无数据
Scan QR Code
1.State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
2.Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
3.Emergency Center, the Second Hospital of Dalian Medical University, Dalian 116023, China
4.Department of Anesthesia, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
纸质出版日期: 2024-09-15 ,
收稿日期: 2023-12-06 ,
修回日期: 2024-02-20 ,
疏艳,李冰,马海林等.基于天然水凝胶的三维乳腺癌肿瘤模型研究进展[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2024,25(09):736-755.
Yan SHU, Bing LI, Hailin MA, et al. Three-dimensional breast cancer tumor models based on natural hydrogels: a review[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2024,25(9):736-755.
疏艳,李冰,马海林等.基于天然水凝胶的三维乳腺癌肿瘤模型研究进展[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2024,25(09):736-755. DOI: 10.1631/jzus.B2300840;10.1631/jzus.B2300840.
Yan SHU, Bing LI, Hailin MA, et al. Three-dimensional breast cancer tumor models based on natural hydrogels: a review[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2024,25(9):736-755. DOI: 10.1631/jzus.B2300840;10.1631/jzus.B2300840.
乳腺癌是女性最常见的癌症,同时也是世界范围内致死率最高的癌症之一。根据肿瘤组织的分布部位,乳腺癌可分为浸润性乳腺癌和非浸润性乳腺癌。浸润性乳腺癌中的癌细胞通过免疫系统或体循环穿过乳房到达身体的不同部位,形成转移性乳腺癌(耐药性和远处转移是乳腺癌致死的最主要原因),因此针对乳腺癌的研究受到了研究人员的广泛关注。通过组织工程方法体外构建的肿瘤模型是研究癌症机制和筛选抗癌药物的常用工具。肿瘤微环境由癌细胞和各种类型的基质细胞组成,包括成纤维细胞、内皮细胞、间充质细胞和嵌入在细胞外基质中的免疫细胞。细胞外基质含有纤维蛋白(例如I、II、III、IV、VI和X型胶原和弹性蛋白)和糖蛋白(例如蛋白聚糖、纤连蛋白和层粘连蛋白)等成分,两者均参与了细胞信号传导和生长因子的结合。目前传统的二维(2D)肿瘤模型因受生长环境限制,往往不能准确再现体内肿瘤组织的异质性和复杂性。因此,近年来,对三维(3D)肿瘤模型的研究逐渐增多,尤其是高精度、高重复性的3D生物打印模型。与2D模型相比,3D环境可以更好地模拟肿瘤微环境中复杂的细胞外基质成分和结构,因此常被用作2D细胞水平实验和动物实验之间的桥梁。此外,脱细胞基质、明胶和海藻酸钠等天然材料因其优异的生物相容性和无免疫排斥性而被广泛用于肿瘤模型的构建。本文综述了组织工程3D肿瘤模型中涉及到的各种天然支架材料及构建方法,以期为乳腺癌领域的研究提供参考。
Breast cancer is the most common cancer in women and one of the deadliest cancers worldwide. According to the distribution of tumor tissue
breast cancer can be divided into invasive and non-invasive forms. The cancer cells in invasive breast cancer pass through the breast and through the immune system or systemic circulation to different parts of the body
forming metastatic breast cancer. Drug resistance and distant metastasis are the main causes of death from breast cancer. Research on breast cancer has attracted extensive attention from researchers. In vitro construction of tumor models by tissue engineering methods is a common tool for studying cancer mechanisms and anticancer drug screening. The tumor microenvironment consists of cancer cells and various types of stromal cells
including fibroblasts
endothelial cells
mesenchymal cells
and immune cells embedded in the extracellular matrix. The extracellular matrix contains fibrin proteins (such as types I
II
III
IV
VI
and X collagen and elastin) and glycoproteins (such as proteoglycan
laminin
and fibronectin)
which are involved in cell signaling and binding of growth factors. The current traditional two-dimensional (2D) tumor models are limited by the growth environment and often cannot accurately reproduce the heterogeneity and complexity of tumor tissues in vivo. Therefore
in recent years
research on three-dimensional (3D) tumor models has gradually increased
especially 3D bioprinting models with high precision and repeatability. Compared with a 2D model
the 3D environment can better simulate the complex extracellular matrix components and structures in the tumor microenvironment. Three-dimensional models are often used as a bridge between 2D cellular level experiments and animal experiments. Acellular matrix
gelatin
sodium alginate
and other natural materials are widely used in the construction of tumor models because of their excellent biocompatibility and non-immune rejection. Here
we review various natural scaffold materials and construction methods involved in 3D tissue-engineered tumor models
as a reference for research in the field of breast cancer.
