无数据
Scan for full text
Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, China
纸质出版日期: 2024-08-15 ,
收稿日期: 2023-08-13 ,
修回日期: 2023-11-28 ,
相华苑,包晨轩,陈巧巧等.胞外囊泡在受体细胞中的旅程:从识别到货物释放[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2024,25(08):633-655.
Huayuan XIANG, Chenxuan BAO, Qiaoqiao CHEN, et al. Extracellular vesicles (EVs)’ journey in recipient cells: from recognition to cargo release[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2024,25(8):633-655.
相华苑,包晨轩,陈巧巧等.胞外囊泡在受体细胞中的旅程:从识别到货物释放[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2024,25(08):633-655. DOI: 10.1631/jzus.B2300566.
Huayuan XIANG, Chenxuan BAO, Qiaoqiao CHEN, et al. Extracellular vesicles (EVs)’ journey in recipient cells: from recognition to cargo release[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2024,25(8):633-655. DOI: 10.1631/jzus.B2300566.
胞外囊泡(EVs)是几乎所有细胞均能分泌的纳米级脂质双层囊泡,可通过将其内含的多种包括蛋白质、脂质、编码和非编码RNA、线粒体DNA等在内的生物活性分子递送到邻近和远处的受体细胞中,以改变受体细胞功能,从而实现细胞间的信息交流。EVs在生理和病理过程中均发挥着重要作用,可用于疾病诊疗。尽管EVs在供体细胞中的生物发生和分泌机制已基本清晰,但受体细胞对EVs的识别和摄取的分子机制尚不清楚。本文对EVs进入受体细胞的生物过程包括受体细胞对EVs的识别、摄取以及EVs的货物释放进行综述,并重点关注了EVs在摄取后如何通过“溶酶体逃逸”,从而释放货物,将有助于推进EVs作为药物递送载体的研究。此外,了解和控制EVs在受体细胞中的有效摄取,对阐明EVs的功能及其临床应用同样至关重要。
Extracellular vesicles (EVs) are nano-sized bilayer vesicles that are shed or secreted by virtually every cell type. A variety of biomolecules
including proteins
lipids
coding and non-coding RNAs
and mitochondrial DNA
can be selectively encapsulated into EVs and delivered to nearby and distant recipient cells
leading to alterations in the recipient cells
suggesting that EVs play an important role in intercellular communication. EVs play effective roles in physiology and pathology and could be used as diagnostic and therapeutic tools. At present
although the mechanisms of exosome biogenesis and secretion in donor cells are well understood
the molecular mechanism of EV recognition and uptake by recipient cells is still unclear. This review summarizes the current understanding of the molecular mechanisms of EVs’ biological journey in recipient cells
from recognition to uptake and cargo release. Furthermore
we highlight how EVs escape endolysosomal degradation after uptake and thus release cargo
which is crucial for studies applying EVs as drug-targeted delivery vehicles. Knowledge of the cellular processes that govern EV uptake is important to shed light on the functions of EVs as well as on related clinical applications.
胞外囊泡外泌体内吞作用摄取释放
Extracellular vesicle (EV)ExosomeEndocytosisUptakeRelease
Allen LAH, Aderem A, 1996. Mechanisms of phagocytosis. Curr Opin Immunol, 8(1):36-40. https://doi.org/10.1016/s0952-7915(96)80102-6https://doi.org/10.1016/s0952-7915(96)80102-6
Altei WF, Pachane BC, dos Santos PK, et al., 2020. Inhibition of αvβ3 integrin impairs adhesion and uptake of tumor-derived small extracellular vesicles. Cell Commun Signal, 18:158. https://doi.org/10.1186/s12964-020-00630-whttps://doi.org/10.1186/s12964-020-00630-w
Andreu Z, Yáñez-Mó M, 2014. Tetraspanins in extracellular vesicle formation and function. Front Immunol, 5:442. https://doi.org/10.3389/fimmu.2014.00442https://doi.org/10.3389/fimmu.2014.00442
Bajic SS, Cañas MA, Tolinacki M, et al., 2020. Proteomic profile of extracellular vesicles released by Lactiplantibacillus plantarum BGAN8 and their internalization by non-polarized HT29 cell line. Sci Rep, 10:21829. https://doi.org/10.1038/s41598-020-78920-zhttps://doi.org/10.1038/s41598-020-78920-z
Banizs AB, Huang T, Nakamoto RK, et al., 2018. Endocytosis pathways of endothelial cell derived exosomes. Mol Pharm, 15(12):5585-5590. https://doi.org/10.1021/acs.molpharmaceut.8b00765https://doi.org/10.1021/acs.molpharmaceut.8b00765
Barrès C, Blanc L, Bette-Bobillo P, et al., 2010. Galectin-5 is bound onto the surface of rat reticulocyte exosomes and modulates vesicle uptake by macrophages. Blood, 115(3):696-705. https://doi.org/10.1182/blood-2009-07-231449https://doi.org/10.1182/blood-2009-07-231449
Berenguer J, Lagerweij T, Zhao XW, et al., 2018. Glycosylated extracellular vesicles released by glioblastoma cells are decorated by CCL18 allowing for cellular uptake via chemokine receptor CCR8. J Extracell Vesicles, 7:1446660. https://doi.org/10.1080/20013078.2018.1446660https://doi.org/10.1080/20013078.2018.1446660
Bonjoch L, Gironella M, Iovanna JL, et al., 2017. REG3β modifies cell tumor function by impairing extracellular vesicle uptake. Sci Rep, 7:3143. https://doi.org/10.1038/s41598-017-03244-4https://doi.org/10.1038/s41598-017-03244-4
Cardeñes B, Clares I, Toribio V, et al., 2021. Cellular integrin α5β1 and exosomal ADAM17 mediate the binding and uptake of exosomes produced by colorectal carcinoma cells. Int J Mol Sci, 22(18):9938. https://doi.org/10.3390/ijms22189938https://doi.org/10.3390/ijms22189938
Cardeñes B, Clares I, Bezos T, et al., 2022. ALCAM/CD166 is involved in the binding and uptake of cancer-derived extracellular vesicles. Int J Mol Sci, 23(10):5753. https://doi.org/10.3390/ijms23105753https://doi.org/10.3390/ijms23105753
