无数据
Scan QR Code
1.Department of Critical Care Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China
2.Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
3.Xianghu Laboratory, Hangzhou 311231, China
4.Clinical Research Institute, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou 310014, China
5.Center for Reproductive Medicine, Department of Gynecology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou 310014, China
6.Graduate School of Zhejiang Chinese Medical University, Hangzhou 310053, China
7.State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
8.General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou 310014, China
纸质出版日期: 2024-09-15 ,
网络出版日期: 2024-09-12 ,
收稿日期: 2023-10-06 ,
修回日期: 2023-12-17 ,
邹海,张梦宇,杨雪等.木犀草苷通过调节AMPK/SIRT3/Nrf2通路抑制阿霉素诱导的心肌细胞焦亡[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2024,25(09):756-772.
Hai ZOU, Mengyu ZHANG, Xue YANG, et al. Cynaroside regulates the AMPK/SIRT3/Nrf2 pathway to inhibit doxorubicin-induced cardiomyocyte pyroptosis[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2024,25(9):756-772.
邹海,张梦宇,杨雪等.木犀草苷通过调节AMPK/SIRT3/Nrf2通路抑制阿霉素诱导的心肌细胞焦亡[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2024,25(09):756-772. DOI: 10.1631/jzus.B2300691.
Hai ZOU, Mengyu ZHANG, Xue YANG, et al. Cynaroside regulates the AMPK/SIRT3/Nrf2 pathway to inhibit doxorubicin-induced cardiomyocyte pyroptosis[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2024,25(9):756-772. DOI: 10.1631/jzus.B2300691.
阿霉素(DOX)是一种可用于治疗血液系统恶性肿瘤及实体瘤的常用化疗药物,但其临床应用受到明显的心脏毒性的限制。木犀草苷(Cyn)是一种存在于金银花中的类黄酮苷类化合物,具有调节炎症、细胞焦亡和氧化应激等潜在的生物学功能。本研究通过每周一次腹腔注射DOX(5 mg/kg)并连续注射三周以构建DOX诱导的心脏毒性(DI
C)小鼠模型,用于评估Cyn的作用。治疗组小鼠每两天给予右唑嗪、MCC950和Cyn处理。通过血液生化、组织病理学、免疫组织化学、定量反转录聚合酶链反应(RT-qPCR)和蛋白质印迹(western blotting)等方法探讨Cyn治疗对心脏的保护作用及其可能机制。研究结果显示,Cyn治疗在缓解DIC方面具有显著的效果,能在一定程度上有效缓解氧化应激,维持细胞凋亡平衡并增强小鼠心脏功能。上述这些作用主要通过调节核苷酸结合寡聚化结构域样受体蛋白3(
NLRP3
)、半胱氨酸天冬氨酸蛋白酶-1(
caspase-1
)和
GSDMD
等与焦亡相关基因的转录水平来实现。此外,机制研究表明,Cyn可以显著调节DOX诱导心肌损伤小鼠组织中关键基因5'-磷酸腺苷活化蛋白激酶(
AMPK
)、过氧化物酶体增殖物激活受体γ共激活剂-1α(
PGC-1α
)、去乙酰化酶Sirtuin3(
SIRT3
)和核因子-E2相关因子2(
Nrf2
)的表达,因此我们推测AMPK/SIRT3/Nrf2通路在对抗DOX诱导的心肌细胞损伤中起着核心作用。综上所述,本研究证实了Cyn通过调节AMPK/SIRT3/Nrf2通路在治疗DIC方面的潜力。
Doxorubicin (DOX) is a commonly administered chemotherapy drug for treating hematological malignancies and solid tumors; however
its clinical application is limited by significant cardiotoxicity. Cynaroside (Cyn) is a flavonoid glycoside distributed in ho
neysuckle
with confirmed potential biological functions in regulating inflammation
pyroptosis
and oxidative stress. Herein
the effects of Cyn were evaluated in a DOX-induced cardiotoxicity (DIC) mouse model
which was established by intraperitoneal injections of DOX (5 mg/kg) once a week for three weeks. The mice in the treatment group received dexrazoxane
MCC950
and Cyn every two days. Blood biochemistry
histopathology
immunohistochemistry
reverse transcription-quantitative polymerase chain reaction (RT-qPCR)
and western blotting were conducted to investigate the cardioprotective effects and potential mechanisms of Cyn treatment. The results demonstrated the significant benefits of Cyn treatment in mitigating DIC; it could effectively alleviate oxidative stress to a certain extent
maintain the equilibrium of cell apoptosis
and enhance the cardiac function of mice. These effects were realized via regulating the transcription levels of pyroptosis-related genes
such as nucleotide-binding oligomerization domain-like receptor protein 3 (
NLRP3
)
caspase-1
and gasdermin D (
GSDMD
). Mechanistically
for DOX-induced myocardial injury
Cyn could significantly modulate the expression of pivotal genes
including adenosine monophosphate-activated protein kinase (
AMPK
)
peroxisome proliferator-activated receptor γ coactivator-1α (
PGC-1α
)
sirtuin 3 (
SIRT3
)
and nuclear factor erythroid 2-related factor 2 (
Nrf2
). We attribute it to the mediation of AMPK/SIRT3/Nrf2 pathway
which plays a central role in preventing DOX-induced cardiomyocyte injury. In conclusion
the present study confirms the therapeutic potential of Cyn in DIC by regulating the AMPK/SIRT3/Nrf2 pathway.