乳腺癌肿瘤微环境3D肿瘤模型脱细胞基质天然支架材料
Breast cancerTumor microenvironment3D tumor modelDecellularized extracellular matrixNatural scaffold materials
Almendro V, Fuster G, 2011. Heterogeneity of breast cancer: etiology and clinical relevance. Clin Transl Oncol, 13(11):767-773. https://doi.org/10.1007/s12094-011-0731-9https://doi.org/10.1007/s12094-011-0731-9
Aung A, Theprungsirikul J, Lim HL, et al., 2016. Chemotaxis-driven assembly of endothelial barrier in a tumor-on-a-chip platform. Lab Chip, 16(10):1886-1898. https://doi.org/10.1039/c6lc00184jhttps://doi.org/10.1039/c6lc00184j
Azevedo AS, Follain G, Patthabhiraman S, et al., 2015. Metastasis of circulating tumor cells: favorable soil or suitable biomechanics, or both? Cell Adhes Migr, 9(5):345-356. https://doi.org/10.1080/19336918.2015.1059563https://doi.org/10.1080/19336918.2015.1059563
Bachmann C, Schmidt S, Staebler A, et al., 2015. CNS metastases in breast cancer patients: prognostic implications of tumor subtype. Med Oncol, 32:400. https://doi.org/10.1007/s12032-014-0400-2https://doi.org/10.1007/s12032-014-0400-2
Bahcecioglu G, Basara G, Ellis BW, et al., 2020. Breast cancer models: engineering the tumor microenvironment. Acta Biomater, 106:1-21. https://doi.org/10.1016/j.actbio.2020.02.006https://doi.org/10.1016/j.actbio.2020.02.006
Blanco-Fernandez B, Rey-Vinolas S, Bağcı G, et al., 2022. Bioprinting decellularized breast tissue for the development of three-dimensional breast cancer models. ACS Appl Mater Interfaces, 14(26):29467-29482. https://doi.org/10.1021/acsami.2c00920https://doi.org/10.1021/acsami.2c00920
Brancato V, Gioiella F, Imparato G, et al., 2018. 3D breast cancer microtissue reveals the role of tumor microenvironment on the transport and efficacy of free-doxorubicin in vitro. Acta Biomater, 75:200-212. https://doi.org/10.1016/j.actbio.2018.05.055https://doi.org/10.1016/j.actbio.2018.05.055
The Cancer Genome Atlas Network, 2012. Comprehensive molecular portraits of human breast tumours. Nature, 490(7418):61-70. https://doi.org/10.1038/nature11412https://doi.org/10.1038/nature11412
Casey J, Yue XS, Nguyen TD, et al., 2017. 3D hydrogel-based microwell arrays as a tumor microenvironment model to study breast cancer growth. Biomed Mater, 12(2):025009. https://doi.org/10.1088/1748-605X/aa5d5chttps://doi.org/10.1088/1748-605X/aa5d5c
Castiaux AD, Spence DM, Martin RS, 2019. Review of 3D cell culture with analysis in microfluidic systems. Anal Methods, 11(33):4220-4232. https://doi.org/10.1039/C9AY01328Hhttps://doi.org/10.1039/C9AY01328H
Cavalieri E, Chakravarti D, Guttenplan J, et al., 2006. Catechol estrogen quinones as initiators of breast and other human cancers: implications for biomarkers of susceptibility and cancer prevention. Biochim Biophys Acta Rev Cancer, 1766(1):63-78. https://doi.org/10.1016/j.bbcan.2006.03.001https://doi.org/10.1016/j.bbcan.2006.03.001
Chaffer CL, Weinberg RA, 2011. A perspective on cancer cell metastasis. Science, 331(6024):1559-1564. https://doi.org/doi:10.1126/science.1203543https://doi.org/doi:10.1126/science.1203543
Chambers AF, Groom AC, Macdonald IC, 2002. Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer, 2(8):563-572. https://doi.org/10.1038/nrc865https://doi.org/10.1038/nrc865
Chen K, Pan H, Yan ZF, et al., 2021. A novel alginate/gelatin sponge combined with curcumin-loaded electrospun fibers for postoperative rapid hemostasis and prevention of tumor recurrence. Int J Biol Macromol, 182:1339-1350. https://doi.org/10.1016/j.ijbiomac.2021.05.074https://doi.org/10.1016/j.ijbiomac.2021.05.074