Carney RP, Hazari S, Rojalin T, et al., 2017. Targeting tumor-associated exosomes with integrin-binding peptides. Adv Biosyst, 1(5):1600038. https://doi.org/10.1002/adbi.201600038https://doi.org/10.1002/adbi.201600038
Castro-Cruz M, Hyka L, Daaboul G, et al., 2023. PDZ scaffolds regulate extracellular vesicle production, composition, and uptake. Proc Natl Acad Sci USA, 120(38):e2310914120. https://doi.org/10.1073/pnas.2310914120https://doi.org/10.1073/pnas.2310914120
Cerezo-Magaña M, Christianson HC, van Kuppevelt TH, et al., 2021. Hypoxic induction of exosome uptake through proteoglycan-dependent endocytosis fuels the lipid droplet phenotype in glioma. Mol Cancer Res, 19(3):528-540. https://doi.org/10.1158/1541-7786.Mcr-20-0560https://doi.org/10.1158/1541-7786.Mcr-20-0560
Chen H, Yang P, Chu XY, et al., 2016. Cellular evidence for nano-scale exosome secretion and interactions with spermatozoa in the epididymis of the chinese soft-shelled turtle, Pelodiscus sinensis. Oncotarget, 7(15):19242-19250. https://doi.org/10.18632/oncotarget.8092https://doi.org/10.18632/oncotarget.8092
Chen L, Brigstock DR, 2016. Integrins and heparan sulfate proteoglycans on hepatic stellate cells (HSC) are novel receptors for HSC-derived exosomes. FEBS Lett, 590(23):4263-4274. https://doi.org/10.1002/1873-3468.12448https://doi.org/10.1002/1873-3468.12448
Chen Y, Wang T, Yang Y, et al., 2022. Extracellular vesicles derived from PPRV-infected cells enhance signaling lymphocyte activation molecular (SLAM) receptor expression and facilitate virus infection. PLoS Pathog, 18(9):e1010759. https://doi.org/10.1371/journal.ppat.1010759https://doi.org/10.1371/journal.ppat.1010759
Cheng L, Hill AF, 2022. Therapeutically harnessing extracellular vesicles. Nat Rev Drug Discov, 21(5):379-399. https://doi.org/10.1038/s41573-022-00410-whttps://doi.org/10.1038/s41573-022-00410-w
Cheng YR, Zeng QY, Han Q, et al., 2019. Effect of pH, temperature and freezing-thawing on quantity changes and cellular uptake of exosomes. Protein Cell, 10(4):295-299. https://doi.org/10.1007/s13238-018-0529-4https://doi.org/10.1007/s13238-018-0529-4
Chitti SV, Nedeva C, Manickam R, et al., 2022. Extracellular vesicles as drug targets and delivery vehicles for cancer therapy. Pharmaceutics, 14(12):2822. https://doi.org/10.3390/pharmaceutics14122822https://doi.org/10.3390/pharmaceutics14122822
Choi D, Montermini L, Meehan B, et al., 2021. Oncogenic RAS drives the CRAF-dependent extracellular vesicle uptake mechanism coupled with metastasis. J Extracell Vesicles, 10(8):e12091. https://doi.org/10.1002/jev2.12091https://doi.org/10.1002/jev2.12091
Christianson HC, Svensson KJ, van Kuppevelt TH, et al., 2013. Cancer cell exosomes depend on cell-surface heparan sulfate proteoglycans for their internalization and functional activity. Proc Natl Acad Sci USA, 110(43):17380-17385. https://doi.org/10.1073/pnas.1304266110https://doi.org/10.1073/pnas.1304266110
Claridge B, Lozano J, Poh QH, et al., 2021. Development of extracellular vesicle therapeutics: challenges, considerations, and opportunities. Front Cell Dev Biol, 9:734720. https://doi.org/10.3389/fcell.2021.734720https://doi.org/10.3389/fcell.2021.734720
Clos-Sansalvador M, Garcia SG, Morón-Font M, et al., 2022. N-Glycans in immortalized mesenchymal stromal cell-derived extracellular vesicles are critical for EV‒cell interaction and functional activation of endothelial cells. Int J Mol Sci, 23(17):9539. https://doi.org/10.3390/ijms23179539https://doi.org/10.3390/ijms23179539
Corbeil D, Santos MF, Karbanová J, et al., 2020. Uptake and fate of extracellular membrane vesicles: nucleoplasmic reticulum-associated late endosomes as a new gate to intercellular communication. Cells, 9(9):1931. https://doi.org/10.3390/cells9091931https://doi.org/10.3390/cells9091931
Costa J, 2017. Glycoconjugates from extracellular vesicles: structures, functions and emerging potential as cancer biomarkers. Biochim Biophys Acta (BBA)-Rev Cancer, 1868(1):157-166. https://doi.org/10.1016/j.bbcan.2017.03.007https://doi.org/10.1016/j.bbcan.2017.03.007
Costa Verdera H, Gitz-Francois JJ, Schiffelers RM, et al., 2017. Cellular uptake of extracellular vesicles is mediated by clathrin-independent endocytosis and macropinocytosis. J Control Release, 266:100-108. https://doi.org/10.1016/j.jconrel.2017.09.019https://doi.org/10.1016/j.jconrel.2017.09.019
Costafreda MI, Abbasi A, Lu H, et al., 2020. Exosome mimicry by a HAVCR1-NPC1 pathway of endosomal fusion mediates hepatitis A virus infection. Nat Microbiol, 5(9):1096-1106. https://doi.org/10.1038/s41564-020-0740-yhttps://doi.org/10.1038/s41564-020-0740-y
Cullen PJ, Steinberg F, 2018. To degrade or not to degrade: mechanisms and significance of endocytic recycling. Nat Rev Mol Cell Biol, 19(11):679-696. https://doi.org/10.1038/s41580-018-0053-7https://doi.org/10.1038/s41580-018-0053-7
