无数据
Scan QR Code
1.Institute of Brain Science and Department of Physiology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou311121, China
2.Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou310013, China
3.Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou311121, China
4.Zhejiang Philosophy and Social Science Laboratory for Research in Early Development and Childcare, Hangzhou Normal University, Hangzhou311121, China
5.Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou310015, China
6.NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou310058, China
纸质出版日期: 2024-11-15 ,
收稿日期: 2023-10-12 ,
修回日期: 2024-01-02 ,
曹蔚,李慧怡,罗建红.前额叶皮层环路与社交行为概述[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2024,25(11):941-955.
WEI CAO, HUIYI LI, JIANHONG LUO. Prefrontal cortical circuits in social behaviors: an overview. [J]. Journal of zhejiang university-science b (biomedicine & biotechnology), 2024, 25(11): 941-955.
曹蔚,李慧怡,罗建红.前额叶皮层环路与社交行为概述[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2024,25(11):941-955. DOI: 10.1631/jzus.B2300743.
WEI CAO, HUIYI LI, JIANHONG LUO. Prefrontal cortical circuits in social behaviors: an overview. [J]. Journal of zhejiang university-science b (biomedicine & biotechnology), 2024, 25(11): 941-955. DOI: 10.1631/jzus.B2300743.
社交是人类和动物基本而复杂的行为,受社会认知和情感相互作用的调控。社交障碍发病率高,同样也是自闭症谱系障碍(ASD)和精神分裂症(SCZ)等神经精神疾病的显著临床特征。尽管有关社交行为神经的基础研究不断增多,但其精确的神经环路机制仍然有待阐明。本文回顾了前额叶皮层(PFC)在调节社交行为中的关键作用及其在社交障碍中的功能改变。大量研究提示:PFC功能障碍可能是以社交缺陷为共同特征的精神疾病发病机制的关键病理节点。此外,本文深入梳理了啮齿类动物内侧PFC(mPFC)与其他皮层区域和皮层下大脑区域的复杂连接,以及这些连接在社交行为调控中的作用。值得注意的是,大量证据强调了mPFC的
N
-甲基-D-天冬氨酸(NMDA)受体以及小清蛋白阳性中间神经元的正常功能在调控社交行为中的作用。因此,深入解析社交相关的神经环路及其功能,将有助于揭示社交障碍的神经病理机制并指导临床转化研究。
Social behaviors are fundamental and intricate func
tions in both humans and animals
governed by the interplay of social cognition and emotions. A noteworthy feature of several neuropsychiatric disorders
including autism spectrum disorder (ASD) and schizophrenia (SCZ)
is a pronounced deficit in social functioning. Despite a burgeoning body of research on social behaviors
the precise neural circuit mechanisms underpinning these phenomena remain to be elucidated. In this paper
we review the pivotal role of the prefrontal cortex (PFC) in modulating social behaviors
as well as its functional alteration in social disorders in ASD or SCZ. We posit that PFC dysfunction may represent a critical hub in the pathogenesis of psychiatric disorders characterized by shared social deficits. Furthermore
we delve into the intricate connectivity of the medial PFC (mPFC) with other cortical areas and subcortical brain regions in rodents
which exerts a profound influence on social behaviors. Notably
a substantial body of evidence underscores the role of
N
-methyl-D-aspartate receptors (NMDARs) and the proper functioning of parvalbumin-positive interneurons within the mPFC for social regulation. Our overarching goal is to furnish a comprehensive understanding of these intricate circuits and thereby contribute to the enhancement of both research endeavors and clinical practices concerning social behavior deficits.
前额叶皮层社交行为自闭症谱系障碍精神分裂症小清蛋白阳性中间神经元N-甲基-D-天冬氨酸(NMDA)受体
Prefrontal cortex (PFC)Social behaviorAutism spectrum disorder (ASD)Schizophrenia (SCZ)Parvalbumin-positive interneuronN-Methyl-D-aspartate receptor (NMDAR)
Amodio DM, Frith CD, 2006. Meeting of minds: the medial frontal cortex and social cognition. Nat Rev Neurosci, 7(4):268-277. https://doi.org/10.1038/nrn1884https://doi.org/10.1038/nrn1884
Anastasiades PG, Carter AG, 2021. Circuit organization of the rodent medial prefrontal cortex. Trends Neurosci, 44(7):550-563. https://doi.org/10.1016/j.tins.2021.03.006https://doi.org/10.1016/j.tins.2021.03.006
Anticevic A, Haut K, Murray JD, et al., 2015. Association of thalamic dysconnectivity and conversion to psychosis in youth and young adults at elevated clinical risk. JAMA Psychiatry, 72(9):882-891. https://doi.org/10.1001/jamapsychiatry.2015.0566https://doi.org/10.1001/jamapsychiatry.2015.0566
Avale ME, Chabout J, Pons S, et al., 2011. Prefrontal nicotinic receptors control novel social interaction between mice. FASEB J, 25(7):2145-2155. https://doi.org/10.1096/fj.10-178558https://doi.org/10.1096/fj.10-178558
Backus AR, Schoffelen JM, Szebényi S, et al., 2016. Hippocampal-prefrontal theta oscillations support memory integration. Curr Biol, 26(4):450-457. https://doi.org/10.1016/j.cub.2015.12.048https://doi.org/10.1016/j.cub.2015.12.048
Bariselli S, Hörnberg H, Prévost-Solié C, et al., 2018. Role of VTA dopamine neurons and neuroligin 3 in sociability traits related to nonfamiliar conspecific interaction. Nat Commun, 9:3173. https://doi.org/10.1038/s41467-018-05382-3https://doi.org/10.1038/s41467-018-05382-3
Baron-Cohen S, Ring HA, Wheelwright S, et al., 1999. Social intelligence in the normal and autistic brain: an fMRI study. Eur J Neurosci, 11(6):1891-1898. https://doi.org/10.1046/j.1460-9568.1999.00621.xhttps://doi.org/10.1046/j.1460-9568.1999.00621.x
