无数据
Scan QR Code
1.Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing400715, China
2.National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, College of Pharmacy & International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, Chongqing402160, China
纸质出版日期: 2024-12-15 ,
收稿日期: 2023-09-03 ,
修回日期: 2024-03-04 ,
谢媛媛,杨晓艳,潘茸等.自然杀伤细胞与肿瘤球在多层纸基堆叠支架的共培养[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2024,25(12):1097-1107.
YUANYUAN XIE, XIAOYAN YANG, RONG PAN, et al. Co-culture of natural killer cells and tumor spheroids on a heterogeneous multilayer paper stack. [J]. Journal of zhejiang university-science b (biomedicine & biotechnology), 2024, 25(12): 1097-1107.
谢媛媛,杨晓艳,潘茸等.自然杀伤细胞与肿瘤球在多层纸基堆叠支架的共培养[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2024,25(12):1097-1107. DOI: 10.1631/jzus.B2300617.
YUANYUAN XIE, XIAOYAN YANG, RONG PAN, et al. Co-culture of natural killer cells and tumor spheroids on a heterogeneous multilayer paper stack. [J]. Journal of zhejiang university-science b (biomedicine & biotechnology), 2024, 25(12): 1097-1107. DOI: 10.1631/jzus.B2300617.
多层纸基堆叠支架细胞培养体系作为一种三维(3D)体外细胞培养平台,已被用于评估抗肿瘤药物的疗效。本研究提出了一种基于多层纸基堆叠支架的共培养模型,用于模拟自然杀伤细胞(NK细胞)从内皮层向肿瘤细胞球体迁移并发起攻击的过程。该共培养体系由三层结构组成:底层为肿瘤细胞球体层;中间层为模拟肿瘤间质的侵袭层;顶层为内皮细胞层。NK-92细胞悬浮于培养体系上方的培养基中。经过2天的共培养后,我们观察到NK细胞与肿瘤细胞球体之间发生相互作用。此外,共聚焦显微镜检测结果发现NK-92细胞能够穿过内皮层,在肿瘤细胞球体内部不同深度处浸润,形成肿瘤浸润NK细胞(TINKs),这表明该共培养模型成功模拟了NK细胞向实体肿瘤组织浸润的过程。该多层纸基共培养体系在涉及肿瘤细胞与免疫细胞相互作用的模型研究中具有应用潜力,为探索两种细胞间动力学相互作用提供了条件。
Multilayer paper-based cell culture
as an in vitro three-dimensional (3D) cell culture method
has been frequently used to research drug bioavailability
therapeutic efficacy
and dose-limiting toxicity in malignant tumors. This paper proposes a heterogenous multilayer paper stacking co-culture system to establish a model of natural killer (NK) cells moving through the endothelium layer and attacking tumor spheroids. This system consists of three layers: a bottom tumor-spheroid layer
a middle invasion layer
and a top endothelium layer. NK-92 cells were placed in the supernatant on top of the three layers. After two days of co-culture
the attack of tumor spheroids by NK cells was observed. We additionally examined the infiltration of NK-92 cells within the tumor spheroids at different
Z
-axis depths using a confocal microscope
and the results suggested that the system successfully realizes NK cells traveling cross the endothelium layer to form tumor-infiltrating NK cells (TINKs). The potential application of multilayer paper for co-culture models involving cancer cells and immune cells holds great promise for exploring the interaction dynamics of these two cell types.