de la Torre-Escudero E, Gerlach JQ, Bennett APS, et al., 2019. Surface molecules of extracellular vesicles secreted by the helminth pathogen Fasciola hepatica direct their internalisation by host cells. PLoS Negl Trop Dis, 13:e0007087. https://doi.org/10.1371/journal.pntd.0007087https://doi.org/10.1371/journal.pntd.0007087
Deb A, Gupta S, Mazumder PB, 2021. Exosomes: a new horizon in modern medicine. Life Sci, 264:118623. https://doi.org/10.1016/j.lfs.2020.118623https://doi.org/10.1016/j.lfs.2020.118623
del Conde I, Shrimpton CN, Thiagarajan P, et al., 2005. Tissue-factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation. Blood, 106(5):1604-1611. https://doi.org/10.1182/blood-2004-03-1095https://doi.org/10.1182/blood-2004-03-1095
Doherty GJ, McMahon HT, 2009. Mechanisms of endocytosis. Annu Rev Biochem, 78:857-902. https://doi.org/10.1146/annurev.biochem.78.081307.110540https://doi.org/10.1146/annurev.biochem.78.081307.110540
Dusoswa SA, Horrevorts SK, Ambrosini M, et al., 2019. Glycan modification of glioblastoma-derived extracellular vesicles enhances receptor-mediated targeting of dendritic cells. J Extracell Vesicles, 8:1648995. https://doi.org/10.1080/20013078.2019.1648995https://doi.org/10.1080/20013078.2019.1648995
el Andaloussi S, Mäger I, Breakefield XO, et al., 2013. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov, 12(5):347-357. https://doi.org/10.1038/nrd3978https://doi.org/10.1038/nrd3978
El-Sayed A, Harashima H, 2013. Endocytosis of gene delivery vectors: from clathrin-dependent to lipid raft-mediated endocytosis. Mol Ther, 21(6):1118-1130. https://doi.org/10.1038/mt.2013.54https://doi.org/10.1038/mt.2013.54
Elsharkasy OM, Nordin JZ, Hagey DW, et al., 2020. Extracellular vesicles as drug delivery systems: why and how? Adv Drug Deliv Rev, 159:332-343. https://doi.org/10.1016/j.addr.2020.04.004https://doi.org/10.1016/j.addr.2020.04.004
Emam SE, Ando H, Lila ASA, et al., 2018. Liposome co-incubation with cancer cells secreted exosomes (extracellular vesicles) with different proteins expressions and different uptake pathways. Sci Rep, 8:14493. https://doi.org/10.1038/s41598-018-32861-whttps://doi.org/10.1038/s41598-018-32861-w
Escrevente C, Keller S, Altevogt P, et al., 2011. Interaction and uptake of exosomes by ovarian cancer cells. BMC Cancer, 11:108. https://doi.org/10.1186/1471-2407-11-108https://doi.org/10.1186/1471-2407-11-108
Esko JD, Kimata K, Lindahl U, 2009. Proteoglycans and sulfated glycosaminoglycans. In: Varki A, Cummings RD, Esko JD, et al. (Eds.), Essentials of Glycobiology, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.
Feng D, Zhao WL, Ye YY, et al., 2010. Cellular internalization of exosomes occurs through phagocytosis. Traffic, 11(5):675-687. https://doi.org/10.1111/j.1600-0854.2010.01041.xhttps://doi.org/10.1111/j.1600-0854.2010.01041.x
Feng YR, Chen Q, Lau SY, et al., 2022. The blocking of integrin-mediated interactions with maternal endothelial cells reversed the endothelial cell dysfunction induced by EVs, derived from preeclamptic placentae. Int J Mol Sci, 23(21):13115. https://doi.org/10.3390/ijms232113115https://doi.org/10.3390/ijms232113115
Fitzner D, Schnaars M, van Rossum D, et al., 2011. Selective transfer of exosomes from oligodendrocytes to microglia by macropinocytosis. J Cell Sci, 124(3):447-458. https://doi.org/10.1242/jcs.074088https://doi.org/10.1242/jcs.074088
Freeman SA, Grinstein S, 2014. Phagocytosis: receptors, signal integration, and the cytoskeleton. Immunol Rev, 262(1):193-215. https://doi.org/10.1111/imr.12212https://doi.org/10.1111/imr.12212
Fuentes P, Sesé M, Guijarro PJ, et al., 2020. ITGB3-mediated uptake of small extracellular vesicles facilitates intercellular communication in breast cancer cells. Nat Commun, 11:4261. https://doi.org/10.1038/s41467-020-18081-9https://doi.org/10.1038/s41467-020-18081-9
Guo L, Zhang Y, Wei RX, et al., 2020. Proinflammatory macrophage-derived microvesicles exhibit tumor tropism dependent on CCL2/CCR2 signaling axis and promote drug delivery via SNARE-mediated membrane fusion. Theranostics, 10(15):6581-6598. https://doi.org/10.7150/thno.45528https://doi.org/10.7150/thno.45528
Gurung S, Perocheau D, Touramanidou L, et al., 2021. The exosome journey: from biogenesis to uptake and intracellular signalling. Cell Commun Signal, 19:47. https://doi.org/10.1186/s12964-021-00730-1https://doi.org/10.1186/s12964-021-00730-1
György B, Szabó TG, Pásztói M, et al., 2011. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci, 68(16):2667-2688. https://doi.org/10.1007/s00018-011-0689-3https://doi.org/10.1007/s00018-011-0689-3
Hallett MB, 2020. An introduction to phagocytosis. In: Hallett MB (Ed.), Molecular and Cellular Biology of Phagocytosis. Springer, Cham, p.1-7. https://doi.org/10.1007/978-3-030-40406-2_1https://doi.org/10.1007/978-3-030-40406-2_1
Hansen SH, Sandvig K, van Deurs B, 1993. Clathrin and HA2 adaptors: effects of potassium depletion, hypertonic medium, and cytosol acidification. J Cell Biol, 121(1):61-72. https://doi.org/10.1083/jcb.121.1.61https://doi.org/10.1083/jcb.121.1.61