Chen WJ, Hoffmann AD, Liu HP, et al., 2018. Organotropism: new insights into molecular mechanisms of breast cancer metastasis. npj Precis Oncol, 2:4. https://doi.org/10.1038/s41698-018-0047-0https://doi.org/10.1038/s41698-018-0047-0
Chen ZZ, Han S, Sanny A, et al., 2022. 3D hanging spheroid plate for high-throughput CAR T cell cytotoxicity assay. J Nanobiotechnol, 20:30. https://doi.org/10.1186/s12951-021-01213-8https://doi.org/10.1186/s12951-021-01213-8
Cheng F, Cao X, Li HB, et al., 2019. Generation of cost-effective paper-based tissue models through matrix-assisted sacrificial 3D printing. Nano Lett, 19(6):3603-3611. https://doi.org/10.1021/acs.nanolett.9b00583https://doi.org/10.1021/acs.nanolett.9b00583
Cleary AS, Leonard TL, Gestl SA, et al., 2014. Tumour cell heterogeneity maintained by cooperating subclones in Wnt-driven mammary cancers. Nature, 508(7494):113-117. https://doi.org/10.1038/nature13187https://doi.org/10.1038/nature13187
de Pieri A, Byerley AM, Musumeci CR, et al., 2020. Electrospinning and 3D bioprinting for intervertebral disc tissue engineering. JOR Spine, 3(4):e1117. https://doi.org/10.1002/jsp2.1117https://doi.org/10.1002/jsp2.1117
De S, Joshi A, Tripathi DM, et al., 2021. Alginate based 3D micro-scaffolds mimicking tumor architecture as in vitro cell culture platform. Mater Sci Eng C, 128:112344. https://doi.org/10.1016/j.msec.2021.112344https://doi.org/10.1016/j.msec.2021.112344
Dhiman N, Shagaghi N, Bhave M, et al., 2021. Indirect co-culture of lung carcinoma cells with hyperthermia-treated mesenchymal stem cells influences tumor spheroid growth in a collagen-based 3-dimensional microfluidic model. Cytotherapy, 23(1):25-36. https://doi.org/10.1016/j.jcyt.2020.07.004https://doi.org/10.1016/j.jcyt.2020.07.004
Eckhardt BL, Francis PA, Parker BS, et al., 2012. Strategies for the discovery and development of therapies for metastatic breast cancer. Nat Rev Drug Discov, 11(6):479-497. https://doi.org/10.1038/nrd2372https://doi.org/10.1038/nrd2372
Ertekin Ö, Monavari M, Krüger R, et al., 2022. 3D hydrogel-based microcapsules as an in vitro model to study tumorigenicity, cell migration and drug resistance. Acta Biomater, 142:208-220. https://doi.org/10.1016/j.actbio.2022.02.010https://doi.org/10.1016/j.actbio.2022.02.010
Fang JY, Tan SJ, Yang Z, et al., 2014. Tumor bioengineering using a transglutaminase crosslinked hydrogel. PLoS ONE, 9(8):e105616. https://doi.org/10.1371/journal.pone.0105616https://doi.org/10.1371/journal.pone.0105616
Ferreira LP, Gaspar VM, Mendes L, et al., 2021. Organotypic 3D decellularized matrix tumor spheroids for high-throughput drug screening. Biomaterials, 275:120983. https://doi.org/10.1016/j.biomaterials.2021.120983https://doi.org/10.1016/j.biomaterials.2021.120983
Flores-Torres S, Peza-Chavez O, Kuasne H, et al., 2021. Alginate‒gelatin‒Matrigel hydrogels enable the development and multigenerational passaging of patient-derived 3D bioprinted cancer spheroid models. Biofabrication, 13(2):025001. https://doi.org/10.1088/1758-5090/abdb87https://doi.org/10.1088/1758-5090/abdb87
Fong ELS, Harrington DA, Farach-Carson MC, et al., 2016. Heralding a new paradigm in 3D tumor modeling. Biomaterials, 108:197-213. https://doi.org/10.1016/j.biomaterials.2016.08.052https://doi.org/10.1016/j.biomaterials.2016.08.052
