无数据
Scan for full text
1.Department of Oncology and Vascular Interventional Radiology, Zhongshan Hospital Affiliated to Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China
2.School of Medicine, Xiamen University, Xiamen 361102, China
3.Xiamen Health and Medical Big Data Center, Xiamen 361008, China
4.Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma (Zhongshan Hospital Affiliated to Xiamen University), Xiamen 361004, China
5.Xiamen Key Laboratory of Cellular Intervention and Interventional Medical Materials, Xiamen 361004, China
纸质出版日期: 2024-06-15 ,
网络出版日期: 2024-06-01 ,
收稿日期: 2023-07-10 ,
修回日期: 2023-08-23 ,
刘弘毅,周媛媛,郭鹏等.通过机械力刺激乙型肝炎病毒X基因(HBX)转染的肝星状细胞制备血液透析用双层仿生血管[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2024,25(06):499-512.
Hongyi LIU, Yuanyuan ZHOU, Peng GUO, et al. Hemodialysis bilayer bionic blood vessels developed by the mechanical stimulation of hepatitis B viral X
刘弘毅,周媛媛,郭鹏等.通过机械力刺激乙型肝炎病毒X基因(HBX)转染的肝星状细胞制备血液透析用双层仿生血管[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2024,25(06):499-512. DOI: 10.1631/jzus.B2300479.
Hongyi LIU, Yuanyuan ZHOU, Peng GUO, et al. Hemodialysis bilayer bionic blood vessels developed by the mechanical stimulation of hepatitis B viral X
人工血管的移植(AVG)造瘘被广泛用于肾衰竭患者的血液透析治疗。然而,目前临床使用的人工血管的弹性和顺应性较差,容易导致狭窄,形成血栓。用于透析的理想人造血管应模拟天然血管的结构和成分,而天然血管主要由血管内细胞分泌的细胞外基质(ECM)中的胶原蛋白维持。研究发现,在乙型肝炎病毒(HBV)诱导的肝纤维化中,肝星状细胞(HSCs)变得异常活跃,并产生过多的 ECM 纤维。此外,机械刺激可促进 ECM分泌并重塑ECM的纤维结构。基于上述因素,我们用乙型肝炎病毒X基因(
HBX
)转染HSCs细胞,在体外模拟HBV病毒感染的过程。随后,将
HBX
-HSCs细胞种植入由聚己内酯-聚氨酯(PCL-PU)制备的内层致密、外层多孔的双层支架,通过机械力刺激
HBX
-HSCs分泌大量的胶原纤维,并促进其与血管支架的多孔结构进行交联。由此,我们获得了一种ECM-PCL-PU复合仿生血管,其在脱细胞后可作为透析用血管。最后,我们将制备得到的血管支架植入兔颈部动静脉瘘模型。该血管支架具有很强的拉伸强度和顺畅的血流,并在兔子体内形成了自体血管。综上,我们的研究展示了利用人体细胞创建仿生透析血管的方法,为创建临床透析血管通路提供了一种新方法。
Artificial vascular graft (AVG) fistula is widely used for hemodialysis treatment in patients with renal failure. However
it has poor elasticity and compliance
leading to stenosis and thrombosis. The ideal artificial blood vessel for dialysis should replicate the structure and components of a real artery
which is primarily maintained by collagen in the extracellular matrix (ECM) of arterial cells. Studies have revealed that in hepatitis B virus (HBV)-induced liver fibrosis
hepatic stellate cells (HSCs) become hyperactive and produce excessive ECM fibers. Furthermore
mechanical stimulation can encourage ECM secretion and remodeling of a fiber structure. Based on the above factors
we transfected HSCs with the he
patitis B viral X (
HBX
) gene for simulating the process of HBV infection. Subsequently
these
HBX
-HSCs were implanted into a polycaprolactone-polyurethane (PCL-PU) bilayer scaffold in which the inner layer is dense and the outer layer consists of pores
which was mechanically stimulated to promote the secretion of collagen nanofiber from the
HBX
-HSCs and to facilitate crosslinking with the scaffold. We obtained an ECM-PCL-PU composite bionic blood vessel that could act as access for dialysis after decellularization. Then
the vessel scaffold was implanted into a rabbit’s neck arteriovenous fistula model. It exhibited strong tensile strength and smooth blood flow and formed autologous blood vessels in the rabbit’s body. Our study demonstrates the use of human cells to create biomimetic dialysis blood vessels
providing a novel approach for creating clinical vascular access for dialysis.