Hao SG, Bai O, Li F, et al., 2007. Mature dendritic cells pulsed with exosomes stimulate efficient cytotoxic T-lymphocyte responses and antitumour immunity. Immunology, 120(1):90-102. https://doi.org/10.1111/j.1365-2567.2006.02483.xhttps://doi.org/10.1111/j.1365-2567.2006.02483.x
Harischandra H, Yuan W, Loghry HJ, et al., 2018. Profiling extracellular vesicle release by the filarial nematode Brugia malayi reveals sex-specific differences in cargo and a sensitivity to ivermectin. PLoS Negl Trop Dis, 12(4):e0006438. https://doi.org/10.1371/journal.pntd.0006438https://doi.org/10.1371/journal.pntd.0006438
Hazan-Halevy I, Rosenblum D, Weinstein S, et al., 2015. Cell-specific uptake of mantle cell lymphoma-derived exosomes by malignant and non-malignant B-lymphocytes. Cancer Lett, 364(1):59-69. https://doi.org/10.1016/j.canlet.2015.04.026https://doi.org/10.1016/j.canlet.2015.04.026
Hazawa M, Tomiyama K, Saotome-Nakamura A, et al., 2014. Radiation increases the cellular uptake of exosomes through CD29/CD81 complex formation. Biochem Biophys Res Commun, 446(4):1165-1171. https://doi.org/10.1016/j.bbrc.2014.03.067https://doi.org/10.1016/j.bbrc.2014.03.067
He LQ, Zhu W, Chen Q, et al., 2019. Ovarian cancer cell-secreted exosomal miR-205 promotes metastasis by inducing angiogenesis. Theranostics, 9(26):8206-8220. https://doi.org/10.7150/thno.37455https://doi.org/10.7150/thno.37455
Heusermann W, Hean J, Trojer D, et al., 2016. Exosomes surf on filopodia to enter cells at endocytic hot spots, traffic within endosomes, and are targeted to the ER. J Cell Biol, 213(2):173-184. https://doi.org/10.1083/jcb.201506084https://doi.org/10.1083/jcb.201506084
Holder B, Jones T, Sancho Shimizu V, et al., 2016. Macrophage exosomes induce placental inflammatory cytokines: a novel mode of maternal-placental messaging. Traffic, 17(2):168-178. https://doi.org/10.1111/tra.12352https://doi.org/10.1111/tra.12352
Horibe S, Tanahashi T, Kawauchi S, et al., 2018. Mechanism of recipient cell-dependent differences in exosome uptake. BMC Cancer, 18:47. https://doi.org/10.1186/s12885-017-3958-1https://doi.org/10.1186/s12885-017-3958-1
Hung ME, Leonard JN, 2015. Stabilization of exosome-targeting peptides via engineered glycosylation. J Biol Chem, 290(13):8166-8172. https://doi.org/10.1074/jbc.M114.621383https://doi.org/10.1074/jbc.M114.621383
Jahn R, Lang T, Südhof TC, 2003. Membrane fusion. Cell, 112(4):519-533. https://doi.org/10.1016/s0092-8674(03)00112-0https://doi.org/10.1016/s0092-8674(03)00112-0
Joshi BS, de Beer MA, Giepmans BNG, et al., 2020. Endocytosis of extracellular vesicles and release of their cargo from endosomes. ACS Nano, 14(4):4444-4455. https://doi.org/10.1021/acsnano.9b10033https://doi.org/10.1021/acsnano.9b10033
Kaksonen M, Roux A, 2018. Mechanisms of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol, 19(5):313-326. https://doi.org/10.1038/nrm.2017.132https://doi.org/10.1038/nrm.2017.132
Kanno S, Hirano S, Sakamoto T, et al., 2020. Scavenger receptor MARCO contributes to cellular internalization of exosomes by dynamin-dependent endocytosis and macropinocytosis. Sci Rep, 10:21795. https://doi.org/10.1038/s41598-020-78464-2https://doi.org/10.1038/s41598-020-78464-2
Kelemen A, Carmi I, Oszvald Á, et al., 2021. IFITM1 expression determines extracellular vesicle uptake in colorectal cancer. Cell Mol Life Sci, 78(21-22):7009-7024. https://doi.org/10.1007/s00018-021-03949-whttps://doi.org/10.1007/s00018-021-03949-w
Khan I, Steeg PS, 2021. Endocytosis: a pivotal pathway for regulating metastasis. Br J Cancer, 124(1):66-75. https://doi.org/10.1038/s41416-020-01179-8https://doi.org/10.1038/s41416-020-01179-8
Kiss AL, 2012. Caveolae and the regulation of endocytosis. In: Jasmin JF, Rrank PG, Lisanti MP (Eds.), Caveolins and Caveolae: Roles in Signaling and Disease Mechanisms. Springer, New York, p.14-28. https://doi.org/10.1007/978-1-4614-1222-9_2https://doi.org/10.1007/978-1-4614-1222-9_2
Kiss AL, Botos E, 2009. Endocytosis via caveolae: alternative pathway with distinct cellular compartments to avoid lysosomal degradation? J Cell Mol Med, 13(7):1228-1237. https://doi.org/10.1111/j.1582-4934.2009.00754.xhttps://doi.org/10.1111/j.1582-4934.2009.00754.x
Kong J, Tian HZ, Zhang FY, et al., 2019. Extracellular vesicles of carcinoma-associated fibroblasts creates a pre-metastatic niche in the lung through activating fibroblasts. Mol Cancer, 18:175. https://doi.org/10.1186/s12943-019-1101-4https://doi.org/10.1186/s12943-019-1101-4
Kuroda H, Tachikawa M, Yagi Y, et al., 2019. Cluster of differentiation 46 is the major receptor in human blood‒brain barrier endothelial cells for uptake of exosomes derived from brain-metastatic melanoma cells (SK-Mel-28). Mol Pharm, 16(1):292-304. https://doi.org/10.1021/acs.molpharmaceut.8b00985https://doi.org/10.1021/acs.molpharmaceut.8b00985