多层堆叠纸基共培养肿瘤球人脐静脉内皮细胞人自然杀伤细胞迁移
Multilayer paper stackCo-cultureTumor spheroidHuman umbilical vein endothelial cell (HUVEC)Natural killer cell (NK cell)Migration
Agarwal T, Borrelli MR, Makvandi P, et al., 2020. Paper-based cell culture: paving the pathway for liver tissue model development on a cellulose paper chip. ACS Appl Bio Mater, 3(7):3956-3974. https://doi.org/10.1021/acsabm.0c00558https://doi.org/10.1021/acsabm.0c00558
Boyce MW, LaBonia GJ, Hummon AB, et al., 2017. Assessing chemotherapeutic effectiveness using a paper-based tumor model. Analyst, 142(15):2819-2827. https://doi.org/10.1039/c7an00806fhttps://doi.org/10.1039/c7an00806f
Burger MC, Zhang CC, Harter PN, et al., 2019. CAR-engineered NK cells for the treatment of glioblastoma: turning innate effectors into precision tools for cancer immunotherapy. Front Immunol, 10:2683. https://doi.org/10.3389/fimmu.2019.02683https://doi.org/10.3389/fimmu.2019.02683
Burster T, Gärtner F, Bulach C, et al., 2021. Regulation of MHC I molecules in glioblastoma cells and the sensitizing of NK cells. Pharmaceuticals (Basel), 14(3):236. https://doi.org/10.3390/ph14030236https://doi.org/10.3390/ph14030236
Choi Y, Phan B, Tanaka M, et al., 2020. Methods and applications of biomolecular surface coatings on individual cells. ACS Appl Bio Mater, 3(10):6556-6570. https://doi.org/10.1021/acsabm.0c00867https://doi.org/10.1021/acsabm.0c00867
Courau T, Bonnereau J, Chicoteau J, et al., 2019. Cocultures of human colorectal tumor spheroids with immune cells reveal the therapeutic potential of MICA/B and NKG2A targeting for cancer treatment. J Immunother Cancer, 7(1):74. https://doi.org/10.1186/s40425-019-0553-9https://doi.org/10.1186/s40425-019-0553-9
de Andrade LF, Lu YH, Luoma A, et al., 2019. Discovery of specialized NK cell populations infiltrating human melanoma metastases. JCI Insight, 4(23):e133103. https://doi.org/10.1172/jci.insight.133103https://doi.org/10.1172/jci.insight.133103
Fontana F, Raimondi M, Marzagalli M, et al., 2020. Three-dimensional cell cultures as an in vitro tool for prostate cancer modeling and drug discovery. Int J Mol Sci, 21(18):6806. https://doi.org/10.3390/ijms21186806https://doi.org/10.3390/ijms21186806
Fu JJ, Lv XH, Wang LX, et al., 2021. Cutting and bonding Parafilm® to fast prototyping flexible hanging drop chips for 3D spheroid cultures. Cell Mol Bioeng, 14(2):187-199. https://doi.org/10.1007/s12195-020-00660-xhttps://doi.org/10.1007/s12195-020-00660-x
Gaitán-Salvatella I, López-Villegas EO, González-Alva P, et al., 2021. Case report: formation of 3D osteoblast spheroid under magnetic levitation for bone tissue engineering. Front Mol Biosci, 8:672518. https://doi.org/10.3389/fmolb.2021.672518https://doi.org/10.3389/fmolb.2021.672518
Guo WJ, Chen ZJQ, Feng ZT, et al., 2022. Fabrication of concave microwells and their applications in micro-tissue engineering: a review. Micromachines (Basel), 13(9):1555. https://doi.org/10.3390/mi13091555https://doi.org/10.3390/mi13091555
Kenney RM, Boyce MW, Truong AS, et al., 2016. Real-time imaging of cancer cell chemotaxis in paper-based scaffolds. Analyst, 141(2):661-668. https://doi.org/10.1039/c5an01787dhttps://doi.org/10.1039/c5an01787d
Larson TS, Glish GL, Lockett MR, 2021. Spatially resolved quantification of drug metabolism and efficacy in 3D paper-based tumor mimics. Anal Chim Acta, 1186:339091. https://doi.org/10.1016/j.aca.2021.339091https://doi.org/10.1016/j.aca.2021.339091
Leung EYL, Ennis DP, Kennedy PR, et al., 2020. NK cells augment oncolytic adenovirus cytotoxicity in ovarian cancer. Mol Ther Oncolytics, 16:289-301. https://doi.org/10.1016/j.omto.2020.02.001https://doi.org/10.1016/j.omto.2020.02.001
Liang J, Wang SQ, Zhang GW, et al., 2021. A new antitumor direction: tumor-specific endothelial cells. Front Oncol, 11:756334. https://doi.org/10.3389/fonc.2021.756334https://doi.org/10.3389/fonc.2021.756334