复合双层仿生血管细胞外基质肝星状细胞乙型肝炎病毒X基因(HBX)机械力
Composite bilayer bionic blood vesselExtracellular matrix (ECM)Hepatic stellate cells (HSCs)Hepatitis B viral X (HBX)geneMechanical force
Bachleda P, Kalinova L, Utikal P, et al., 2012. Infected prosthetic dialysis arteriovenous grafts: a single dialysis center study. Surg Infect (Larchmt), 13(6):366-370. https://doi.org/10.1089/sur.2011.041https://doi.org/10.1089/sur.2011.041
Baker SC, Rohman G, Southgate J, et al., 2009. The relationship between the mechanical properties and cell behaviour on PLGA and PCL scaffolds for bladder tissue engineering. Biomaterials, 30(7):1321-1328. https://doi.org/10.1016/j.biomaterials.2008.11.033https://doi.org/10.1016/j.biomaterials.2008.11.033
Barberio C, Saez J, Withers A, et al., 2022. Conducting polymer-ECM scaffolds for human neuronal cell differentiation. Adv Healthc Mater, 11(20):2200941. https://doi.org/10.1002/adhm.202200941https://doi.org/10.1002/adhm.202200941
Bataller R, Brenner DA, 2005. Liver fibrosis. J Clin Invest, 115(2):209-218. https://doi.org/10.1172/JCI24282https://doi.org/10.1172/JCI24282
Batudeligen, Han ZQ, Chen HM, et al., 2023. Luteolin alleviates liver fibrosis in rat hepatic stellate cell HSC-T6: a proteomic analysis. Drug Des Devel Ther, 17:1819-1829. https://doi.org/10.2147/DDDT.S402864https://doi.org/10.2147/DDDT.S402864
Bedossa P, Paradis V, 2003. Liver extracellular matrix in health and disease. J Pathol, 200(4):504-515. https://doi.org/10.1002/path.1397https://doi.org/10.1002/path.1397
Chen HY, Chen ZX, Huang RF, et al., 2014. Hepatitis B virus X protein activates human hepatic stellate cells through upregulating TGFβ1. Genet Mol Res, 13(4):8645-8656. https://doi.org/10.4238/2014.October.27.4https://doi.org/10.4238/2014.October.27.4
Cheng NC, Estes BT, Awad HA, et al., 2009. Chondrogenic differentiation of adipose-derived adult stem cells by a porous scaffold derived from native articular cartilage extracellular matrix. Tissue Eng Part A, 15(2):231-241. https://doi.org/10.1089/ten.tea.2008.0253https://doi.org/10.1089/ten.tea.2008.0253
Daley WP, Yamada KM, 2013. ECM-modulated cellular dynamics as a driving force for tissue morphogenesis. Curr Opin Genet Dev, 23(4):408-414. https://doi.org/10.1016/j.gde.2013.05.005https://doi.org/10.1016/j.gde.2013.05.005
da Silva WF, Simões MJ, Gutierre RC, et al., 2017. Special dyeing, histochemistry, immunohistochemistry and ultrastructure: a study of mast cells/eosinophilic granules cells (MCs/EGC) from Centropomus parallelus intestine. Fish Shellfish Immunol, 60:502-508. https://doi.org/10.1016/j.fsi.2016.11.022https://doi.org/10.1016/j.fsi.2016.11.022
Deng WY, Chen F, Zhou ZY, et al., 2021. Hepatitis B virus promotes hepatocellular carcinoma progression synergistically with hepatic stellate cells via facilitating the expression and secretion of ENPP2. Front Mol Biosci, 8:745990. https://doi.org/10.3389/fmolb.2021.745990https://doi.org/10.3389/fmolb.2021.745990
Do TD, Katsuyoshi J, Cai HN, et al., 2021. Mechanical properties of isolated primary cilia measured by micro-tensile test and atomic force microscopy. Front Bioeng Biotechnol, 9:753805. https://doi.org/10.3389/fbioe.2021.753805https://doi.org/10.3389/fbioe.2021.753805