Lázaro-Ibáñez E, Neuvonen M, Takatalo M, et al., 2017. Metastatic state of parent cells influences the uptake and functionality of prostate cancer cell-derived extracellular vesicles. J Extracell Vesicles, 6:1354645. https://doi.org/10.1080/20013078.2017.1354645https://doi.org/10.1080/20013078.2017.1354645
Li HY, Zeng C, Shu C, et al., 2022. Laminins in tumor-derived exosomes upregulated by ETS1 reprogram omental macrophages to promote omental metastasis of ovarian cancer. Cell Death Dis, 13(12):1028. https://doi.org/10.1038/s41419-022-05472-7https://doi.org/10.1038/s41419-022-05472-7
Li KL, Huang HY, Ren H, et al., 2022. Role of exosomes in the pathogenesis of inflammation in Parkinson’s disease. Neural Regen Res, 17(9):1898-1906. https://doi.org/10.4103/1673-5374.335143https://doi.org/10.4103/1673-5374.335143
Li XL, Chen RJ, Kemper S, et al., 2021. Structural and functional characterization of fibronectin in extracellular vesicles from hepatocytes. Front Cell Dev Biol, 9:640667. https://doi.org/10.3389/fcell.2021.640667https://doi.org/10.3389/fcell.2021.640667
Li YL, Gao Y, Gong CA, et al., 2018. A33 antibody-functionalized exosomes for targeted delivery of doxorubicin against colorectal cancer. Nanomed Nanotechnol Biol Med, 14(7):1973-1985. https://doi.org/10.1016/j.nano.2018.05.020https://doi.org/10.1016/j.nano.2018.05.020
Lim JP, Gleeson PA, 2011. Macropinocytosis: an endocytic pathway for internalising large gulps. Immunol Cell Biol, 89(8):836-843. https://doi.org/10.1038/icb.2011.20https://doi.org/10.1038/icb.2011.20
Lima LG, Ham S, Shin H, et al., 2021. Tumor microenvironmental cytokines bound to cancer exosomes determine uptake by cytokine receptor-expressing cells and biodistribution. Nat Commun, 12:3543. https://doi.org/10.1038/s41467-021-23946-8https://doi.org/10.1038/s41467-021-23946-8
Lin SY, Zhou SM, Yuan T, 2020. The “sugar-coated bullets” of cancer: tumor-derived exosome surface glycosylation from basic knowledge to applications. Clin Transl Med, 10(6):e204. https://doi.org/10.1002/ctm2.204https://doi.org/10.1002/ctm2.204
Liu XX, Liu WD, Wang L, et al., 2018. Roles of flotillins in tumors. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 19(3):171-182. https://doi.org/10.1631/jzus.B1700102https://doi.org/10.1631/jzus.B1700102
Matsuki Y, Yanagawa T, Sumiyoshi H, et al., 2021. Modification of exosomes with carbonate apatite and a glycan polymer improves transduction efficiency and target cell selectivity. Biochem Biophys Res Commun, 583:93-99. https://doi.org/10.1016/j.bbrc.2021.10.063https://doi.org/10.1016/j.bbrc.2021.10.063
Matsumoto A, Takahashi Y, Nishikawa M, et al., 2017. Role of phosphatidylserine-derived negative surface charges in the recognition and uptake of intravenously injected B16Bl6-derived exosomes by macrophages. J Pharm Sci, 106:168-175. https://doi.org/10.1016/j.xphs.2016.07.022https://doi.org/10.1016/j.xphs.2016.07.022
May RC, Machesky LM, 2001. Phagocytosis and the actin cytoskeleton. J Cell Sci, 114(6):1061-1077. https://doi.org/10.1242/jcs.114.6.1061https://doi.org/10.1242/jcs.114.6.1061
McMahon HT, Boucrot E, 2011. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol, 12(8):517-533. https://doi.org/10.1038/nrm3151https://doi.org/10.1038/nrm3151
Mercer J, Helenius A, 2009. Virus entry by macropinocytosis. Nat Cell Biol, 11(5):510-520. https://doi.org/10.1038/ncb0509-510https://doi.org/10.1038/ncb0509-510
Mizenko RR, Brostoff T, Rojalin T, et al., 2021. Tetraspanins are unevenly distributed across single extracellular vesicles and bias sensitivity to multiplexed cancer biomarkers. J Nanobiotechnol, 19:250. https://doi.org/10.1186/s12951-021-00987-1https://doi.org/10.1186/s12951-021-00987-1
Montecalvo A, Larregina AT, Shufesky WJ, et al., 2012. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood, 119(3):756-766. https://doi.org/10.1182/blood-2011-02-338004https://doi.org/10.1182/blood-2011-02-338004
Murdica V, Giacomini E, Makieva S, et al., 2020. In vitro cultured human endometrial cells release extracellular vesicles that can be uptaken by spermatozoa. Sci Rep, 10:8856. https://doi.org/10.1038/s41598-020-65517-9https://doi.org/10.1038/s41598-020-65517-9
Mutschelknaus L, Peters C, Winkler K, et al., 2016. Exosomes derived from squamous head and neck cancer promote cell survival after ionizing radiation. PLoS ONE, 11(3):e0152213. https://doi.org/10.1371/journal.pone.0152213https://doi.org/10.1371/journal.pone.0152213
Nakase I, Ueno N, Matsuzawa M, et al., 2021. Environmental pH stress influences cellular secretion and uptake of extracellular vesicles. FEBS Open Bio, 11(3):753-767. https://doi.org/10.1002/2211-5463.13107https://doi.org/10.1002/2211-5463.13107
Nangami G, Koumangoye R, Shawn Goodwin J, et al., 2014. Fetuin-A associates with histones intracellularly and shuttles them to exosomes to promote focal adhesion assembly resulting in rapid adhesion and spreading in breast carcinoma cells. Exp Cell Res, 328(2):388-400. https://doi.org/10.1016/j.yexcr.2014.08.037https://doi.org/10.1016/j.yexcr.2014.08.037