Lin DG, Chen X, Lin Z, et al., 2021. Paper-supported co-culture system for dynamic investigations of the lung-tropic migration of breast cancer cells. Biomed Mater, 16(2):025028. https://doi.org/10.1088/1748-605X/abc28chttps://doi.org/10.1088/1748-605X/abc28c
Łuczyńska E, Anioł J, 2013. Neoangiogenesis in prostate cancer. Contemp Oncol, 17(3):229-233. https://doi.org/10.5114/wo.2013.35272https://doi.org/10.5114/wo.2013.35272
Mosadegh B, Lockett MR, Minn KT, et al., 2015. A paper-based invasion assay: assessing chemotaxis of cancer cells in gradients of oxygen. Biomaterials, 52:262-271. https://doi.org/10.1016/j.biomaterials.2015.02.012https://doi.org/10.1016/j.biomaterials.2015.02.012
Pan R, Yang XY, Ning K, et al., 2023a. Recapitulating the drifting and fusion of two-generation spheroids on concave agarose microwells. Int J Mol Sci, 24(15):11967. https://doi.org/10.3390/ijms241511967https://doi.org/10.3390/ijms241511967
Pan R, Yang XY, Wu SM, et al., 2023b. Using pipette tips to readily generate spheroids comprising single or multiple cell types. J Zhejiang Univ-Sci A (Appl Phys & Eng), 24(10):875-885. https://doi.org/10.1631/jzus.A22D0235https://doi.org/10.1631/jzus.A22D0235
Romo-Herrera JM, Juarez-Moreno K, Guerrini L, et al., 2021. Paper-based plasmonic substrates as surface-enhanced Raman scattering spectroscopy platforms for cell culture applications. Mater Today Bio, 11:100125. https://doi.org/10.1016/j.mtbio.2021.100125https://doi.org/10.1016/j.mtbio.2021.100125
Russick J, Torset C, Hemery E, et al., 2020. NK cells in the tumor microenvironment: prognostic and theranostic impact. Recent advances and trends. Semin Immunol, 48:101407. https://doi.org/10.1016/j.smim.2020.101407https://doi.org/10.1016/j.smim.2020.101407
Sang SB, Cheng R, Cao YY, et al., 2022. Biocompatible chitosan/polyethylene glycol/multi-walled carbon nanotube composite scaffolds for neural tissue engineering. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 23(1):58-73. https://doi.org/10.1631/jzus.B2100155https://doi.org/10.1631/jzus.B2100155
Simon KA, Mosadegh B, Minn KT, et al., 2016. Metabolic response of lung cancer cells to radiation in a paper-based 3D cell culture system. Biomaterials, 95:47-59. https://doi.org/10.1016/j.biomaterials.2016.03.002https://doi.org/10.1016/j.biomaterials.2016.03.002
Varudkar N, Oyer JL, Copik A, et al., 2021. Oncolytic parainfluenza virus combines with NK cells to mediate killing of infected and non-infected lung cancer cells within 3D spheroids: role of type I and type III interferon signaling. J Immunother Cancer, 9(6):e002373. https://doi.org/10.1136/jitc-2021-002373https://doi.org/10.1136/jitc-2021-002373
Walter K, Bourquin J, Amiri A, et al., 2023. Probing local lateral forces of focal adhesions and cell-cell junctions of living cells by torsional force spectroscopy. Soft Matter, 19(25):4772-4779. https://doi.org/10.1039/d2sm01685khttps://doi.org/10.1039/d2sm01685k
Wu SM, Chen F, Yang XY, et al., 2023. Probing the interaction between metastatic breast cancer cells and osteoblasts in a thread-based breast-bone co-culture device. Lab Chip, 23(12):2838-2853. https://doi.org/10.1039/d3lc00106ghttps://doi.org/10.1039/d3lc00106g
Xie YY, Pan R, Wu SM, et al., 2023. Cell repelling agar@paper interface assisted probing of the tumor spheroids infiltrating natural killer cells. Biomater Adv, 153:213507. https://doi.org/10.1016/j.bioadv.2023.213507https://doi.org/10.1016/j.bioadv.2023.213507
Zhao DK, Xu HQ, Yin J, et al., 2022. Inkjet 3D bioprinting for tissue engineering and pharmaceutics. J Zhejiang Univ-Sci A (Appl Phys & Eng), 23(12):955-973. https://doi.org/10.1631/jzus.A2200569https://doi.org/10.1631/jzus.A2200569
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构