木犀草苷阿霉素焦亡心脏毒性氧化应激
CynarosideDoxorubicinPyroptosisCardiotoxicityOxidative stress
Amin FM, Sharawy MH, Amin MN, et al., 2023. Nifuroxazide mitigates doxorubicin-induced cardiovascular injury: insight into oxidative/NLRP3/GSDMD-mediated pyroptotic signaling modulation. Life Sci, 314:121311. https://doi.org/10.1016/j.lfs.2022.121311https://doi.org/10.1016/j.lfs.2022.121311
Bian HT, Wang GH, Huang JJ, et al., 2020. Dihydrolipoic acid protects against lipopolysaccharide-induced behavioral deficits and neuroinflammation via regulation of Nrf2/HO-1/NLRP3 signaling in rat. J Neuroinflammation, 17(1):166. https://doi.org/10.1186/s12974-020-01836-yhttps://doi.org/10.1186/s12974-020-01836-y
Bouyahya A, Taha D, Benali T, et al., 2023. Natural sources, biological effects, and pharmacological properties of cynaroside. Biomed Pharmacother, 161:114337. https://doi.org/10.1016/j.biopha.2023.114337https://doi.org/10.1016/j.biopha.2023.114337
Chen Y, Liu YH, Jiang K, et al., 2023. Linear ubiquitination of LKB1 activates AMPK pathway to inhibit NLRP3 inflammasome response and reduce chondrocyte pyroptosis in osteoarthritis. J Orthop Translat, 39:1-11. https://doi.org/10.1016/j.jot.2022.11.002https://doi.org/10.1016/j.jot.2022.11.002
Chen ZM, Zhong H, Wei JS, et al., 2019. Inhibition of Nrf2/HO-1 signaling leads to increased activation of the NLRP3 inflammasome in osteoarthritis. Arthritis Res Ther, 21:300. https://doi.org/10.1186/s13075-019-2085-6https://doi.org/10.1186/s13075-019-2085-6
Coll RC, Hill JR, Day CJ, et al., 2019. MCC950 directly targets the NLRP3 ATP-hydrolysis motif for inflammasome inhibition. Nat Chem Biol, 15(6):556-559. https://doi.org/10.1038/s41589-019-0277-7https://doi.org/10.1038/s41589-019-0277-7
Coll RC, Schroder K, Pelegrín P, 2022. NLRP3 and pyroptosis blockers for treating inflammatory diseases. Trends Pharmacol Sci, 43(8):653-668. https://doi.org/10.1016/j.tips.2022.04.003https://doi.org/10.1016/j.tips.2022.04.003
Feng JF, Liu ZJ, Chen H, et al., 2021. Protective effect of cynaroside on sepsis-induced multiple organ injury through Nrf2/HO-1-dependent macrophage polarization. Eur J Pharmacol, 911:174522. https://doi.org/10.1016/j.ejphar.2021.174522https://doi.org/10.1016/j.ejphar.2021.174522
Feng JH, Dong XW, Yu HL, et al., 2021. Cynaroside protects the blue light-induced retinal degeneration through alleviating apoptosis and inducing autophagy in vitro and in vivo. Phytomedicine, 88:153604. https://doi.org/10.1016/j.phymed.2021.153604https://doi.org/10.1016/j.phymed.2021.153604
Filomena D, Versacci P, Cimino S, et al., 2020. Echocardiographic long-term follow-up of adult survivors of pediatric cancer treated with Dexrazoxane-Anthracyclines association. Int J Cardiol, 299:271-275. https://doi.org/10.1016/j.ijcard.2019.07.096https://doi.org/10.1016/j.ijcard.2019.07.096
Fu Q, Li J, Qiu LL, et al., 2020. Inhibiting NLRP3 inflammasome with MCC950 ameliorates perioperative neurocognitive disorders, suppressing neuroinflammation in the hippocampus in aged mice. Int Immunopharmacol, 82:106317. https://doi.org/10.1016/j.intimp.2020.106317https://doi.org/10.1016/j.intimp.2020.106317