Nigri J, Leca J, Tubiana SS, et al., 2022. CD9 mediates the uptake of extracellular vesicles from cancer-associated fibroblasts that promote pancreatic cancer cell aggressiveness. Sci Signal, 15(745):eabg8191. https://doi.org/10.1126/scisignal.abg8191https://doi.org/10.1126/scisignal.abg8191
Nishida-Aoki N, Tominaga N, Kosaka N, et al., 2020. Altered biodistribution of deglycosylated extracellular vesicles through enhanced cellular uptake. J Extracell Vesicles, 9:1713527. https://doi.org/10.1080/20013078.2020.1713527https://doi.org/10.1080/20013078.2020.1713527
Ochieng J, Nangami G, Sakwe A, et al., 2018. Extracellular histones are the ligands for the uptake of exosomes and hydroxyapatite-nanoparticles by tumor cells via syndecan-4. FEBS Lett, 592(19):3274-3285. https://doi.org/10.1002/1873-3468.13236https://doi.org/10.1002/1873-3468.13236
Ogese MO, Jenkins RE, Adair K, et al., 2019. Exosomal transport of hepatocyte-derived drug-modified proteins to the immune system. Hepatology, 70(5):1732-1749. https://doi.org/10.1002/hep.30701https://doi.org/10.1002/hep.30701
Olioso D, Caccese M, Santangelo A, et al., 2021. Serum exosomal microRNA-21, 222 and 124-3p as noninvasive predictive biomarkers in newly diagnosed high-grade gliomas: a prospective study. Cancers, 13(12):3006. https://doi.org/10.3390/cancers13123006https://doi.org/10.3390/cancers13123006
Osawa S, Kurachi M, Yamamoto H, et al., 2017. Fibronectin on extracellular vesicles from microvascular endothelial cells is involved in the vesicle uptake into oligodendrocyte precursor cells. Biochem Biophys Res Commun, 488(1):232-238. https://doi.org/10.1016/j.bbrc.2017.05.049https://doi.org/10.1016/j.bbrc.2017.05.049
Parolini I, Federici C, Raggi C, et al., 2009. Microenvironmental pH is a key factor for exosome traffic in tumor cells. J Biol Chem, 284(49):34211-34222. https://doi.org/10.1074/jbc.M109.041152https://doi.org/10.1074/jbc.M109.041152
Perreira JM, Chin CR, Feeley EM, et al., 2013. IFITMs restrict the replication of multiple pathogenic viruses. J Mol Biol, 425(24):4937-4955. https://doi.org/10.1016/j.jmb.2013.09.024https://doi.org/10.1016/j.jmb.2013.09.024
Petrany MJ, Millay DP, 2019. Cell fusion: merging membranes and making muscle. Trends Cell Biol, 29(12):964-973. https://doi.org/10.1016/j.tcb.2019.09.002https://doi.org/10.1016/j.tcb.2019.09.002
Pike LJ, 2006. Rafts defined: a report on the keystone symposium on lipid rafts and cell function. J Lipid Res, 47(7):1597-1598. https://doi.org/10.1194/jlr.E600002-JLR200https://doi.org/10.1194/jlr.E600002-JLR200
Polanco JC, Li CZ, Durisic N, et al., 2018. Exosomes taken up by neurons hijack the endosomal pathway to spread to interconnected neurons. Acta Neuropathol Commun, 6:10. https://doi.org/10.1186/s40478-018-0514-4https://doi.org/10.1186/s40478-018-0514-4
Polanco JC, Hand GR, Briner A, et al., 2021. Exosomes induce endolysosomal permeabilization as a gateway by which exosomal tau seeds escape into the cytosol. Acta Neuropathol, 141(2):235-256. https://doi.org/10.1007/s00401-020-02254-3https://doi.org/10.1007/s00401-020-02254-3
Purushothaman A, Bandari SK, Liu J, et al., 2016. Fibronectin on the surface of myeloma cell-derived exosomes mediates exosome-cell interactions. J Biol Chem, 291(4):1652-1663. https://doi.org/10.1074/jbc.M115.686295https://doi.org/10.1074/jbc.M115.686295
Rai AK, Johnson PJ, 2019. Trichomonas vaginalis extracellular vesicles are internalized by host cells using proteoglycans and caveolin-dependent endocytosis. Proc Natl Acad Sci USA, 116(43):21354-21360. https://doi.org/10.1073/pnas.1912356116https://doi.org/10.1073/pnas.1912356116
Rappa G, Santos MF, Green TM, et al., 2017. Nuclear transport of cancer extracellular vesicle-derived biomaterials through nuclear envelope invagination-associated late endosomes. Oncotarget, 8(9):14443-14461. https://doi.org/10.18632/oncotarget.14804https://doi.org/10.18632/oncotarget.14804
Ren LZ, Du SW, Xu W, et al., 2020. Current progress on host antiviral factor IFITMs. Front Immunol, 11:543444. https://doi.org/10.3389/fimmu.2020.543444https://doi.org/10.3389/fimmu.2020.543444
Romero G, von Zastrow M, Friedman PA, 2011. Role of PDZ proteins in regulating trafficking, signaling, and function of GPCRs: means, motif, and opportunity. Adv Pharmacol, 62:279-314. https://doi.org/10.1016/b978-0-12-385952-5.00003-8https://doi.org/10.1016/b978-0-12-385952-5.00003-8
Santos MF, Rappa G, Karbanová J, et al., 2018. VAMP-associated protein-A and oxysterol-binding protein-related protein 3 promote the entry of late endosomes into the nucleoplasmic reticulum. J Biol Chem, 293(36):13834-13848. https://doi.org/10.1074/jbc.RA118.003725https://doi.org/10.1074/jbc.RA118.003725
Santos MF, Rappa G, Karbanová J, et al., 2019. Anti-human CD9 antibody Fab fragment impairs the internalization of extracellular vesicles and the nuclear transfer of their cargo proteins. J Cell Mol Med, 23(6):4408-4421. https://doi.org/10.1111/jcmm.14334https://doi.org/10.1111/jcmm.14334