Barthas F, Kwan AC, 2017. Secondary motor cortex: where ‘sensory’ meets ‘motor’ in the rodent frontal cortex. Trends Neurosci, 40(3):181-193. https://doi.org/10.1016/j.tins.2016.11.006https://doi.org/10.1016/j.tins.2016.11.006
Beasley CL, Reynolds GP, 1997. Parvalbumin-immunoreactive neurons are reduced in the prefrontal cortex of schizophrenics. Schizophr Res, 24(3):349-355. https://doi.org/10.1016/s0920-9964(96)00122-3https://doi.org/10.1016/s0920-9964(96)00122-3
Beasley CL, Zhang ZJ, Patten I, et al., 2002. Selective deficits in prefrontal cortical gabaergic neurons in schizophrenia defined by the presence of calcium-binding proteins. Biol Psychiatry, 52(7):708-715. https://doi.org/10.1016/s0006-3223(02)01360-4https://doi.org/10.1016/s0006-3223(02)01360-4
Brumback AC, Ellwood IT, Kjaerby C, et al., 2018. Identifying specific prefrontal neurons that contribute to autism-associated abnormalities in physiology and social behavior. Mol Psychiatry, 23(10):2078-2089. https://doi.org/10.1038/mp.2017.213https://doi.org/10.1038/mp.2017.213
Buschman TJ, Miller EK, 2014. Goal-direction and top-down control. Philos Trans Roy Soc B Biol Sci, 369(1655):20130471. https://doi.org/10.1098/rstb.2013.0471https://doi.org/10.1098/rstb.2013.0471
Buzsáki G, Draguhn A, 2004. Neuronal oscillations in cortical networks. Science, 304(5679):1926-1929. https://doi.org/10.1126/science.1099745https://doi.org/10.1126/science.1099745
Buzsáki G, Llinás R, 2017. Space and time in the brain. Science, 358(6362):482-485. https://doi.org/10.1126/science.aan8869https://doi.org/10.1126/science.aan8869
Cannon TD, Chung Y, He G, et al., 2015. Progressive reduction in cortical thickness as psychosis develops: a multisite longitudinal neuroimaging study of youth at elevated clinical risk. Biol Psychiatry, 77(2):147-157. https://doi.org/10.1016/j.biopsych.2014.05.023https://doi.org/10.1016/j.biopsych.2014.05.023
Cao W, Lin S, Xia QQ, et al., 2018. Gamma oscillation dysfunction in mPFC leads to social deficits in neuroligin 3 R451C knockin mice. Neuron, 97(6):1253-1260.e7. https://doi.org/10.1016/j.neuron.2018.02.001https://doi.org/10.1016/j.neuron.2018.02.001
Cao W, Li JH, Lin S, et al., 2022. NMDA receptor hypofunction underlies deficits in parvalbumin interneurons and social behavior in neuroligin 3 R451C knockin mice. Cell Rep, 41(10):111771. https://doi.org/10.1016/j.celrep.2022.111771https://doi.org/10.1016/j.celrep.2022.111771
Cardin JA, Carlén M, Meletis K, et al., 2009. Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature, 459(7247):663-667. https://doi.org/10.1038/nature08002https://doi.org/10.1038/nature08002
Carlén M, 2017. What constitutes the prefrontal cortex?Science, 358(6362):478-482. https://doi.org/10.1126/science.aan8868https://doi.org/10.1126/science.aan8868
Carper RA, Courchesne E, 2000. Inverse correlation between frontal lobe and cerebellum sizes in children with autism. Brain, 123(Pt 4):836-844. https://doi.org/10.1093/brain/123.4.836https://doi.org/10.1093/brain/123.4.836
Carper RA, Courchesne E, 2005. Localized enlargement of the frontal cortex in early autism. Biol Psychiatry, 57(2):126-133. https://doi.org/10.1016/j.biopsych.2004.11.005https://doi.org/10.1016/j.biopsych.2004.11.005
Catmur C, Cross ES, Over H, 2016. Understanding self and others: from origins to disorders. Philos Trans Roy Soc B Biol Sci, 371(1686):20150066. https://doi.org/10.1098/rstb.2015.0066https://doi.org/10.1098/rstb.2015.0066
Challis C, Berton O, 2015. Top-down control of serotonin systems by the prefrontal cortex: a path toward restored socioemotional function in depression. ACS Chem Neurosci, 6(7):1040-1054. https://doi.org/10.1021/acschemneuro.5b00007https://doi.org/10.1021/acschemneuro.5b00007
Challis C, Boulden J, Veerakumar A, et al., 2013. Raphe GABaergic neurons mediate the acquisition of avoidance after social defeat. J Neurosci, 33(35):13978-13988. https://doi.org/10.1523/JNEUROSCI.2383-13.2013https://doi.org/10.1523/JNEUROSCI.2383-13.2013
Chandana SR, Behen ME, Juhász C, et al., 2005. Significance of abnormalities in developmental trajectory and asymmetry of cortical serotonin synthesis in autism. Int J Dev Neurosci, 23(2-3):171-182. https://doi.org/10.1016/j.ijdevneu.2004.08.002https://doi.org/10.1016/j.ijdevneu.2004.08.002
Chen P, Hong WZ, 2018. Neural circuit mechanisms of social behavior. Neuron, 98(1):16-30. https://doi.org/10.1016/j.neuron.2018.02.026https://doi.org/10.1016/j.neuron.2018.02.026
Chen XL, Liu JX, Luo YJ, et al., 2023. Brain systems underlying fundamental motivations of human social conformity. Neurosci Bull, 39(2):328-342. https://doi.org/10.1007/s12264-022-00960-4https://doi.org/10.1007/s12264-022-00960-4
Chevallier C, Kohls G, Troiani V, et al., 2012. The social motivation theory of autism. Trends Cogn Sci, 16(4):231-239. https://doi.org/10.1016/j.tics.2012.02.007https://doi.org/10.1016/j.tics.2012.02.007