Gioiella F, Urciuolo F, Imparato G, et al., 2016. An engineered breast cancer model on a chip to replicate ECM‐activation in vitro during tumor progression. Adv Healthcare Mater, 5(23):3074-3084. https://doi.org/10.1002/adhm.201600772https://doi.org/10.1002/adhm.201600772
Goff SL, Danforth DN, 2021. The role of immune cells in breast tissue and immunotherapy for the treatment of breast cancer. Clin Breast Cancer, 21(1):e63-e73. https://doi.org/10.1016/j.clbc.2020.06.011https://doi.org/10.1016/j.clbc.2020.06.011
Gupta GP, Massagué J, 2006. Cancer metastasis: building a framework. Cell, 127(4):679-695. https://doi.org/10.1016/j.cell.2006.11.001https://doi.org/10.1016/j.cell.2006.11.001
Hartl RF, 1995. Production smoothing under environmental constraints. Prod Oper Manag, 4(1):46-56. https://doi.org/10.1111/j.1937-5956.1995.tb00040.xhttps://doi.org/10.1111/j.1937-5956.1995.tb00040.x
Hess KR, Varadhachary GR, Taylor SH, et al., 2006. Metastatic patterns in adenocarcinoma. Cancer, 106(7):1624-1633. https://doi.org/10.1002/cncr.21778https://doi.org/10.1002/cncr.21778
Hong S, Song JM, 2022. 3D bioprinted drug-resistant breast cancer spheroids for quantitative in situ evaluation of drug resistance. Acta Biomater, 138:228-239. https://doi.org/10.1016/j.actbio.2021.10.031https://doi.org/10.1016/j.actbio.2021.10.031
Huang BW, Gao JQ, 2018. Application of 3D cultured multicellular spheroid tumor models in tumor-targeted drug delivery system research. J Control Release, 270:246-259. https://doi.org/10.1016/j.jconrel.2017.12.005https://doi.org/10.1016/j.jconrel.2017.12.005
Hutmacher DW, 2010. Biomaterials offer cancer research the third dimension. Nat Mater, 9(2):90-93. https://doi.org/10.1038/nmat2619https://doi.org/10.1038/nmat2619
Jiang T, Munguia-Lopez JG, Flores-Torres S, et al., 2017. Directing the self-assembly of tumour spheroids by bioprinting cellular heterogeneous models within alginate/gelatin hydrogels. Sci Rep, 7:4575. https://doi.org/10.1038/s41598-017-04691-9https://doi.org/10.1038/s41598-017-04691-9
Jiang T, Munguia-Lopez JG, Gu K, et al., 2020. Engineering bioprintable alginate/gelatin composite hydrogels with tunable mechanical and cell adhesive properties to modulate tumor spheroid growth kinetics. Biofabrication, 12(1):015024. https://doi.org/10.1088/1758-5090/ab3a5chttps://doi.org/10.1088/1758-5090/ab3a5c
Lang R, Stern MM, Smith L, et al., 2011. Three-dimensional culture of hepatocytes on porcine liver tissue-derived extracellular matrix. Biomaterials, 32(29):7042-7052. https://doi.org/10.1016/j.biomaterials.2011.06.005https://doi.org/10.1016/j.biomaterials.2011.06.005
Lanz HL, Saleh A, Kramer B, et al., 2017. Therapy response testing of breast cancer in a 3D high-throughput perfused microfluidic platform. BMC Cancer, 17:709. https://doi.org/10.1186/s12885-017-3709-3https://doi.org/10.1186/s12885-017-3709-3
Lee D, Cha C, 2020. Cell subtype-dependent formation of breast tumor spheroids and their variable responses to chemotherapeutics within microfluidics-generated 3D microgels with tunable mechanics. Mater Sci Eng C, 112:110932. https://doi.org/10.1016/j.msec.2020.110932https://doi.org/10.1016/j.msec.2020.110932
Lei SY, Zheng RS, Zhang SW, et al., 2021. Global patterns of breast cancer incidence and mortality: a population-based cancer registry data analysis from 2000 to 2020. Cancer Commun, 41(11):1183-1194. https://doi.org/10.1002/cac2.12207https://doi.org/10.1002/cac2.12207