Grover SP, Bharathi V, Posma JJ, et al., 2023. Thrombin-mediated activation of PAR1 enhances doxorubicin-induced cardiac injury in mice. Blood Adv, 7(10):1945-1953. https://doi.org/10.1182/bloodadvances.2022008637https://doi.org/10.1182/bloodadvances.2022008637
Gu JW, Huang H, Liu CL, et al., 2021. Pinocembrin inhibited cardiomyocyte pyroptosis against doxorubicin-induced cardiac dysfunction via regulating Nrf2/Sirt3 signaling pathway. Int Immunopharmacol, 95:107533. https://doi.org/10.1016/j.intimp.2021.107533https://doi.org/10.1016/j.intimp.2021.107533
Guo Z, Tuo H, Tang N, et al., 2022. Neuraminidase 1 deficiency attenuates cardiac dysfunction, oxidative stress, fibrosis, inflammatory via AMPK-SIRT3 pathway in diabetic cardiomyopathy mice. Int J Biol Sci, 18(2):826-840. https://doi.org/10.7150/ijbs.65938https://doi.org/10.7150/ijbs.65938
Lee SA, Park BR, Moon SM, et al., 2020. Cynaroside protects human periodontal ligament cells from lipopolysaccharide-induced damage and inflammation through suppression of NF-κB activation. Arch Oral Biol, 120:104944. https://doi.org/10.1016/j.archoralbio.2020.104944https://doi.org/10.1016/j.archoralbio.2020.104944
Liang Q, Cai WY, Zhao YX, et al., 2020. Lycorine ameliorates bleomycin-induced pulmonary fibrosis via inhibiting NLRP3 inflammasome activation and pyroptosis. Pharmacol Res, 158:104884. https://doi.org/10.1016/j.phrs.2020.104884https://doi.org/10.1016/j.phrs.2020.104884
Lin YQ, Luo TY, Weng AL, et al., 2020. Gallic acid alleviates gouty arthritis by inhibiting NLRP3 inflammasome activation and pyroptosis through enhancing Nrf2 signaling. Front Immunol, 11:580593. https://doi.org/10.3389/fimmu.2020.580593https://doi.org/10.3389/fimmu.2020.580593
Liu DW, Zhao L, 2022. Spinacetin alleviates doxorubicin-induced cardiotoxicity by initiating protective autophagy through SIRT3/AMPK/mTOR pathways. Phytomedicine, 101:154098. https://doi.org/10.1016/j.phymed.2022.154098https://doi.org/10.1016/j.phymed.2022.154098
Macedo AVS, Hajjar LA, Lyon AR, et al., 2019. Efficacy of dexrazoxane in preventing anthracycline cardiotoxicity in breast cancer. JACC CardioOncol, 1(1):68-79. https://doi.org/10.1016/j.jaccao.2019.08.003https://doi.org/10.1016/j.jaccao.2019.08.003
Mangan MSJ, Olhava EJ, Roush WR, et al., 2018. Targeting the NLRP3 inflammasome in inflammatory diseases. Nat Rev Drug Discov, 17(8):588-606. https://doi.org/10.1038/nrd.2018.97https://doi.org/10.1038/nrd.2018.97
Meng LP, Lin H, Zhang J, et al., 2019. Doxorubicin induces cardiomyocyte pyroptosis via the TINCR-mediated posttranscriptional stabilization of NLR family pyrin domain containing 3. J Mol Cell Cardiol, 136:15-26. https://doi.org/10.1016/j.yjmcc.2019.08.009https://doi.org/10.1016/j.yjmcc.2019.08.009
Naderi Y, Khosraviani S, Nasiri S, et al., 2023. Cardioprotective effects of minocycline against doxorubicin-induced cardiotoxicity. Biomed Pharmacother, 158:114055. https://doi.org/10.1016/j.biopha.2022.114055https://doi.org/10.1016/j.biopha.2022.114055
Pei LH, Le YF, Chen H, et al., 2021. Cynaroside prevents macrophage polarization into pro-inflammatory phenotype and alleviates cecal ligation and puncture-induced liver injury by targeting PKM2/HIF-1α axis. Fitoterapia, 152:104922. https://doi.org/10.1016/j.fitote.2021.104922https://doi.org/10.1016/j.fitote.2021.104922