Cho KIK, Shenton ME, Kubicki M, et al., 2016. Altered thalamo-cortical white matter connectivity: probabilistic tractography study in clinical-high risk for psychosis and first-episode psychosis. Schizophr Bull, 42(3):723-731. https://doi.org/10.1093/schbul/sbv169https://doi.org/10.1093/schbul/sbv169
Chugani DC, Muzik O, Behen M, et al., 1999. Developmental changes in brain serotonin synthesis capacity in autistic and nonautistic children. Ann Neurol, 45(3):287-295. https://doi.org/10.1002/1531-8249(199903)45:3<287::aid-ana3>3.0.co;2-9https://doi.org/10.1002/1531-8249(199903)45:3<287::aid-ana3>3.0.co;2-9
Chung W, Choi SY, Lee E, et al., 2015. Social deficits in IRSp53 mutant mice improved by NMDAR and mGluR5 suppression. Nat Neurosci, 18(3):435-443. https://doi.org/10.1038/nn.3927https://doi.org/10.1038/nn.3927
Chung Y, Haut KM, He G, et al., 2017. Ventricular enlargement and progressive reduction of cortical gray matter are linked in prodromal youth who develop psychosis. Schizophr Res, 189:169-174. https://doi.org/10.1016/j.schres.2017.02.014https://doi.org/10.1016/j.schres.2017.02.014
Courchesne E, Carper R, Akshoomoff N, 2003. Evidence of brain overgrowth in the first year of life in autism. JAMA, 290(3):337-344. https://doi.org/10.1001/jama.290.3.337https://doi.org/10.1001/jama.290.3.337
Courchesne E, Campbell K, Solso S, 2011a. Brain growth across the life span in autism: age-specific changes in anatomical pathology. Brain Res, 1380:138-145. https://doi.org/10.1016/j.brainres.2010.09.101https://doi.org/10.1016/j.brainres.2010.09.101
Courchesne E, Mouton PR, Calhoun ME, et al., 2011b. Neuron number and size in prefrontal cortex of children with autism. JAMA, 306(18):2001-2010. https://doi.org/10.1001/jama.2011.1638https://doi.org/10.1001/jama.2011.1638
Curley AA, Arion D, Volk DW, et al., 2011. Cortical deficits of glutamic acid decarboxylase 67 expression in schizophrenia: clinical, protein, and cell type-specific features. Am J Psychiatry, 168(9):921-929. https://doi.org/10.1176/appi.ajp.2011.11010052https://doi.org/10.1176/appi.ajp.2011.11010052
David N, Schneider TR, Peiker I, et al., 2016. Variability of cortical oscillation patterns: a possible endophenotype in autism spectrum disorders?Neurosci Biobehav Rev, 71:590-600. https://doi.org/10.1016/j.neubiorev.2016.09.031https://doi.org/10.1016/j.neubiorev.2016.09.031
de León Reyes NS, Sierra Díaz P, Nogueira R, et al., 2023. Corticotropin-releasing hormone signaling from prefrontal cortex to lateral septum suppresses interaction with familiar mice. Cell, 186(19):4152-4171.e31. https://doi.org/10.1016/j.cell.2023.08.010https://doi.org/10.1016/j.cell.2023.08.010
Diamond A, 2013. Executive functions. Annu Rev Psychol, 64:135-168. https://doi.org/10.1146/annurev-psych-113011-143750https://doi.org/10.1146/annurev-psych-113011-143750
Donaldson ZR, Young LJ, 2008. Oxytocin, vasopressin, and the neurogenetics of sociality. Science, 322(5903):900-904. https://doi.org/10.1126/science.1158668https://doi.org/10.1126/science.1158668
Duffney LJ, Zhong P, Wei J, et al., 2015. Autism-like deficits in Shank3-deficient mice are rescued by targeting actin regulators. Cell Rep, 11(9):1400-1413. https://doi.org/10.1016/j.celrep.2015.04.064https://doi.org/10.1016/j.celrep.2015.04.064
Ebstein RP, Israel S, Chew SH, et al., 2010. Genetics of human social behavior. Neuron, 65(6):831-844. https://doi.org/10.1016/j.neuron.2010.02.020https://doi.org/10.1016/j.neuron.2010.02.020
Edden RAE, Muthukumaraswamy SD, Freeman TCA, et al., 2009. Orientation discrimination performance is predicted by GABA concentration and gamma oscillation frequency in human primary visual cortex. J Neurosci, 29(50):15721-15726. https://doi.org/10.1523/JNEUROSCI.4426-09.2009https://doi.org/10.1523/JNEUROSCI.4426-09.2009
Eisenberg N, Fabes RA, Murphy B, et al., 1995. The role of emotionality and regulation in children’s social functioning: a longitudinal study. Child Dev, 66(5):1360-1384. https://doi.org/10.2307/1131652https://doi.org/10.2307/1131652
Eisenberg N, Guthrie IK, Murphy BC, et al., 1999. Consistency and development of prosocial dispositions: a longitudinal study. Child Dev, 70(6):1360-1372. https://doi.org/10.1111/1467-8624.00100https://doi.org/10.1111/1467-8624.00100
Eisenberg N, Fabes RA, Guthrie IK, et al., 2000. Dispositional emotionality and regulation: their role in predicting quality of social functioning. J Pers Soc Psychol, 78(1):136-157. https://doi.org/10.1037/0022-3514.78.1.136https://doi.org/10.1037/0022-3514.78.1.136
Fan ZX, Chang JR, Liang YL, et al., 2023. Neural mechanism underlying depressive-like state associated with social status loss. Cell, 186(3):560-576.e17. https://doi.org/10.1016/j.cell.2022.12.033https://doi.org/10.1016/j.cell.2022.12.033