Li WF, Hu XY, Wang SP, et al., 2019. Multiple comparisons of three different sources of biomaterials in the application of tumor tissue engineering in vitro and in vivo. Int J Biol Macromol, 130:166-176. https://doi.org/10.1016/j.ijbiomac.2019.02.136https://doi.org/10.1016/j.ijbiomac.2019.02.136
Li XR, Deng QF, Zhuang TT, et al., 2020. 3D bioprinted breast tumor model for structure‒activity relationship study. Bio Des Manuf, 3(4):361-372. https://doi.org/10.1007/s42242-020-00085-5https://doi.org/10.1007/s42242-020-00085-5
Liu C, Mejia DL, Chiang B, et al., 2018. Hybrid collagen alginate hydrogel as a platform for 3D tumor spheroid invasion. Acta Biomater, 75:213-225. https://doi.org/10.1016/j.actbio.2018.06.003https://doi.org/10.1016/j.actbio.2018.06.003
Liu Q, Muralidharan A, Saateh A, et al., 2022. A programmable multifunctional 3D cancer cell invasion micro platform. Small, 18(20):2107757. https://doi.org/10.1002/smll.202107757https://doi.org/10.1002/smll.202107757
Luo ZY, Zhang SQ, Pan JJ, et al., 2018. Time-responsive osteogenic niche of stem cells: a sequentially triggered, dual-peptide loaded, alginate hybrid system for promoting cell activity and osteo-differentiation. Biomaterials, 163:25-42. https://doi.org/10.1016/j.biomaterials.2018.02.025https://doi.org/10.1016/j.biomaterials.2018.02.025
Lv KN, Zhu JJ, Zheng SS, et al., 2021. Evaluation of inhibitory effects of geniposide on a tumor model of human breast cancer based on 3D printed Cs/Gel hybrid scaffold. Mater Sci Eng C, 119:111509. https://doi.org/10.1016/j.msec.2020.111509https://doi.org/10.1016/j.msec.2020.111509
Lv YG, Wang HJ, Li G, et al., 2021. Three-dimensional decellularized tumor extracellular matrices with different stiffness as bioengineered tumor scaffolds. Bioact Mater, 6(9):2767-2782. https://doi.org/10.1016/j.bioactmat.2021.02.004https://doi.org/10.1016/j.bioactmat.2021.02.004
Mao SS, Pang Y, Liu TK, et al., 2020. Bioprinting of in vitro tumor models for personalized cancer treatment: a review. Biofabrication, 12(4):042001. https://doi.org/10.1088/1758-5090/ab97c0https://doi.org/10.1088/1758-5090/ab97c0
Murphy SV, Atala A, 2014. 3D bioprinting of tissues and organs. Nat Biotechnol, 32(8):773-785. https://doi.org/10.1038/nbt.2958https://doi.org/10.1038/nbt.2958
Nath S, Devi GR, 2016. Three-dimensional culture systems in cancer research: focus on tumor spheroid model. Pharmacol Ther, 163:94-108. https://doi.org/10.1016/j.pharmthera.2016.03.013https://doi.org/10.1016/j.pharmthera.2016.03.013
Nothdurfter D, Ploner C, Coraça-Huber DC, et al., 2022. 3D bioprinted, vascularized neuroblastoma tumor environment in fluidic chip devices for precision medicine drug testing. Biofabrication, 14(3):035002. https://doi.org/10.1088/1758-5090/ac5fb7https://doi.org/10.1088/1758-5090/ac5fb7
Peela N, Sam FS, Christenson W, et al., 2016. A three dimensional micropatterned tumor model for breast cancer cell migration studies. Biomaterials, 81:72-83. https://doi.org/10.1016/j.biomaterials.2015.11.039https://doi.org/10.1016/j.biomaterials.2015.11.039
Piras CC, Smith DK, 2020. Multicomponent polysaccharide alginate-based bioinks. J Mater Chem B, 8(36):8171-8188. https://doi.org/10.1039/D0TB01005Ghttps://doi.org/10.1039/D0TB01005G
Polyak K, 2007. Breast cancer: origins and evolution. J Clin Invest, 117(11):3155-3163. https://doi.org/10.1172/JCI33295https://doi.org/10.1172/JCI33295.