Fan WX, Deng ZX, Liu F, et al., 2012. Spontaneous retroperitoneal hemorrhage after hemodialysis involving anticoagulant agents. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 13(5):408-412. https://doi.org/10.1631/jzus.B1100357https://doi.org/10.1631/jzus.B1100357
Farb A, Kolodgie FD, Hwang JY, et al., 2004. Extracellular matrix changes in stented human coronary arteries. Circulation, 110(8):940-947. https://doi.org/10.1161/01.CIR.0000139337.56084.30https://doi.org/10.1161/01.CIR.0000139337.56084.30
Feng GX, Li J, Yang Z, et al., 2017. Hepatitis B virus X protein promotes the development of liver fibrosis and hepatoma through downregulation of miR-30e targeting P4HA2 mRNA. Oncogene, 36(50):6895-6905. https://doi.org/10.1038/onc.2017.291https://doi.org/10.1038/onc.2017.291
Gokal R, 2002. Peritoneal dialysis in the 21st century: an analysis of current problems and future developments. J Am Soc Nephrol, 13(Suppl 1):S104-S115. https://doi.org/10.1681/ASN.V13suppl_1s104https://doi.org/10.1681/ASN.V13suppl_1s104
Huang JM, Tian XX, Zhong YF, et al., 2006. Effects of β1-integrin, fibronectin and laminin on invasive behavior of human gliomas. Chin J Pathol, 35(8):478-482 (in Chinese). https://doi.org/10.3760/j.issn:0529-5807.2006.08.007https://doi.org/10.3760/j.issn:0529-5807.2006.08.007
Jirofti N, Mohebbi-Kalhori D, Samimi A, et al., 2018. Small-diameter vascular graft using co-electrospun composite PCL/PU nanofibers. Biomed Mater, 13(5):055014. https://doi.org/10.1088/1748-605X/aad4b5https://doi.org/10.1088/1748-605X/aad4b5
Kechagia JZ, Ivaska J, Roca-Cusachs P, 2019. Integrins as biomechanical sensors of the microenvironment. Nat Rev Mol Cell Biol, 20(8):457-473. https://doi.org/10.1038/s41580-019-0134-2https://doi.org/10.1038/s41580-019-0134-2
Khomich O, Ivanov AV, Bartosch B, 2019. Metabolic hallmarks of hepatic stellate cells in liver fibrosis. Cells, 9(1):24. https://doi.org/10.3390/cells9010024https://doi.org/10.3390/cells9010024
Kim SY, Park JH, Leite G, et al., 2023. Interleukin-10 knockout mice do not reliably exhibit macroscopic inflammation: a natural history endoscopic surveillance study. Dig Dis Sci, 68(5):1858-1862. https://doi.org/10.1007/s10620-023-07871-yhttps://doi.org/10.1007/s10620-023-07871-y
Koyama Y, Brenner DA, 2017. Liver inflammation and fibrosis. J Clin Invest, 127(1):55-64. https://doi.org/10.1172/JCI88881https://doi.org/10.1172/JCI88881
Li W, Liu HY, Huang Z, 2011. Construction of luxAB-labelled Pseudomonas aeruginosa. J Hyg Res, 40(1):57-60 (in Chinese). https://doi.org/10.19813/j.cnki.weishengyanjiu.2011.01.012https://doi.org/10.19813/j.cnki.weishengyanjiu.2011.01.012
Lu L, Shang XF, Liu B, et al., 2021. Repair of articular cartilage defect using adipose-derived stem cell-loaded scaffold derived from native cartilage extracellular matrix. J Cell Physiol, 236(6):4244-4257. https://doi.org/10.1002/jcp.30020https://doi.org/10.1002/jcp.30020
Martín-Vílchez S, Sanz-Cameno P, Rodríguez-Muñoz Y, et al., 2008. The hepatitis B virus X protein induces paracrine activation of human hepatic stellate cells. Hepatology, 47(6):1872-1883. https://doi.org/10.1002/hep.22265https://doi.org/10.1002/hep.22265