Feinberg I, 1990. Cortical pruning and the development of schizophrenia. Schizophr Bull, 16(4):567-570. https://doi.org/10.1093/schbul/16.4.567https://doi.org/10.1093/schbul/16.4.567
Felix-Ortiz AC, Burgos-Robles A, Bhagat ND, et al., 2016. Bidirectional modulation of anxiety-related and social behaviors by amygdala projections to the medial prefrontal cortex. Neuroscience, 321:197-209. https://doi.org/10.1016/j.neuroscience.2015.07.041https://doi.org/10.1016/j.neuroscience.2015.07.041
Filice F, Vörckel KJ, Sungur AÖ, et al., 2016. Reduction in parvalbumin expression not loss of the parvalbumin-expressing GABA interneuron subpopulation in genetic parvalbumin and shank mouse models of autism. Mol Brain, 9:10. https://doi.org/10.1186/s13041-016-0192-8https://doi.org/10.1186/s13041-016-0192-8
Forbes CE, Grafman J, 2010. The role of the human prefrontal cortex in social cognition and moral judgment. Annu Rev Neurosci, 33:299-324. https://doi.org/10.1146/annurev-neuro-060909-153230https://doi.org/10.1146/annurev-neuro-060909-153230
Fornito A, Yücel M, Dean B, et al., 2009. Anatomical abnormalities of the anterior cingulate cortex in schizophrenia: bridging the gap between neuroimaging and neuropathology. Schizophr Bull, 35(5):973-993. https://doi.org/10.1093/schbul/sbn025https://doi.org/10.1093/schbul/sbn025
Fries P, 2015. Rhythms for cognition: communication through coherence. Neuron, 88(1):220-235. https://doi.org/10.1016/j.neuron.2015.09.034https://doi.org/10.1016/j.neuron.2015.09.034
Fujisawa S, Amarasingham A, Harrison MT, et al., 2008. Behavior-dependent short-term assembly dynamics in the medial prefrontal cortex. Nat Neurosci, 11(7):823-833. https://doi.org/10.1038/nn.2134https://doi.org/10.1038/nn.2134
Fung SJ, Webster MJ, Sivagnanasundaram S, et al., 2010. Expression of interneuron markers in the dorsolateral prefrontal cortex of the developing human and in schizophrenia. Am J Psychiatry, 167(12):1479-1488. https://doi.org/10.1176/appi.ajp.2010.09060784https://doi.org/10.1176/appi.ajp.2010.09060784
Gandal MJ, Edgar JC, Klook K, et al., 2012. Gamma synchrony: towards a translational biomarker for the treatment-resistant symptoms of schizophrenia. Neuropharmacology, 62(3):1504-1518. https://doi.org/10.1016/j.neuropharm.2011.02.007https://doi.org/10.1016/j.neuropharm.2011.02.007
Gangopadhyay P, Chawla M, Dal Monte O, et al., 2021. Prefrontal-amygdala circuits in social decision-making. Nat Neurosci, 24(1):5-18. https://doi.org/10.1038/s41593-020-00738-9https://doi.org/10.1038/s41593-020-00738-9
Geckeler KC, Barch DM, Karcher NR, 2022. Associations between social behaviors and experiences with neural correlates of implicit emotion regulation in middle childhood. Neuropsychopharmacology, 47(6):1169-1179. https://doi.org/10.1038/s41386-022-01286-5https://doi.org/10.1038/s41386-022-01286-5
Giraldo-Chica M, Rogers BP, Damon SM, et al., 2018. Prefrontal-thalamic anatomical connectivity and executive cognitive function in schizophrenia. Biol Psychiatry, 83(6):509-517. https://doi.org/10.1016/j.biopsych.2017.09.022https://doi.org/10.1016/j.biopsych.2017.09.022
Gogtay N, Giedd JN, Lusk L, et al., 2004. Dynamic mapping of human cortical development during childhood through early adulthood. Proc Natl Acad Sci USA, 101(21):8174-8179. https://doi.org/10.1073/pnas.0402680101https://doi.org/10.1073/pnas.0402680101
Goldman-Rakic PS, Selemon LD, 1997. Functional and anatomical aspects of prefrontal pathology in schizophrenia. Schizophr Bull, 23(3):437-458. https://doi.org/10.1093/schbul/23.3.437https://doi.org/10.1093/schbul/23.3.437
Han S, Tai C, Westenbroek RE, et al., 2012. Autistic-like behaviour in Scn1a+/- mice and rescue by enhanced GABA-mediated neurotransmission. Nature, 489(7416):385-390. https://doi.org/10.1038/nature11356https://doi.org/10.1038/nature11356
Hanganu-Opatz IL, Klausberger T, Sigurdsson T, et al., 2023. Resolving the prefrontal mechanisms of adaptive cognitive behaviors: a cross-species perspective. Neuron, 111(7):1020-1036. https://doi.org/10.1016/j.neuron.2023.03.017https://doi.org/10.1016/j.neuron.2023.03.017
Hashimoto T, Volk DW, Eggan SM, et al., 2003. Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia. J Neurosci, 23(15):6315-6326. https://doi.org/10.1523/JNEUROSCI.23-15-06315.2003https://doi.org/10.1523/JNEUROSCI.23-15-06315.2003
Hashimoto T, Arion D, Unger T, et al., 2008. Alterations in GABA-related transcriptome in the dorsolateral prefrontal cortex of subjects with schizophrenia. Mol Psychiatry, 13(2):147-161. https://doi.org/10.1038/sj.mp.4002011https://doi.org/10.1038/sj.mp.4002011
Hazlett HC, Poe M, Gerig G, et al., 2005. Magnetic resonance imaging and head circumference study of brain size in autism: birth through age 2 years. Arch Gen Psychiatry, 62(12):1366-1376. https://doi.org/10.1001/archpsyc.62.12.1366https://doi.org/10.1001/archpsyc.62.12.1366