Rawat PS, Jaiswal A, Khurana A, et al., 2021. Doxorubicin-induced cardiotoxicity: an update on the molecular mechanism and novel therapeutic strategies for effective management. Biomed Pharmacother, 139:111708. https://doi.org/10.1016/j.biopha.2021.111708https://doi.org/10.1016/j.biopha.2021.111708
Sayed N, Khurana A, Godugu C, 2019. Pharmaceutical perspective on the translational hurdles of phytoconstituents and strategies to overcome. J Drug Deliv Sci Technol, 53:101201. https://doi.org/10.1016/j.jddst.2019.101201https://doi.org/10.1016/j.jddst.2019.101201
Stamm P, Kirmes I, Palmer A, et al., 2021. Doxorubicin induces wide-spread transcriptional changes in the myocardium of hearts distinguishing between mice with preserved and impaired cardiac function. Life Sci, 284:119879. https://doi.org/10.1016/j.lfs.2021.119879https://doi.org/10.1016/j.lfs.2021.119879
Sun W, Liu CX, Chen QH, et al., 2018. SIRT3: a new regulator of cardiovascular diseases. Oxid Med Cell Longev, 2018:7293861. https://doi.org/10.1155/2018/7293861https://doi.org/10.1155/2018/7293861
Sun X, Sun GB, Wang M, et al., 2011. Protective effects of cynaroside against H2O2-induced apoptosis in H9c2 cardiomyoblasts. J Cell Biochem, 112(8):2019-2029. https://doi.org/10.1002/jcb.23121https://doi.org/10.1002/jcb.23121
Tan X, Zhang RY, Lan MD, et al., 2023. Integration of transcriptomics, metabolomics, and lipidomics reveals the mechanisms of doxorubicin-induced inflammatory responses and myocardial dysfunction in mice. Biomed Pharmacother, 162:114733. https://doi.org/10.1016/j.biopha.2023.114733https://doi.org/10.1016/j.biopha.2023.114733
Wang DM, Cao LY, Zhou X, et al., 2022. Mitigation of honokiol on fluoride-induced mitochondrial oxidative stress, mitochondrial dysfunction, and cognitive deficits through activating AMPK/PGC-1α/Sirt3. J Hazard Mater, 437:129381. https://doi.org/10.1016/j.jhazmat.2022.129381https://doi.org/10.1016/j.jhazmat.2022.129381
Wang X, Gao YH, Tian YH, et al., 2020. Integrative serum metabolomics and network analysis on mechanisms exploration of Ling-Gui-Zhu-Gan Decoction on doxorubicin-induced heart failure mice. J Ethnopharmacol, 250:112397. https://doi.org/10.1016/j.jep.2019.112397https://doi.org/10.1016/j.jep.2019.112397
Wang ZR, Yao MR, Jiang LY, et al., 2022. Dexmedetomidine attenuates myocardial ischemia/reperfusion-induced ferroptosis via AMPK/GSK-3β/Nrf2 axis. Biomed Pharmacother, 154:113572. https://doi.org/10.1016/j.biopha.2022.113572https://doi.org/10.1016/j.biopha.2022.113572
Wu J, Zeng ZH, Zhang WJ, et al., 2019. Emerging role of SIRT3 in mitochondrial dysfunction and cardiovascular diseases. Free Radic Res, 53(2):139-149. https://doi.org/10.1080/10715762.2018.1549732https://doi.org/10.1080/10715762.2018.1549732
Xiao L, Dai ZW, Tang WJ, et al., 2021. Astragaloside IV alleviates cerebral ischemia-reperfusion injury through NLRP3 inflammasome-mediated pyroptosis inhibition via activating Nrf2. Oxid Med Cell Longev, 2021:9925561. https://doi.org/10.1155/2021/9925561https://doi.org/10.1155/2021/9925561