Mecham RP, 2008. Methods in elastic tissue biology: elastin isolation and purification. Methods, 45(1):32-41. https://doi.org/10.1016/j.ymeth.2008.01.007https://doi.org/10.1016/j.ymeth.2008.01.007
Mongiat M, Andreuzzi E, Tarticchio G, et al., 2016. Extracellular matrix, a hard player in angiogenesis. Int J Mol Sci, 17(11):1822. https://doi.org/10.3390/ijms17111822https://doi.org/10.3390/ijms17111822
Nesrallah GE, Mustafa RA, Macrae J, et al., 2013. Canadian society of nephrology guidelines for the management of patients with ESRD treated with intensive hemodialysis. Am J Kidney Dis, 62(1):187-198. https://doi.org/10.1053/j.ajkd.2013.02.351https://doi.org/10.1053/j.ajkd.2013.02.351
Niu QY, Su XM, Lian LX, et al., 2022. Developing qualitative plasmid DNA reference materials to detect mechanisms of quinolone and fluoroquinolone resistance in foodborne pathogens. Foods, 11(2):154. https://doi.org/10.3390/foods11020154https://doi.org/10.3390/foods11020154
Parry DAD, Squire JM, 2005. Fibrous proteins: new structural and functional aspects revealed. Adv Protein Chem, 70:1-10. https://doi.org/10.1016/S0065-3233(05)70001-2https://doi.org/10.1016/S0065-3233(05)70001-2
Peyton SR, Ghajar CM, Khatiwala CB, et al., 2007. The emergence of ECM mechanics and cytoskeletal tension as important regulators of cell function. Cell Biochem Biophys, 47(2):300-320. https://doi.org/10.1007/s12013-007-0004-yhttps://doi.org/10.1007/s12013-007-0004-y
Rhodes JM, Simons M, 2007. The extracellular matrix and blood vessel formation: not just a scaffold. J Cell Mol Med, 11(2):176-205. https://doi.org/10.1111/j.1582-4934.2007.00031.xhttps://doi.org/10.1111/j.1582-4934.2007.00031.x
Rose-John S, Scheller J, Schaper F, 2015. “Family reunion”—a structured view on the composition of the receptor complexes of interleukin-6-type and interleukin-12-type cytokines. Cytokine Growth Factor Rev, 26(5):471-474. https://doi.org/10.1016/j.cytogfr.2015.07.011https://doi.org/10.1016/j.cytogfr.2015.07.011
Sánchez-Romero N, Sainz-Arnal P, Pla-Palacín I, et al., 2019. The role of extracellular matrix on liver stem cell fate: a dynamic relationship in health and disease. Differentiation, 106:49-56. https://doi.org/10.1016/j.diff.2019.03.001https://doi.org/10.1016/j.diff.2019.03.001
Sato N, Kohi S, Hirata K, et al., 2016. Role of hyaluronan in pancreatic cancer biology and therapy: once again in the spotlight. Cancer Sci, 107(5):569-575. https://doi.org/10.1111/cas.12913https://doi.org/10.1111/cas.12913
Schaefer L, Schaefer RM, 2010. Proteoglycans: from structural compounds to signaling molecules. Cell Tissue Res, 339:237-246. https://doi.org/10.1007/s00441-009-0821-yhttps://doi.org/10.1007/s00441-009-0821-y
Schindelin J, Arganda-Carreras I, Frise E, et al., 2012. Fiji: an open-source platform for biological-image analysis. Nat Methods, 9(7):676-682. https://doi.org/10.1038/nmeth.2019https://doi.org/10.1038/nmeth.2019
Sehgal PB, Wang L, Rayanade R, et al., 1995. Interleukin-6-type cytokines. Ann N Y Acad Sci, 762(1):1-14. https://doi.org/10.1111/j.1749-6632.1995.tb32309.xhttps://doi.org/10.1111/j.1749-6632.1995.tb32309.x