Herbert MR, Ziegler DA, Deutsch CK, et al., 2003. Dissociations of cerebral cortex, subcortical and cerebral white matter volumes in autistic boys. Brain, 126(Pt 5):1182-1192. https://doi.org/10.1093/brain/awg110https://doi.org/10.1093/brain/awg110
Huang AS, Rogers BP, Sheffield JM, et al., 2021. Characterizing effects of age, sex and psychosis symptoms on thalamocortical functional connectivity in youth. NeuroImage, 243:118562. https://doi.org/10.1016/j.neuroimage.2021.118562https://doi.org/10.1016/j.neuroimage.2021.118562
Huang WC, Zucca A, Levy J, et al., 2020. Social behavior is modulated by valence-encoding mPFC-amygdala sub-circuitry. Cell Rep, 32(2):107899. https://doi.org/10.1016/j.celrep.2020.107899https://doi.org/10.1016/j.celrep.2020.107899
Hughes JR, 2007. Autism: the first firm finding = underconnectivity?Epilepsy Behav, 11(1):20-24. https://doi.org/10.1016/j.yebeh.2007.03.010https://doi.org/10.1016/j.yebeh.2007.03.010
Hughes JR, 2008. A review of recent reports on autism: 1000 studies published in 2007. Epilepsy Behav, 13(3):425-437. https://doi.org/10.1016/j.yebeh.2008.06.015https://doi.org/10.1016/j.yebeh.2008.06.015
Kaczmarek LK, Zhang YL, 2017. Kv3 channels: enablers of rapid firing, neurotransmitter release, and neuronal endurance. Physiol Rev, 97(4):1431-1468. https://doi.org/10.1152/physrev.00002.2017https://doi.org/10.1152/physrev.00002.2017
Karlsgodt KH, Sanz J, van Erp TGM, et al., 2009. Re-evaluating dorsolateral prefrontal cortex activation during working memory in schizophrenia. Schizophr Res, 108(1-3):143-150. https://doi.org/10.1016/j.schres.2008.12.025https://doi.org/10.1016/j.schres.2008.12.025
Kehrer C, Maziashvili N, Dugladze T, et al., 2008. Altered excitatory-inhibitory balance in the NMDA-hypofunction model of schizophrenia. Front Mol Neurosci, 1:6. https://doi.org/10.3389/neuro.02.006.2008https://doi.org/10.3389/neuro.02.006.2008
Kietzman HW, Gourley SL, 2023. How social information impacts action in rodents and humans: the role of the prefrontal cortex and its connections. Neurosci Biobehav Rev, 147:105075. https://doi.org/10.1016/j.neubiorev.2023.105075https://doi.org/10.1016/j.neubiorev.2023.105075
Kietzman HW, Trinoskey-Rice G, Blumenthal SA, et al., 2022. Social incentivization of instrumental choice in mice requires amygdala-prelimbic cortex-nucleus accumbens connectivity. Nat Commun, 13:4768. https://doi.org/10.1038/s41467-022-32388-9https://doi.org/10.1038/s41467-022-32388-9
Kimoto S, Bazmi HH, Lewis DA, 2014. Lower expression of glutamic acid decarboxylase 67 in the prefrontal cortex in schizophrenia: contribution of altered regulation by Zif268. Am J Psychiatry, 171(9):969-978. https://doi.org/10.1176/appi.ajp.2014.14010004https://doi.org/10.1176/appi.ajp.2014.14010004
Kleinhans NM, Reiter MA, Neuhaus E, et al., 2016. Subregional differences in intrinsic amygdala hyperconnectivity and hypoconnectivity in autism spectrum disorder. Autism Res, 9(7):760-772. https://doi.org/10.1002/aur.1589https://doi.org/10.1002/aur.1589
Klune CB, Jin B, DeNardo LA, 2021. Linking mPFC circuit maturation to the developmental regulation of emotional memory and cognitive flexibility. eLife, 10:e64567. https://doi.org/10.7554/eLife.64567https://doi.org/10.7554/eLife.64567
Kolb B, Mychasiuk R, Muhammad A, et al., 2012. Experience and the developing prefrontal cortex. Proc Natl Acad Sci USA, 109(S2):17186-17193. https://doi.org/10.1073/pnas.1121251109https://doi.org/10.1073/pnas.1121251109
Kruse AO, Bustillo JR, 2022. Glutamatergic dysfunction in Schizophrenia. Transl Psychiatry, 12:500. https://doi.org/10.1038/s41398-022-02253-whttps://doi.org/10.1038/s41398-022-02253-w
Kumar A, Sundaram SK, Sivaswamy L, et al., 2010. Alterations in frontal lobe tracts and corpus callosum in young children with autism spectrum disorder. Cereb Cortex, 20(9):2103-2113. https://doi.org/10.1093/cercor/bhp278https://doi.org/10.1093/cercor/bhp278
Lee E, Rhim I, Lee JW, et al., 2016. Enhanced neuronal activity in the medial prefrontal cortex during social approach behavior. J Neurosci, 36(26):6926-6936. https://doi.org/10.1523/JNEUROSCI.0307-16.2016https://doi.org/10.1523/JNEUROSCI.0307-16.2016
Lee J, Chung C, Ha S, et al., 2015. Shank3-mutant mice lacking exon 9 show altered excitation/inhibition balance, enhanced rearing, and spatial memory deficit. Front Cell Neurosci, 9:94. https://doi.org/10.3389/fncel.2015.00094https://doi.org/10.3389/fncel.2015.00094
Lewis DA, 1997. Development of the prefrontal cortex during adolescence: insights into vulnerable neural circuits in schizophrenia. Neuropsychopharmacology, 16(6):385-398. https://doi.org/10.1016/S0893-133X(96)00277-1https://doi.org/10.1016/S0893-133X(96)00277-1
Li K, Nakajima M, Ibañez-Tallon I, et al., 2016. A cortical circuit for sexually dimorphic oxytocin-dependent anxiety behaviors. Cell, 167(1):60-72.e11. https://doi.org/10.1016/j.cell.2016.08.067https://doi.org/10.1016/j.cell.2016.08.067