Shen AR, Zhong X, Tang TT, et al., 2021. Integrin, exosome and kidney disease. Front Physiol, 11:627800. https://doi.org/10.3389/fphys.2020.627800https://doi.org/10.3389/fphys.2020.627800
Shentu TP, Huang TS, Cernelc-Kohan M, et al., 2017. Thy-1 dependent uptake of mesenchymal stem cell-derived extracellular vesicles blocks myofibroblastic differentiation. Sci Rep, 7:18052. https://doi.org/10.1038/s41598-017-18288-9https://doi.org/10.1038/s41598-017-18288-9
Shimoda A, Tahara Y, Sawada SI, et al., 2017. Glycan profiling analysis using evanescent-field fluorescence-assisted lectin array: importance of sugar recognition for cellular uptake of exosomes from mesenchymal stem cells. Biochem Biophys Res Commun, 491(3):701-707. https://doi.org/10.1016/j.bbrc.2017.07.126https://doi.org/10.1016/j.bbrc.2017.07.126
Simons K, Gerl MJ, 2010. Revitalizing membrane rafts: new tools and insights. Nat Rev Mol Cell Biol, 11(10):688-699. https://doi.org/10.1038/nrm2977https://doi.org/10.1038/nrm2977
Smith SM, Smith CJ, 2022. Capturing the mechanics of clathrin-mediated endocytosis. Curr Opin Struct Biol, 75:102427. https://doi.org/10.1016/j.sbi.2022.102427https://doi.org/10.1016/j.sbi.2022.102427
Sun HY, Bhandari K, Burrola S, et al., 2022. Pancreatic ductal cell-derived extracellular vesicles are effective drug carriers to enhance paclitaxel’s efficacy in pancreatic cancer cells through clathrin-mediated endocytosis. Int J Mol Sci, 23(9):4773. https://doi.org/10.3390/ijms23094773https://doi.org/10.3390/ijms23094773
Svensson KJ, Christianson HC, Wittrup A, et al., 2013. Exosome uptake depends on ERK1/2-heat shock protein 27 signaling and lipid raft-mediated endocytosis negatively regulated by caveolin-1. J Biol Chem, 288(24):17713-17724. https://doi.org/10.1074/jbc.M112.445403https://doi.org/10.1074/jbc.M112.445403
Tabak S, Hadad U, Schreiber-Avissar S, et al., 2021. Non-pigmented ciliary epithelium derived extracellular vesicles uptake mechanism by the trabecular meshwork. FASEB J, 35(2):e21188. https://doi.org/10.1096/fj.202002040Rhttps://doi.org/10.1096/fj.202002040R
Tao YY, Wei X, Yue Y, et al., 2021. Extracellular vesicle-derived AEBP1 mRNA as a novel candidate biomarker for diabetic kidney disease. J Transl Med, 19:326. https://doi.org/10.1186/s12967-021-03000-3https://doi.org/10.1186/s12967-021-03000-3
Théry C, Witwer KW, Aikawa E, et al., 2018. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the international society for extracellular vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles, 7:1535750. https://doi.org/10.1080/20013078.2018.1535750https://doi.org/10.1080/20013078.2018.1535750
Tian T, Zhu YL, Zhou YY, et al., 2014. Exosome uptake through clathrin-mediated endocytosis and macropinocytosis and mediating miR-21 delivery. J Biol Chem, 289(32):22258-22267. https://doi.org/10.1074/jbc.M114.588046https://doi.org/10.1074/jbc.M114.588046
Tu CG, Du ZM, Zhang H, et al., 2021. Endocytic pathway inhibition attenuates extracellular vesicle-induced reduction of chemosensitivity to bortezomib in multiple myeloma cells. Theranostics, 11(5):2364-2380. https://doi.org/10.7150/thno.47996https://doi.org/10.7150/thno.47996
van Breedam W, Pöhlmann S, Favoreel HW, et al., 2014. Bitter-sweet symphony: glycan-lectin interactions in virus biology. FEMS Microbiol Rev, 38(4):598-632. https://doi.org/10.1111/1574-6976.12052https://doi.org/10.1111/1574-6976.12052
van Niel G, D'Angelo G, Raposo G, 2018. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol, 19(4):213-228. https://doi.org/10.1038/nrm.2017.125https://doi.org/10.1038/nrm.2017.125
van Niel G, Carter DRF, Clayton A, et al., 2022. Challenges and directions in studying cell‒cell communication by extracellular vesicles. Nat Rev Mol Cell Biol, 23(5):369-382. https://doi.org/10.1038/s41580-022-00460-3https://doi.org/10.1038/s41580-022-00460-3
Varki A, 2017. Biological roles of glycans. Glycobiology, 27(1):3-49. https://doi.org/10.1093/glycob/cww086https://doi.org/10.1093/glycob/cww086
Vázquez-Ríos AJ, Molina-Crespo Á, Bouzo BL, et al., 2019. Exosome-mimetic nanoplatforms for targeted cancer drug delivery. J Nanobiotechnol, 17:85. https://doi.org/10.1186/s12951-019-0517-8https://doi.org/10.1186/s12951-019-0517-8
Vogt S, Bobbili MR, Stadlmayr G, et al., 2021. An engineered CD81-based combinatorial library for selecting recombinant binders to cell surface proteins: laminin binding CD81 enhances cellular uptake of extracellular vesicles. J Extracell Vesicles, 10(11):e12139. https://doi.org/10.1002/jev2.12139https://doi.org/10.1002/jev2.12139
von Kleist L, Stahlschmidt W, Bulut H, et al., 2011. Role of the clathrin terminal domain in regulating coated pit dynamics revealed by small molecule inhibition. Cell, 146(3):471-484. https://doi.org/10.1016/j.cell.2011.06.025https://doi.org/10.1016/j.cell.2011.06.025
Walimbe T, Panitch A, 2020. Proteoglycans in biomedicine: resurgence of an underexploited class of ECM molecules. Front Pharmacol, 10:1661. https://doi.org/10.3389/fphar.2019.01661https://doi.org/10.3389/fphar.2019.01661
