRCRESAHA.120.317046https://doi.org/10.1161/CIRCRESAHA.120.317046
Verma K, Jaiswal R, Paliwal S, et al., 2023. An insight into PI3K/Akt pathway and associated protein‒protein interactions in metabolic syndrome: a recent update. J Cell Biochem, 124(7):923-942. https://doi.org/10.1002/jcb.30433https://doi.org/10.1002/jcb.30433
Walker MA, Tian R, 2018. Raising NAD in heart failure: time to translate? Circulation, 137(21):2274-2277. https://doi.org/10.1161/CIRCULATIONAHA.117.032626https://doi.org/10.1161/CIRCULATIONAHA.117.032626
Walker MA, Chen H, Yadav A, et al., 2023. Raising NAD+ level stimulates short-chain dehydrogenase/reductase proteins to alleviate heart failure independent of mitochondrial protein deacetylation. Circulation, 148(25):2038-2057. https://doi.org/10.1161/CIRCULATIONAHA.123.066039https://doi.org/10.1161/CIRCULATIONAHA.123.066039
Wang H, Sun YA, Pi CC, et al., 2022. Nicotinamide mononucleotide supplementation improves mitochondrial dysfunction and rescues cellular senescence by NAD+/Sirt3 pathway in mesenchymal stem cells. Int J Mol Sci, 23(23):14739. https://doi.org/10.3390/ijms232314739https://doi.org/10.3390/ijms232314739
Wang LQ, Zhao MY, Qian R, et al., 2023. Nicotinamide mononucleotide ameliorates silica-induced lung injury through the Nrf2-regulated glutathione metabolism pathway in mice. Nutrients, 15(1):143. https://doi.org/10.3390/nu15010143https://doi.org/10.3390/nu15010143
Wang QH, Li Y, Dou DY, et al., 2021. Nicotinamide mononucleotide-elicited NAMPT signaling activation aggravated adjuvant-induced arthritis in rats by affecting peripheral immune cells differentiation. Int Immunopharmacol, 98:107856. https://doi.org/10.1016/j.intimp.2021.107856https://doi.org/10.1016/j.intimp.2021.107856
Wątroba M, Dudek I, Skoda M, et al., 2017. Sirtuins, epigenetics and longevity. Ageing Res Rev, 40:11-19. https://doi.org/10.1016/j.arr.2017.08.001https://doi.org/10.1016/j.arr.2017.08.001
Yoo KH, Tang JJ, Rashid MA, et al., 2021. Nicotinamide mononucleotide prevents cisplatin-induced cognitive impairments. Cancer Res, 81(13):3727-3737. https://doi.org/10.1158/0008-5472.CAN-20-3290https://doi.org/10.1158/0008-5472.CAN-20-3290
Yoshino J, Mills KF, Yoon MJ, et al., 2011. Nicotinamide mononucleotide, a key NAD+ intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab, 14(4):528-536. https://doi.org/10.1016/j.cmet.2011.08.014https://doi.org/10.1016/j.cmet.2011.08.014
Yoshino M, Yoshino J, Kayser BD, et al., 2021. Nicotinamide mononucleotide increases muscle insulin sensitivity in prediabetic women. Science, 372(6547):1224-1229. https://doi.org/10.1126/science.abe9985https://doi.org/10.1126/science.abe9985
Yu P, Ma SC, Dai XC, et al., 2020. Inhibitive effect of nicotinamide mononucleotide on angiotensin II-induced cardiac fibrosis in mice and its mechanism. Chin J Mult Organ Dis Elderly, 19(6):452-456 (in Chinese). https://doi.org/10.11915/j.issn.1671-5403.2020.06.106https://doi.org/10.11915/j.issn.1671-5403.2020.06.106
Zhang GZ, Deng YJ, Xie QQ, et al., 2020. Sirtuins and intervertebral disc degeneration: roles in inflammation, oxidative stress, and mitochondrial function. Clin Chim Acta, 508:33-42. https://doi.org/10.1016/j.cca.2020.04.016https://doi.org/10.1016/j.cca.2020.04.016
Zhang RL, Shen YY, Zhou L, et al., 2017. Short-term administration of nicotinamide mononucleotide preserves cardiac mitochondrial homeostasis and prevents heart failure. J Mol Cell Cardiol, 112:64-73. https://doi.org/10.1016/j.yjmcc.2017.09.001https://doi.org/10.1016/j.yjmcc.2017.09.001
Zhao C, Li WJ, Duan HY, et al., 2020. NAD+ precursors protect corneal endothelial cells from UVB-induced apoptosis. Am J Physiol Cell Physiol, 318(4):C796-C805. https://doi.org/10.1152/ajpcell.00445.2019https://doi.org/10.1152/ajpcell.00445.2019
Zhao YZ, Li H, Guo QL, et al., 2023. Multiple characteristic alterations and available therapeutic strategies of cellular senescence. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 24(2):101-114. https://doi.org/10.1631/jzus.B2200178https://doi.org/10.1631/jzus.B2200178
Zhou B, Wang DDH, Qiu YH, et al., 2020. Boosting NAD level suppresses inflammatory activation of PBMCs in heart failure. J Clin Invest, 130(11):6054-6063. https://doi.org/10.1172/JCI138538https://doi.org/10.1172/JCI138538
Zhou XR, Du HH, Ni LY, et al., 2021. Nicotinamide mononucleotide combined with lactobacillus fermentum TKSN041 reduces the photoaging damage in murine skin by activating AMPK signaling pathway. Front Pharmacol, 12:643089. https://doi.org/10.3389/fphar.2021.643089https://doi.org/10.3389/fphar.2021.643089
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构