Li Q, Takeuchi Y, Wang JL, et al., 2023. Reinstating olfactory bulb-derived limbic gamma oscillations alleviates depression-like behavioral deficits in rodents. Neuron, 111(13):2065-2075.e5. https://doi.org/10.1016/j.neuron.2023.04.013https://doi.org/10.1016/j.neuron.2023.04.013
Liang B, Zhang LF, Barbera G, et al., 2018. Distinct and dynamic ON and OFF neural ensembles in the prefrontal cortex code social exploration. Neuron, 100(3):700-714.e9. https://doi.org/10.1016/j.neuron.2018.08.043https://doi.org/10.1016/j.neuron.2018.08.043
Liang J, Xu W, Hsu YT, et al., 2015. Conditional neuroligin-2 knockout in adult medial prefrontal cortex links chronic changes in synaptic inhibition to cognitive impairments. Mol Psychiatry, 20(7):850-859. https://doi.org/10.1038/mp.2015.31https://doi.org/10.1038/mp.2015.31
Liu D, Tang QQ, Yin C, et al., 2018. Brain-derived neurotrophic factor-mediated projection-specific regulation of depressive-like and nociceptive behaviors in the mesolimbic reward circuitry. Pain, 159(1):175. https://doi.org/10.1097/j.pain.0000000000001083https://doi.org/10.1097/j.pain.0000000000001083
Liu L, Xu HF, Wang J, et al., 2020. Cell type-differential modulation of prefrontal cortical GABAergic interneurons on low gamma rhythm and social interaction. Sci Adv, 6(30):eaay4073. https://doi.org/10.1126/sciadv.aay4073https://doi.org/10.1126/sciadv.aay4073
Luna B, Minshew NJ, Garver KE, et al., 2002. Neocortical system abnormalities in autism: an fMRI study of spatial working memory. Neurology, 59(6):834-840. https://doi.org/10.1212/wnl.59.6.834https://doi.org/10.1212/wnl.59.6.834
Martínez K, Martínez-García M, Marcos-Vidal L, et al., 2020. Sensory-to-cognitive systems integration is associated with clinical severity in autism spectrum disorder. J Am Acad Child Adolesc Psychiatry, 59(3):422-433. https://doi.org/10.1016/j.jaac.2019.05.033https://doi.org/10.1016/j.jaac.2019.05.033
Martinez-Losa M, Tracy TE, Ma KR, et al., 2018. Nav1.1-overexpressing interneuron transplants restore brain rhythms and cognition in a mouse model of Alzheimer’s disease. Neuron, 98(1):75-89.e5. https://doi.org/10.1016/j.neuron.2018.02.029https://doi.org/10.1016/j.neuron.2018.02.029
Martínez-Sanchis S, 2014. Neurobiological foundations of multisensory integration in people with autism spectrum disorders: the role of the medial prefrontal cortex. Front Hum Neurosci, 8:970. https://doi.org/10.3389/fnhum.2014.00970https://doi.org/10.3389/fnhum.2014.00970
McGraw LA, Young LJ, 2010. The prairie vole: an emerging model organism for understanding the social brain. Trends Neurosci, 33(2):103-109. https://doi.org/10.1016/j.tins.2009.11.006https://doi.org/10.1016/j.tins.2009.11.006
McRae K, Gross JJ, 2020. Emotion regulation. Emotion, 20(1):1-9. https://doi.org/10.1037/emo0000703https://doi.org/10.1037/emo0000703
Michelsen KA, Prickaerts J, Steinbusch HWM, 2008. The dorsal raphe nucleus and serotonin: implications for neuroplasticity linked to major depression and Alzheimer’s disease. Prog Brain Res, 172:233-264. https://doi.org/10.1016/S0079-6123(08)00912-6https://doi.org/10.1016/S0079-6123(08)00912-6
Millan MJ, Bales KL, 2013. Towards improved animal models for evaluating social cognition and its disruption in schizophrenia: the CNTRICS initiative. Neurosci Biobehav Rev, 37(9):2166-2180. https://doi.org/10.1016/j.neubiorev.2013.09.012https://doi.org/10.1016/j.neubiorev.2013.09.012
Mitchell JP, Macrae CN, Banaji MR, 2006. Dissociable medial prefrontal contributions to judgments of similar and dissimilar others. Neuron, 50(4):655-663. https://doi.org/10.1016/j.neuron.2006.03.040https://doi.org/10.1016/j.neuron.2006.03.040
Mitelman SA, Byne W, Kemether EM, et al., 2005. Metabolic disconnection between the mediodorsal nucleus of the thalamus and cortical Brodmann’s areas of the left hemisphere in schizophrenia. Am J Psychiatry, 162(9):1733-1735. https://doi.org/10.1176/appi.ajp.162.9.1733https://doi.org/10.1176/appi.ajp.162.9.1733
Morris HM, Hashimoto T, Lewis DA, 2008. Alterations in somatostatin mRNA expression in the dorsolateral prefrontal cortex of subjects with schizophrenia or schizoaffective disorder. Cereb Cortex, 18(7):1575-1587. https://doi.org/10.1093/cercor/bhm186https://doi.org/10.1093/cercor/bhm186
Moy SS, Nadler JJ, Perez A, et al., 2004. Sociability and preference for social novelty in five inbred strains: an approach to assess autistic-like behavior in mice. Genes Brain Behav, 3(5):287-302. https://doi.org/10.1111/j.1601-1848.2004.00076.xhttps://doi.org/10.1111/j.1601-1848.2004.00076.x
Müller NG, Machado L, Knight RT, 2002. Contributions of subregions of the prefrontal cortex to working memory: evidence from brain lesions in humans. J Cogn Neurosci, 14(5):673-686. https://doi.org/10.1162/08989290260138582https://doi.org/10.1162/08989290260138582
Murray AJ, Woloszynowska-Fraser MU, Ansel-Bollepalli L, et al., 2015. Parvalbumin-positive interneurons of the prefrontal cortex support working memory and cognitive flexibility. Sci Rep, 5:16778. https://doi.org/10.1038/srep16778https://doi.org/10.1038/srep16778
