无数据
Scan QR Code
1.Center for Rehabilitation Medicine, Department of Neurosurgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou 310014, China
2.Second Clinical Medical College, Wenzhou Medical University, Wenzhou 325035, China
3.School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
4.Department of Neurosurgery, the First Hospital of Jiaxing (Affiliated Hospital of Jiaxing University), Jiaxing 314001, China
5.Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou 311122, China
网络出版日期: 2024-09-26 ,
收稿日期: 2023-10-30 ,
修回日期: 2024-04-24 ,
彭德清,卢睿杰,吕乐瑶等.Olig2,+单克隆颅骨间充质干细胞在双环己酮草酰二腙(CPZ)诱导的小鼠脱髓鞘模型中促再生作用研究[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),
Deqing PENG, Ruijie LU, Leyao LÜ, et al. Olig2+ single-colony-derived cranial bone-marrow mesenchymal stem cells achieve improved regeneration in a cuprizone-induced demyelination mouse model[J/OL]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2024,1-7.
彭德清,卢睿杰,吕乐瑶等.Olig2,+单克隆颅骨间充质干细胞在双环己酮草酰二腙(CPZ)诱导的小鼠脱髓鞘模型中促再生作用研究[J].浙江大学学报(英文版)(B辑:生物医学和生物技术), DOI:10.1631/jzus.B2300790.
Deqing PENG, Ruijie LU, Leyao LÜ, et al. Olig2+ single-colony-derived cranial bone-marrow mesenchymal stem cells achieve improved regeneration in a cuprizone-induced demyelination mouse model[J/OL]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2024,1-7. DOI: 10.1631/jzus.B2300790.
多发性硬化症是中枢神经系统的主要脱髓鞘疾病,目前尚无有效治疗方法。本研究探讨了颅骨间充质干细胞(cBMMSC)和Olig2
+
单克隆来源cBMMSC(sc-cBMMSC)在双环己酮草酰二腙(CPZ)诱导的中枢神经系统脱髓鞘小鼠模型中的作用。通过尾静脉输注cBMMSC和Olig2
+
sc-cBMMSC,剂量为1×10
6
个细胞每100微升磷酸盐缓冲液(PBS),每周一次,给药两周。治疗完成一周后,对每组小鼠进行相关指标评估。结果表明,cBMMSC移植可显著提高CPZ诱导的脱髓鞘小鼠在转棒、悬挂和水迷宫试验中的能力;抑制小鼠外周血和中枢神经系统中TNF-α、IL-1β和IL-6等炎症因子的水平;此外,小鼠病理结构也得到改善,具体表现在髓鞘得到显著恢复,以及Olig2和Syn表达增加。值得注意的是,与cBMMSC相比,Olig2
+
sc-cBMMSC更为显著地改善了CPZ动物的行为学、髓鞘修复和神经细胞再生。这些发现表明,颅骨髓来源的干细胞在脱髓鞘中具有修复作用,这可能归因于其对少突胶质细胞的免疫调节和保护。Olig2
+
sc-cBMMSC移植效果更为显著,进一步证实了间充质干细胞的异质性应被考虑和利用以提高对特定疾病的治疗效果。
颅骨骨髓单克隆间充质干细胞少突胶质细胞脱髓鞘
Allegretta C, D'Amico E, Manuti V, et al., 2022. Mesenchymal stem cell-derived extracellular vesicles and their therapeutic use in central nervous system demyelinating disorders. Int J Mol Sci, 23(7):3829. https://doi.org/10.3390/ijms23073829https://doi.org/10.3390/ijms23073829
Avşar T, Erdem GÇ, Terzioğlu G, et al., 2021. Investigation of neuro-inflammatory parameters in a cuprizone induced mouse model of multiple sclerosis. Turk J Biol, 45(5):644-655. https://doi.org/10.3906/biy-2104-88https://doi.org/10.3906/biy-2104-88
Biglari N, Mehdizadeh A, Vafaei Mastanabad M, et al., 2023. Application of mesenchymal stem cells (MSCs) in neurodegenerative disorders: history, findings, and prospective challenges. Pathol Res Pract, 247:154541. https://doi.org/10.1016/j.prp.2023.154541https://doi.org/10.1016/j.prp.2023.154541
Conner LT, Srinageshwar B, Bakke JL, et al., 2023. Advances in stem cell and other therapies for Huntington’s disease: an update. Brain Res Bull, 199:110673. https://doi.org/10.1016/j.brainresbull.2023.110673https://doi.org/10.1016/j.brainresbull.2023.110673
Eldaly AS, Mashaly SM, Fouda E, et al., 2022. Systemic anti-inflammatory effects of mesenchymal stem cells in burn: a systematic review of animal studies. J Clin Transl Res, 8(4):276-291. https://doi.org/10.18053/JCTRES.08.202204.003https://doi.org/10.18053/JCTRES.08.202204.003
el Sharouny SH, Shaaban MH, Elsayed RM, et al., 2022. N-acetylcysteine protects against cuprizone-induced demyelination: histological and immunohistochemical study. Folia Morphol (Warsz), 81(2):280-293. https://doi.org/10.5603/FM.a2021.0044https://doi.org/10.5603/FM.a2021.0044
Hedayatpour A, Ragerdi I, Pasbakhsh P, et al., 2013. Promotion of remyelination by adipose mesenchymal stem cell transplantation in a cuprizone model of multiple sclerosis. Cell J, 15(2):142-151.
