无数据
Scan for full text
Department of Biochemistry, and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
网络出版日期: 2024-04-07 ,
收稿日期: 2023-12-05 ,
修回日期: 2024-01-03 ,
范思雨,陈颖聪,姚伟静等.从酵母和哺乳动物细胞解析聚集体自噬和能量匮乏诱导的自噬[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),
Siyu FAN, Yingcong CHEN, Weijing YAO, et al. Energy deprivation-induced autophagy and aggrephagy: insights from yeast and mammals[J/OL]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2024,1-5.
范思雨,陈颖聪,姚伟静等.从酵母和哺乳动物细胞解析聚集体自噬和能量匮乏诱导的自噬[J].浙江大学学报(英文版)(B辑:生物医学和生物技术), DOI:10.1631/jzus.B2300884.
Siyu FAN, Yingcong CHEN, Weijing YAO, et al. Energy deprivation-induced autophagy and aggrephagy: insights from yeast and mammals[J/OL]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2024,1-5. DOI: 10.1631/jzus.B2300884.
作为细胞内重要的物质降解途径,自噬在维持细胞稳态过程中起着至关重要的作用。然而,相较于物质匮乏诱导的自噬,我们对能量匮乏诱导自噬的分子机制和生理病理意义的认识非常有限。因此,我们实验室主要探究细胞如何感知能量匮乏并启动自噬发生。通过酿酒酵母和哺乳动物细胞两种模式生物,我们发现在能量匮乏诱导的自噬发生中,细胞的活性氧(ROS)、DNA损伤感受器Mec1和线粒体有氧呼吸是必需的。本文旨在对这些研究成果进行简要总结,并提出该研究领域今后的重点发展方向。
Autophagy plays a crucial role in maintaining cellular homeostasis in response to various stimuli. Compared to research on nutrient deprivation-induced autophagy
the understanding of the molecular mechanisms and physiological/pathological significance of autophagy triggered by energy deprivation remains limited. A primary focus of our lab is to elucidate how cells sense energy deprivation and initiate autophagy. Using the model organisms
Saccharomyces cerevisiae
and mammalian cells
we found that cellular reactive oxygen species (ROS)
DNA damage sensor Mec1
and mitochondrial aerobic respiration play essential roles in the autophagy induced by energy deprivation. This review aims to provide a concise overview of these research findings.
自噬葡萄糖饥饿固态聚集体自噬含TCP1伴侣蛋白亚基2(CCT2)
AutophagyGlucose starvationSolid aggrephagyChaperonin-containing TCP-1 subunit 2 (CCT2)
Balaban RS, Nemoto S, Finkel T, 2005. Mitochondria, oxidants, and aging. Cell, 120(4):483-495. https://doi.org/10.1016/j.cell.2005.02.001https://doi.org/10.1016/j.cell.2005.02.001
He CC, 2022. Balancing nutrient and energy demand and supply via autophagy. Curr Biol, 32(12):R684-R696. https://doi.org/10.1016/j.cub.2022.04.071https://doi.org/10.1016/j.cub.2022.04.071
Kamada Y, Yoshino KI, Kondo C, et al., 2010. Tor directly controls the Atg1 kinase complex to regulate autophagy. Mol Cell Biol, 30(4):1049-1058. https://doi.org/10.1128/mcb.01344-09https://doi.org/10.1128/mcb.01344-09
Kametaka S, Okano T, Ohsumi M, et al., 1998. Apg14p and Apg6/Vps30p form a protein complex essential for autophagy in the yeast, Saccharomyces cerevisiae. J Biol Chem, 273(35):22284-22291. https://doi.org/10.1074/jbc.273.35.22284https://doi.org/10.1074/jbc.273.35.22284
Kuma A, Hatano M, Matsui M, et al., 2004. The role of autophagy during the early neonatal starvation period. Nature, 432(7020):1032-1036. https://doi.org/10.1038/nature03029https://doi.org/10.1038/nature03029
Lamark T, Johansen T, 2012. Aggrephagy: selective disposal of protein aggregates by macroautophagy. Int J Cell Biol, 2012:736905. https://doi.org/10.1155/2012/736905https://doi.org/10.1155/2012/736905