Murugan M, Jang HJ, Park M, et al., 2017. Combined social and spatial coding in a descending projection from the prefrontal cortex. Cell, 171(7):1663-1677.e16. https://doi.org/10.1016/j.cell.2017.11.002https://doi.org/10.1016/j.cell.2017.11.002
Nakajima M, Görlich A, Heintz N, 2014. Oxytocin modulates female sociosexual behavior through a specific class of prefrontal cortical interneurons. Cell, 159(2):295-305. https://doi.org/10.1016/j.cell.2014.09.020https://doi.org/10.1016/j.cell.2014.09.020
Nakazawa K, Jeevakumar V, Nakao K, 2017. Spatial and temporal boundaries of NMDA receptor hypofunction leading to schizophrenia. npj Schizophr, 3:7. https://doi.org/10.1038/s41537-016-0003-3https://doi.org/10.1038/s41537-016-0003-3
Ogiwara I, Miyamoto H, Morita N, et al., 2007. Nav1.1 localizes to axons of parvalbumin-positive inhibitory interneurons: a circuit basis for epileptic seizures in mice carrying an Scn1a gene mutation. J Neurosci, 27(22):5903-5914. https://doi.org/10.1523/JNEUROSCI.5270-06.2007https://doi.org/10.1523/JNEUROSCI.5270-06.2007
Ohnishi T, Matsuda H, Hashimoto T, et al., 2000. Abnormal regional cerebral blood flow in childhood autism. Brain, 123(Pt 9):1838-1844. https://doi.org/10.1093/brain/123.9.1838https://doi.org/10.1093/brain/123.9.1838
Okuyama T, Kitamura T, Roy DS, et al., 2016. Ventral CA1 neurons store social memory. Science, 353(6307):1536-1541. https://doi.org/10.1126/science.aaf7003https://doi.org/10.1126/science.aaf7003
Padilla-Coreano N, Batra K, Patarino M, et al., 2022. Cortical ensembles orchestrate social competition through hypothalamic outputs. Nature, 603(7902):667-671. https://doi.org/10.1038/s41586-022-04507-5https://doi.org/10.1038/s41586-022-04507-5
Palagi E, Burghardt GM, Smuts B, et al., 2016. Rough-and-tumble play as a window on animal communication. Biol Rev, 91(2):311-327. https://doi.org/10.1111/brv.12172https://doi.org/10.1111/brv.12172
Pellis SM, Pellis VC, Ham JR, et al., 2023. Play fighting and the development of the social brain: the rat’s tale. Neurosci Biobehav Rev, 145:105037. https://doi.org/10.1016/j.neubiorev.2023.105037https://doi.org/10.1016/j.neubiorev.2023.105037
Rafiee F, Rezvani Habibabadi R, Motaghi M, et al., 2022. Brain MRI in autism spectrum disorder: narrative review and recent advances. J Magn Reson Imaging, 55(6):1613-1624. https://doi.org/10.1002/jmri.27949https://doi.org/10.1002/jmri.27949
Rane P, Cochran D, Hodge SM, et al., 2015. Connectivity in autism: a review of MRI connectivity studies. Harv Rev Psychiatry, 23(4):223-244. https://doi.org/10.1097/HRP.0000000000000072https://doi.org/10.1097/HRP.0000000000000072
Rein B, Tan T, Yang FW, et al., 2021. Reversal of synaptic and behavioral deficits in a 16p11.2 duplication mouse model via restoration of the GABA synapse regulator Npas4. Mol Psychiatry, 26(6):1967-1979. https://doi.org/10.1038/s41380-020-0693-9https://doi.org/10.1038/s41380-020-0693-9
Rudebeck PH, Walton ME, Millette BHP, et al., 2007. Distinct contributions of frontal areas to emotion and social behaviour in the rat. Eur J Neurosci, 26(8):2315-2326. https://doi.org/10.1111/j.1460-9568.2007.05844.xhttps://doi.org/10.1111/j.1460-9568.2007.05844.x
Sacco R, Gabriele S, Persico AM, 2015. Head circumference and brain size in autism spectrum disorder: a systematic review and meta-analysis. Psychiatry Res Neuroimaging, 234(2):239-251. https://doi.org/10.1016/j.pscychresns.2015.08.016https://doi.org/10.1016/j.pscychresns.2015.08.016
Sarawagi A, Soni ND, Patel AB, 2021. Glutamate and GABA homeostasis and neurometabolism in major depressive disorder. Front Psychiatry, 12:637863. https://doi.org/10.3389/fpsyt.2021.637863https://doi.org/10.3389/fpsyt.2021.637863
Sceniak MP, Lang M, Enomoto AC, et al., 2016. Mechanisms of functional hypoconnectivity in the medial prefrontal cortex of Mecp2 null mice. Cereb Cortex, 26(5):1938-1956. https://doi.org/10.1093/cercor/bhv002https://doi.org/10.1093/cercor/bhv002
Scheggia D, Managò F, Maltese F, et al., 2020. Somatostatin interneurons in the prefrontal cortex control affective state discrimination in mice. Nat Neurosci, 23(1):47-60. https://doi.org/10.1038/s41593-019-0551-8https://doi.org/10.1038/s41593-019-0551-8
Selemon LD, Zecevic N, 2015. Schizophrenia: a tale of two critical periods for prefrontal cortical development. Transl Psychiatry, 5(8):e623. https://doi.org/10.1038/tp.2015.115https://doi.org/10.1038/tp.2015.115
Selimbeyoglu A, Kim CK, Inoue M, et al., 2017. Modulation of prefrontal cortex excitation/inhibition balance rescues social behavior in CNTNAP2-deficient mice. Sci Transl Med, 9(401):eaah6733. https://doi.org/10.1126/scitranslmed.aah6733https://doi.org/10.1126/scitranslmed.aah6733
Shemesh Y, Sztainberg Y, Forkosh O, et al., 2013. High-order social interactions in groups of mice. eLife, 2:e00759. https://doi.org/10.7554/eLife.00759https://doi.org/10.7554/eLife.00759