Islam MA, Alam SS, Kundu S, et al., 2023. Mesenchymal stem cell therapy in multiple sclerosis: a systematic review and meta-analysis. J Clin Med, 12(19):6311. https://doi.org/10.3390/jcm12196311https://doi.org/10.3390/jcm12196311
Jang S, Cho HH, Cho YB, et al., 2010. Functional neural differentiation of human adipose tissue-derived stem cells using bFGF and forskolin. BMC Cell Biol, 11:25. https://doi.org/10.1186/1471-2121-11-25https://doi.org/10.1186/1471-2121-11-25
Kandeel M, Morsy MA, Alkhodair KM, et al., 2023. Mesenchymal stem cell-derived extracellular vesicles: an emerging diagnostic and therapeutic biomolecules for neurodegenerative disabilities. Biomolecules, 13(8):1250. https://doi.org/10.3390/biom13081250https://doi.org/10.3390/biom13081250
Kashani IR, Hedayatpour A, Pasbakhsh P, et al., 2015. Progesterone enhanced remyelination in the mouse corpus callosum after cuprizone induced demyelination. Iran J Med Sci, 40(6):507-514.
Kashani SA, Navabi R, Amini A, et al., 2023. Immunomodulatory potential of human clonal mesenchymal stem cells and their extracellular vesicle subpopulations in an inflammatory-mediated diabetic rhesus monkey model. Life Sci, 329:121950. https://doi.org/10.1016/j.lfs.2023.121950https://doi.org/10.1016/j.lfs.2023.121950
Lassmann H, Brück W, Lucchinetti CF, 2007. The immunopathology of multiple sclerosis: an overview. Brain Pathol, 17(2):210-218. https://doi.org/10.1111/j.1750-3639.2007.00064.xhttps://doi.org/10.1111/j.1750-3639.2007.00064.x
Lyamina S, Baranovskii D, Kozhevnikova E, et al., 2023. Mesenchymal stromal cells as a driver of inflammaging. Int J Mol Sci, 24(7):6372. https://doi.org/10.3390/ijms24076372https://doi.org/10.3390/ijms24076372
Mo QY, Zhang W, Zhu AJ, et al., 2022. Regulation of osteogenic differentiation by the pro-inflammatory cytokines IL-1β and TNF-α: current conclusions and controversies. Hum Cell, 35(4):957-971. https://doi.org/10.1007/s13577-022-00711-7https://doi.org/10.1007/s13577-022-00711-7
Solti I, Kvell K, Talaber G, et al., 2015. Thymic atrophy and apoptosis of CD4+CD8+ thymocytes in the cuprizone model of multiple sclerosis. PLoS ONE, 10(6):e0129217. https://doi.org/10.1371/journal.pone.0129217https://doi.org/10.1371/journal.pone.0129217
Spaas J, van Veggel L, Schepers M, et al., 2021. Oxidative stress and impaired oligodendrocyte precursor cell differentiation in neurological disorders. Cell Mol Life Sci, 78(10):4615-4637. https://doi.org/10.1007/s00018-021-03802-0https://doi.org/10.1007/s00018-021-03802-0
Vassall KA, Bamm VV, Harauz G, 2015. Myelstones: the executive roles of myelin basic protein in myelin assembly and destabilization in multiple sclerosis. Biochem J, 472(1):17-32. https://doi.org/10.1042/BJ20150710https://doi.org/10.1042/BJ20150710
Xiao J, Yang RB, Biswas S, et al., 2015. Mesenchymal stem cells and induced pluripotent stem cells as therapies for multiple sclerosis. Int J Mol Sci, 16(5):9283-9302. https://doi.org/10.3390/ijms16059283https://doi.org/10.3390/ijms16059283
Xu YZ, Fan P, Liu L, et al., 2023. Novel perspective in transplantation therapy of mesenchymal stem cells: targeting the ferroptosis pathway. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 24(2):115-129. https://doi.org/10.1631/jzus.B2200410https://doi.org/10.1631/jzus.B2200410
Yan ZJ, Hu YQ, Zhang HT, et al., 2013. Comparison of the neural differentiation potential of human mesenchymal stem cells from amniotic fluid and adult bone marrow. Cell Mol Neurobiol, 33(4):465-475. https://doi.org/10.1007/s10571-013-9922-yhttps://doi.org/10.1007/s10571-013-9922-y
Yang KC, Lu RJ, Lu JN, et al., 2022. Phenotypic and functional characterizations of mesenchymal stem/stromal cells isolated from human cranial bone marrow. Front Neurosci, 16:909256. https://doi.org/10.3389/fnins.2022.909256https://doi.org/10.3389/fnins.2022.909256
Zhang J, Buller BA, Zhang ZG, et al., 2022. Exosomes derived from bone marrow mesenchymal stromal cells promote remyelination and reduce neuroinflammation in the demyelinating central nervous system. Exp Neurol, 347:113895. https://doi.org/10.1016/j.expneurol.2021.113895https://doi.org/10.1016/j.expneurol.2021.113895
Zhang L, Li Y, Dong YC, et al., 2022. Transplantation of umbilical cord-derived mesenchymal stem cells promotes the recovery of thin endometrium in rats. Sci Rep, 12:412. https://doi.org/10.1038/s41598-021-04454-7https://doi.org/10.1038/s41598-021-04454-7
Zhang RB, Liu J, Xu B, et al., 2021. Cornuside alleviates experimental autoimmune encephalomyelitis by inhibiting Th17 cell infiltration into the central nervous system. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 22(5):421-430. https://doi.org/10.1631/jzus.B2000771https://doi.org/10.1631/jzus.B2000771
Zhang YY, Gu JB, Wang XS, et al., 2023. Opportunities and challenges: mesenchymal stem cells in the treatment of multiple sclerosis. Int J Neurosci, 133(9):1031-1044. https://doi.org/10.1080/00207454.2022.2042690https://doi.org/10.1080/00207454.2022.2042690
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构