Ma XY, Lu CJ, Chen YT, et al., 2022. CCT2 is an aggrephagy receptor for clearance of solid protein aggregates. Cell, 185(8):1325-1345.e22. https://doi.org/10.1016/j.cell.2022.03.005https://doi.org/10.1016/j.cell.2022.03.005
Maréchal A, Zou LE, 2013. DNA damage sensing by the ATM and ATR kinases. Cold Spring Harbor Perspect Biol, 5(9):a012716. https://doi.org/10.1101/cshperspect.a012716https://doi.org/10.1101/cshperspect.a012716
Mathieu C, Pappu RV, Taylor JP, 2020. Beyond aggregation: pathological phase transitions in neurodegenerative disease. Science, 370(6512):56-60. https://doi.org/10.1126/science.abb8032https://doi.org/10.1126/science.abb8032
Mizushima N, Levine B, 2020. Autophagy in human diseases. N Engl J Med, 383(16):1564-1576. https://doi.org/10.1056/NEJMra2022774https://doi.org/10.1056/NEJMra2022774
Ohsumi Y, 2014. Historical landmarks of autophagy research. Cell Res, 24(1):9-23. https://doi.org/10.1038/cr.2013.169https://doi.org/10.1038/cr.2013.169
Suzuki K, Ohsumi Y, 2007. Molecular machinery of autophagosome formation in yeast, Saccharomyces cerevisiae. FEBS Lett, 581(11):2156-2161. https://doi.org/10.1016/j.febslet.2007.01.096https://doi.org/10.1016/j.febslet.2007.01.096
Vercellino I, Sazanov LA, 2022. The assembly, regulation and function of the mitochondrial respiratory chain. Nat Rev Mol Cell Biol, 23:141-161. https://doi.org/10.1038/s41580-021-00415-0https://doi.org/10.1038/s41580-021-00415-0
Weinert TA, Kiser GL, Hartwell LH, 1994. Mitotic checkpoint genes in budding yeast and the dependence of mitosis on DNA replication and repair. Genes Dev, 8(6):652-665. https://doi.org/10.1101/gad.8.6.652https://doi.org/10.1101/gad.8.6.652
Wu CF, Yao WJ, Kai W, et al., 2020. Mitochondrial fusion machinery specifically involved in energy deprivation-induced autophagy. Front Cell Dev Biol, 8:221. https://doi.org/10.3389/fcell.2020.00221https://doi.org/10.3389/fcell.2020.00221
Wu CF, Li YX, Zhong S, et al., 2021. ROS is essential for initiation of energy deprivation-induced autophagy. J Genet Genomics, 48(6):512-515. https://doi.org/10.1016/j.jgg.2021.05.005https://doi.org/10.1016/j.jgg.2021.05.005
Yao WJ, Li YX, Chen YC, et al., 2023a. Atg1-mediated Atg11 phosphorylation is required for selective autophagy by regulating its association with receptor proteins. Autophagy, 19(1):180-188. https://doi.org/10.1080/15548627.2022.2063494https://doi.org/10.1080/15548627.2022.2063494
Yao WJ, Li YX, Chen YC, et al., 2023b. Mec1 regulates PAS recruitment of Atg13 via direct binding with Atg13 during glucose starvation-induced autophagy. Proc Natl Acad Sci USA, 120(1):e2215126120. https://doi.org/10.1073/pnas.2215126120https://doi.org/10.1073/pnas.2215126120
Yi C, Tong JJ, Lu PZ, et al., 2017. Formation of a Snf1-Mec1-Atg1 module on mitochondria governs energy deprivation-induced autophagy by regulating mitochondrial respiration. Dev Cell, 41(1):59-71.e4. https://doi.org/10.1016/j.devcel.2017.03.007https://doi.org/10.1016/j.devcel.2017.03.007
Yurube T, Ito M, Kakiuchi Y, et al., 2020. Autophagy and mTOR signaling during intervertebral disc aging and degeneration. Jor Spine, 3(1):e1082. https://doi.org/10.1002/jsp2.1082https://doi.org/10.1002/jsp2.1082
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构