Xiong X, Lu LH, Wang ZY, et al., 2022. Irisin attenuates sepsis-induced cardiac dysfunction by attenuating inflammation-induced pyroptosis through a mitochondrial ubiquitin ligase-dependent mechanism. Biomed Pharmacother, 152:113199. https://doi.org/10.1016/j.biopha.2022.113199https://doi.org/10.1016/j.biopha.2022.113199
Yao Y, Wang HH, Yang Y, et al., 2023. Dehydroepiandrosterone protects against oleic acid-triggered mitochondrial dysfunction to relieve oxidative stress and inflammation via activation of the AMPK-Nrf2 axis by targeting GPR30 in hepatocytes. Mol Immunol, 155:110-123. https://doi.org/10.1016/j.molimm.2023.01.008https://doi.org/10.1016/j.molimm.2023.01.008
Yin YL, Niu QQ, Hou HY, et al., 2022. PAE ameliorates doxorubicin-induced cardiotoxicity via suppressing NHE1 phosphorylation and stimulating PI3K/AKT phosphorylation. Int Immunopharmacol, 113:109274. https://doi.org/10.1016/j.intimp.2022.109274https://doi.org/10.1016/j.intimp.2022.109274
Yu HL, Li JY, Hu XL, et al., 2019. Protective effects of cynaroside on oxidative stress in retinal pigment epithelial cells. J Biochem Mol Toxicol, 33(8):e22352. https://doi.org/10.1002/jbt.22352https://doi.org/10.1002/jbt.22352
Yu P, Zhang X, Liu N, et al., 2021. Pyroptosis: mechanisms and diseases. Signal Transduct Target Ther, 6:128. https://doi.org/10.1038/s41392-021-00507-5https://doi.org/10.1038/s41392-021-00507-5
Yu XX, Ruan Y, Huang XQ, et al., 2020. Dexrazoxane ameliorates doxorubicin-induced cardiotoxicity by inhibiting both apoptosis and necroptosis in cardiomyocytes. Biochem Biophys Res Commun, 523(1):140-146. https://doi.org/10.1016/j.bbrc.2019.12.027https://doi.org/10.1016/j.bbrc.2019.12.027
Yuan CY, Wu Z, Jin CL, et al., 2023. Qiangxin recipe improves doxorubicin-induced chronic heart failure by enhancing KLF5-mediated glucose metabolism. Phytomedicine, 112:154697. https://doi.org/10.1016/j.phymed.2023.154697https://doi.org/10.1016/j.phymed.2023.154697
Zeng C, 2020. NLRP3 inflammasomes-mediated pyroptosis contributes to dilated cardiomyopathy and doxorubicin-induced cardiotoxicity. J Mol Cell Cardiol, 140(Suppl):22. https://doi.org/10.1016/j.yjmcc.2019.11.050https://doi.org/10.1016/j.yjmcc.2019.11.050
Zeng ZL, Li GH, Wu SY, et al., 2019. Role of pyroptosis in cardiovascular disease. Cell Prolif, 52(2):e12563. https://doi.org/10.1111/cpr.12563https://doi.org/10.1111/cpr.12563
Zhang CY, Zhao M, Wang BW, et al., 2021. The Nrf2-NLRP3-caspase-1 axis mediates the neuroprotective effects of Celastrol in Parkinson’s disease. Redox Biol, 47:102134. https://doi.org/10.1016/j.redox.2021.102134https://doi.org/10.1016/j.redox.2021.102134
Zhang L, Jiang YH, Fan CD, et al., 2021. MCC950 attenuates doxorubicin-induced myocardial injury in vivo and in vitro by inhibiting NLRP3-mediated pyroptosis. Biomed Pharmacother, 143:112133. https://doi.org/10.1016/j.biopha.2021.112133https://doi.org/10.1016/j.biopha.2021.112133
Zhang YP, Ni L, Lin BW, et al., 2021. SNX17 protects the heart from doxorubicin-induced cardiotoxicity by modulating LMOD2 degradation. Pharmacol Res, 169:105642. https://doi.org/10.1016/j.phrs.2021.105642https://doi.org/10.1016/j.phrs.2021.105642
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构