Sohal VS, Zhang F, Yizhar O, et al., 2009. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature, 459(7247):698-702. https://doi.org/10.1038/nature07991https://doi.org/10.1038/nature07991
Su MH, Hu KJ, Liu W, et al., 2024. Theta oscillations support prefrontal-hippocampal interactions in sequential working memory. Neurosci Bull, 40:147-156. https://doi.org/10.1007/s12264-023-01134-6https://doi.org/10.1007/s12264-023-01134-6
Sun QT, Li XN, Li AN, et al., 2020. Ventral hippocampal-prefrontal interaction affects social behavior via parvalbumin positive neurons in the medial prefrontal cortex. iScience, 23(3):100894. https://doi.org/10.1016/j.isci.2020.100894https://doi.org/10.1016/j.isci.2020.100894
Tan YL, Singhal SM, Harden SW, et al., 2019. Oxytocin receptors are expressed by glutamatergic prefrontal cortical neurons that selectively modulate social recognition. J Neurosci, 39(17):3249-3263. https://doi.org/10.1523/JNEUROSCI.2944-18.2019https://doi.org/10.1523/JNEUROSCI.2944-18.2019
Uddin LQ, Supekar K, Menon V, 2013. Reconceptualizing functional brain connectivity in autism from a developmental perspective. Front Hum Neurosci, 7:458. https://doi.org/10.3389/fnhum.2013.00458https://doi.org/10.3389/fnhum.2013.00458
Varlinskaya EI, Spear LP, Spear NE, 1999. Social behavior and social motivation in adolescent rats: role of housing conditions and partner’s activity. Physiol Behav, 67(4):475-482. https://doi.org/10.1016/s0031-9384(98)00285-6https://doi.org/10.1016/s0031-9384(98)00285-6
Vawter MP, Crook JM, Hyde TM, et al., 2002. Microarray analysis of gene expression in the prefrontal cortex in schizophrenia: a preliminary study. Schizophr Res, 58(1):11-20. https://doi.org/10.1016/s0920-9964(01)00377-2https://doi.org/10.1016/s0920-9964(01)00377-2
Vissers ME, Cohen MX, Geurts HM, 2012. Brain connectivity and high functioning autism: a promising path of research that needs refined models, methodological convergence, and stronger behavioral links. Neurosci Biobehav Rev, 36(1):604-625. https://doi.org/10.1016/j.neubiorev.2011.09.003https://doi.org/10.1016/j.neubiorev.2011.09.003
Wang F, Zhu J, Zhu H, et al., 2011. Bidirectional control of social hierarchy by synaptic efficacy in medial prefrontal cortex. Science, 334(6056):693-697. https://doi.org/10.1126/science.1209951https://doi.org/10.1126/science.1209951
Wang F, Kessels HW, Hu HL, 2014. The mouse that roared: neural mechanisms of social hierarchy. Trends Neurosci, 37(11):674-682. https://doi.org/10.1016/j.tins.2014.07.005https://doi.org/10.1016/j.tins.2014.07.005
Wang W, Rein B, Zhang F, et al., 2018. Chemogenetic activation of prefrontal cortex rescues synaptic and behavioral deficits in a mouse model of 16p11.2 deletion syndrome. J Neurosci, 38(26):5939-5948. https://doi.org/10.1523/JNEUROSCI.0149-18.2018https://doi.org/10.1523/JNEUROSCI.0149-18.2018
Weinberger DR, Berman KF, 1996. Prefrontal function in schizophrenia: confounds and controversies. Philos Trans Roy Soc B Biol Sci, 351(1346):1495-1503. https://doi.org/10.1098/rstb.1996.0135https://doi.org/10.1098/rstb.1996.0135
Woo TUW, Kim AM, Viscidi E, 2008. Disease-specific alterations in glutamatergic neurotransmission on inhibitory interneurons in the prefrontal cortex in schizophrenia. Brain Res, 1218:267-277. https://doi.org/10.1016/j.brainres.2008.03.092https://doi.org/10.1016/j.brainres.2008.03.092
Woodward ND, Heckers S, 2016. Mapping thalamocortical functional connectivity in chronic and early stages of psychotic disorders. Biol Psychiatry, 79(12):1016-1025. https://doi.org/10.1016/j.biopsych.2015.06.026https://doi.org/10.1016/j.biopsych.2015.06.026
Woodward ND, Karbasforoushan H, Heckers S, 2012. Thalamocortical dysconnectivity in schizophrenia. Am J Psychiatry, 169(10):1092-1099. https://doi.org/10.1176/appi.ajp.2012.12010056https://doi.org/10.1176/appi.ajp.2012.12010056
Yizhar O, Fenno LE, Prigge M, et al., 2011. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature, 477(7363):171-178. https://doi.org/10.1038/nature10360https://doi.org/10.1038/nature10360
Zhang CY, Zhu H, Ni ZY, et al., 2022. Dynamics of a disinhibitory prefrontal microcircuit in controlling social competition. Neuron, 110(3):516-531.e6. https://doi.org/10.1016/j.neuron.2021.10.034https://doi.org/10.1016/j.neuron.2021.10.034
Zhang MQ, Palaniyappan L, Deng MJ, et al., 2021. Abnormal thalamocortical circuit in adolescents with early-onset schizophrenia. J Am Acad Child Adolesc Psychiatry, 60(4):479-489. https://doi.org/10.1016/j.jaac.2020.07.903https://doi.org/10.1016/j.jaac.2020.07.903
Zhou TT, Sandi C, Hu HL, 2018. Advances in understanding neural mechanisms of social dominance. Curr Opin Neurobiol, 49:99-107. https://doi.org/10.1016/j.conb.2018.01.006https://doi.org/10.1016/j.conb.2018.01.006
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构