Redmond J, McCarthy HO, Buchanan P, et al., 2022. Development and characterisation of 3D collagen-gelatin based scaffolds for breast cancer research. Biomater Adv, 142:213157. https://doi.org/10.1016/j.bioadv.2022.213157https://doi.org/10.1016/j.bioadv.2022.213157
Santo VE, Estrada MF, Rebelo SP, et al., 2016. Adaptable stirred-tank culture strategies for large scale production of multicellular spheroid-based tumor cell models. J Biotechnol, 221:118-129. https://doi.org/10.1016/j.jbiotec.2016.01.031https://doi.org/10.1016/j.jbiotec.2016.01.031
Santschi M, Vernengo A, Eglin D, et al., 2019. Decellularized matrix as a building block in bioprinting and electrospinning. Curr Opin Biomed Eng, 10:116-122. https://doi.org/10.1016/j.cobme.2019.05.003https://doi.org/10.1016/j.cobme.2019.05.003
Sgroi DC, 2010. Preinvasive breast cancer. Annu Rev Pathol, 5:193-221. https://doi.org/10.1146/annurev.pathol.4.110807.092306https://doi.org/10.1146/annurev.pathol.4.110807.092306
Shah L, Latif A, Williams KJ, et al., 2022. Role of stiffness and physico-chemical properties of tumour microenvironment on breast cancer cell stemness. Acta Biomater, 152:273-289. https://doi.org/10.1016/j.actbio.2022.08.074https://doi.org/10.1016/j.actbio.2022.08.074
Shi XL, Cheng YX, Wang J, et al., 2020. 3D printed intelligent scaffold prevents recurrence and distal metastasis of breast cancer. Theranostics, 10(23):10652-10664. https://doi.org/10.7150/thno.47933https://doi.org/10.7150/thno.47933
Stingl J, Raouf A, Eirew P, et al., 2006. Deciphering the mammary epithelial cell hierarchy. Cell Cycle, 5(14):1519-1522. https://doi.org/10.4161/cc.5.14.2983https://doi.org/10.4161/cc.5.14.2983
Su J, Satchell SC, Wertheim JA, et al., 2019. Poly(ethylene glycol)-crosslinked gelatin hydrogel substrates with conjugated bioactive peptides influence endothelial cell behavior. Biomaterials, 201:99-112. https://doi.org/10.1016/j.biomaterials.2019.02.001https://doi.org/10.1016/j.biomaterials.2019.02.001
Sun YS, Zhao Z, Yang ZN, et al., 2017. Risk factors and preventions of breast cancer. Int J Biol Sci, 13(11):1387-1397. https://doi.org/10.7150/ijbs.21635https://doi.org/10.7150/ijbs.21635
Sung H, Ferlay J, Siegel RL, et al., 2021. Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 71(3):209-249. https://doi.org/10.3322/caac.21660https://doi.org/10.3322/caac.21660
Tamayo-Angorrilla M, López de Andrés J, Jiménez G, et al., 2022. The biomimetic extracellular matrix: a therapeutic tool for breast cancer research. Transl Res, 247:117-136. https://doi.org/10.1016/j.trsl.2021.11.008https://doi.org/10.1016/j.trsl.2021.11.008
Tang YD, Huang BX, Dong YQ, et al., 2017. Three-dimensional prostate tumor model based on a hyaluronic acid-alginate hydrogel for evaluation of anti-cancer drug efficacy. J Biomater Sci Polym Ed, 28(14):1603-1616. https://doi.org/10.1080/09205063.2017.1338502https://doi.org/10.1080/09205063.2017.1338502
Toh YC, Raja A, Yu H, et al., 2018. A 3D microfluidic model to recapitulate cancer cell migration and invasion. Bioengineering, 5(2):29. https://doi.org/10.3390/bioengineering5020029https://doi.org/10.3390/bioengineering5020029
Tuan RS, Boland G, Tuli R, 2002. Adult mesenchymal stem cells and cell-based tissue engineering. Arthritis Res Ther, 5:32. https://doi.org/10.1186/AR614https://doi.org/10.1186/AR614