Wan Z, Zhao LB, Lu F, et al., 2020. Mononuclear phagocyte system blockade improves therapeutic exosome delivery to the myocardium. Theranostics, 10(1):218-230. https://doi.org/10.7150/thno.38198https://doi.org/10.7150/thno.38198
Wang LX, Wang GS, Mao WJ, et al., 2023. Bioinspired engineering of fusogen and targeting moiety equipped nanovesicles. Nat Commun, 14:3366. https://doi.org/10.1038/s41467-023-39181-2https://doi.org/10.1038/s41467-023-39181-2
Wang SH, Liou GG, Liu SH, et al., 2019. Laminin γ2-enriched extracellular vesicles of oral squamous cell carcinoma cells enhance in vitro lymphangiogenesis via integrin α3-dependent uptake by lymphatic endothelial cells. Int J Cancer, 144(11):2795-2810. https://doi.org/10.1002/ijc.32027https://doi.org/10.1002/ijc.32027
Wang T, Wang X, Wang HB, et al., 2021. High TSPAN8 expression in epithelial cancer cell-derived small extracellular vesicles promote confined diffusion and pronounced uptake. J Extracell Vesicles, 10(13):e12167. https://doi.org/10.1002/jev2.12167https://doi.org/10.1002/jev2.12167
Wang WY, Jo H, Park S, et al., 2022. Integrated analysis of ascites and plasma extracellular vesicles identifies a miRNA-based diagnostic signature in ovarian cancer. Cancer Lett, 542:215735. https://doi.org/10.1016/j.canlet.2022.215735https://doi.org/10.1016/j.canlet.2022.215735
Wang X, Qian TY, Bao SQ, et al., 2021. Circulating exosomal miR-363-5p inhibits lymph node metastasis by downregulating PDGFB and serves as a potential noninvasive biomarker for breast cancer. Mol Oncol, 15(9):2466-2479. https://doi.org/10.1002/1878-0261.13029https://doi.org/10.1002/1878-0261.13029
Weston WW, Ganey T, Temple HT, 2019. The relationship between exosomes and cancer: implications for diagnostics and therapeutics. BioDrugs, 33(2):137-158. https://doi.org/10.1007/s40259-019-00338-5https://doi.org/10.1007/s40259-019-00338-5
Wiklander OPB, Brennan MÁ, Lötvall J, et al., 2019. Advances in therapeutic applications of extracellular vesicles. Sci Transl Med, 11(492):eaav8521. https://doi.org/10.1126/scitranslmed.aav8521https://doi.org/10.1126/scitranslmed.aav8521
Williams C, Royo F, Aizpurua-Olaizola O, et al., 2018. Glycosylation of extracellular vesicles: current knowledge, tools and clinical perspectives. J Extracell Vesicles, 7:1442985. https://doi.org/10.1080/20013078.2018.1442985https://doi.org/10.1080/20013078.2018.1442985
Willox AK, Sahraoui YME, Royle SJ, 2014. Non-specificity of Pitstop 2 in clathrin-mediated endocytosis. Biol Open, 3(5):326-331. https://doi.org/10.1242/bio.20147955https://doi.org/10.1242/bio.20147955
Xue CL, Shen YM, Li XC, et al., 2018. Exosomes derived from hypoxia-treated human adipose mesenchymal stem cells enhance angiogenesis through the PKA signaling pathway. Stem Cells Dev, 27(7):456-465. https://doi.org/10.1089/scd.2017.0296https://doi.org/10.1089/scd.2017.0296
Yamamoto A, Yasue Y, Takahashi Y, et al., 2021. Determining the role of surface glycans in the pharmacokinetics of small extracellular vesicles. J Pharm Sci, 110(9):3261-3267. https://doi.org/10.1016/j.xphs.2021.05.021https://doi.org/10.1016/j.xphs.2021.05.021
Yáñez-Mó M, Barreiro O, Gordon-Alonso M, et al., 2009. Tetraspanin-enriched microdomains: a functional unit in cell plasma membranes. Trends Cell Biol, 19(9):434-446. https://doi.org/10.1016/j.tcb.2009.06.004https://doi.org/10.1016/j.tcb.2009.06.004
Yáñez-Mó M, Siljander PRM, Andreu Z, et al., 2015. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles, 4:27066. https://doi.org/10.3402/jev.v4.27066https://doi.org/10.3402/jev.v4.27066
Yang ZJ, Bi QC, Gan LJ, et al., 2022. Exosomes derived from glioma cells under hypoxia promote angiogenesis through up-regulated exosomal connexin 43. Int J Med Sci, 19(7):1205-1215. https://doi.org/10.7150/ijms.71912https://doi.org/10.7150/ijms.71912
Yao ZL, Qiao YS, Li XF, et al., 2018. Exosomes exploit the virus entry machinery and pathway to transmit alpha interferon-induced antiviral activity. J Virol, 92(24):e01578-18. https://doi.org/10.1128/jvi.01578-18https://doi.org/10.1128/jvi.01578-18
Yoon JH, Ashktorab H, Smoot DT, et al., 2020. Uptake and tumor-suppressive pathways of exosome-associated GKN1 protein in gastric epithelial cells. Gastric Cancer, 23(5):848-862. https://doi.org/10.1007/s10120-020-01068-2https://doi.org/10.1007/s10120-020-01068-2
Yuan DF, Zhao YL, Banks WA, et al., 2017. Macrophage exosomes as natural nanocarriers for protein delivery to inflamed brain. Biomaterials, 142:1-12. https://doi.org/10.1016/j.biomaterials.2017.07.011https://doi.org/10.1016/j.biomaterials.2017.07.011
Zhou X, Miao YQ, Wang Y, et al., 2022. Tumour-derived extracellular vesicle membrane hybrid lipid nanovesicles enhance siRNA delivery by tumour-homing and intracellular freeway transportation. J Extracell Vesicles, 11(3):e12198. https://doi.org/10.1002/jev2.12198https://doi.org/10.1002/jev2.12198
0
浏览量
21
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构