Weilbaecher KN, Guise TA, McCauley LK, 2011. Cancer to bone: a fatal attraction. Nat Rev Cancer, 11(6):411-425. https://doi.org/10.1038/nrc3055https://doi.org/10.1038/nrc3055
Whitesides GM, 2006. The origins and the future of microfluidics. Nature, 442(7101):368-373. https://doi.org/10.1038/nature05058https://doi.org/10.1038/nature05058
Xie MJ, Gao Q, Fu JZ, et al., 2020. Bioprinting of novel 3D tumor array chip for drug screening. Bio Des Manuf, 3(3):175-188. https://doi.org/10.1007/s42242-020-00078-4https://doi.org/10.1007/s42242-020-00078-4
Xin X, Yang H, Zhang FL, et al., 2019. 3D cell coculture tumor model: a promising approach for future cancer drug discovery. Process Biochem, 78:148-160. https://doi.org/10.1016/j.procbio.2018.12.028https://doi.org/10.1016/j.procbio.2018.12.028
Xu J, Fang H, Zheng SS, et al., 2021. A biological functional hybrid scaffold based on decellularized extracellular matrix/gelatin/chitosan with high biocompatibility and antibacterial activity for skin tissue engineering. Int J Biol Macromol, 187:840-849. https://doi.org/10.1016/j.ijbiomac.2021.07.162https://doi.org/10.1016/j.ijbiomac.2021.07.162
Xu X, Farach-Carson MC, Jia XQ, 2014. Three-dimensional in vitro tumor models for cancer research and drug evaluation. Biotechnol Adv, 32(7):1256-1268. https://doi.org/10.1016/j.biotechadv.2014.07.009https://doi.org/10.1016/j.biotechadv.2014.07.009
Yang SJ, Zheng L, Chen ZL, et al., 2022. Decellularized pig kidney with a micro-nano secondary structure contributes to tumor progression in 3D tumor model. Materials, 15(5):1935. https://doi.org/10.3390/ma15051935https://doi.org/10.3390/ma15051935
Yates LR, Knappskog S, Wedge D, et al., 2017. Genomic evolution of breast cancer metastasis and relapse. Cancer Cell, 32(2):169-184.e7. https://doi.org/10.1016/j.ccell.2017.07.005https://doi.org/10.1016/j.ccell.2017.07.005
Yue XS, Nguyen TD, Zellmer V, et al., 2018. Stromal cell-laden 3D hydrogel microwell arrays as tumor microenvironment model for studying stiffness dependent stromal cell-cancer interactions. Biomaterials, 170:37-48. https://doi.org/10.1016/j.biomaterials.2018.04.001https://doi.org/10.1016/j.biomaterials.2018.04.001
Zhang CR, Qiu XQ, Dai Y, et al., 2023. The prospects for bioprinting tumor models: recent advances in their applications. Bio-Des Manuf, 6(6):661-675. https://doi.org/10.1007/s42242-023-00247-1https://doi.org/10.1007/s42242-023-00247-1
Zhang CY, Yang ZT, Dong DL, et al., 2020. 3D culture technologies of cancer stem cells: promising ex vivo tumor models. J Tissue Eng, 11:204173142093340. https://doi.org/10.1177/2041731420933407https://doi.org/10.1177/2041731420933407
Zhang QF, Wang XC, Kuang GZ, et al., 2022. Photopolymerized 3D printing scaffolds with Pt(IV) prodrug initiator for postsurgical tumor treatment. Research, 2022:9784510. https://doi.org/10.34133/2022/9784510https://doi.org/10.34133/2022/9784510
Zhu JJ, Zheng SS, Liu HB, et al., 2021. Evaluation of anti-tumor effects of crocin on a novel 3D tissue-engineered tumor model based on sodium alginate/gelatin microbead. Int J Biol Macromol, 174:339-351. https://doi.org/10.1016/j.ijbiomac.2021.01.181https://doi.org/10.1016/j.ijbiomac.2021.01.181
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构