Seo HY, Lee SH, Lee JH, et al., 2019. Clusterin attenuates hepatic fibrosis by inhibiting hepatic stellate cell activation and downregulating the Smad3 signaling pathway. Cells, 8(11):1442. https://doi.org/10.3390/cells8111442https://doi.org/10.3390/cells8111442
Steffensen LB, Stubbe J, Lindholt JS, et al., 2021. Basement membrane collagen IV deficiency promotes abdominal aortic aneurysm formation. Sci Rep, 11:12903. https://doi.org/10.1038/s41598-021-92303-yhttps://doi.org/10.1038/s41598-021-92303-y
Stegemann JP, Kaszuba SN, Rowe SL, 2007. Review: advances in vascular tissue engineering using protein-based biomaterials. Tissue Eng, 13(11):2601-2613. https://doi.org/10.1089/ten.2007.0196https://doi.org/10.1089/ten.2007.0196
Stern R, 2008. Hyaluronan in cancer biology. Semin Cancer Biol, 18(4):237. https://doi.org/10.1016/j.semcancer.2008.04.001https://doi.org/10.1016/j.semcancer.2008.04.001
Tang XY, Chen DZ, Zhang L, et al., 2022. Application of regional citrate anticoagulation in patients at high risk of bleeding during intermittent hemodialysis: a prospective multicenter randomized controlled trial. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 23(11):931-942. https://doi.org/10.1631/jzus.B2200082https://doi.org/10.1631/jzus.B2200082
Thottappillil N, Nair PD, 2015. Scaffolds in vascular regeneration: current status. Vasc Health Risk Manag, 11:79-91. https://doi.org/10.2147/VHRM.S50536https://doi.org/10.2147/VHRM.S50536
Wang C, Garcia M, Lu X, et al., 2006. Three-dimensional mechanical properties of porcine coronary arteries: a validated two-layer model. Am J Physiol Heart Circ Physiol, 291(3):H1200-H1209. https://doi.org/10.1152/ajpheart.01323.2005https://doi.org/10.1152/ajpheart.01323.2005
Wang J, Shen T, Huang XB, et al., 2016. Serum hepatitis B virus RNA is encapsidated pregenome RNA that may be associated with persistence of viral infection and rebound. J Hepatol, 65(4):700-710. https://doi.org/10.1016/j.jhep.2016.05.029https://doi.org/10.1016/j.jhep.2016.05.029
Wang JHC, Thampatty BP, 2006. An introductory review of cell mechanobiology. Biomech Model Mechanobiol, 5:1-16. https://doi.org/10.1007/s10237-005-0012-zhttps://doi.org/10.1007/s10237-005-0012-z
Wang JL, Cui WG, Ye JH, et al., 2012. A cellular delivery system fabricated with autologous BMSCs and collagen scaffold enhances angiogenesis and perfusion in ischemic hind limb. J Biomed Mater Res A, 100A(6):1438-1447. https://doi.org/10.1002/jbm.a.34081https://doi.org/10.1002/jbm.a.34081
Yang SZ, Liu YF, Feng XB, et al., 2021. HBx acts as an oncogene and promotes the invasion and metastasis of hepatocellular carcinoma both in vivo and vitro. Dig Liver Dis, 53(3):360-366. https://doi.org/10.1016/j.dld.2020.10.007https://doi.org/10.1016/j.dld.2020.10.007
Yang WF, Han F, Zhang XH, et al., 2013. Extra-pulmonary tuberculosis infection in the dialysis patients with end stage renal diseases: case reports and literature review. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 14(1):76-82. https://doi.org/10.1631/jzus.B1200244https://doi.org/10.1631/jzus.B1200244
Yin M, Ding XR, Yin S, et al., 2023. Exosomes from hepatitis B virus-infected hepatocytes activate hepatic stellate cells and aggravate liver fibrosis through the miR-506-3p/Nur77 pathway. J Biochem Mol Toxicol, 37(10):e23432. https://doi.org/10.1002/jbt.23432https://doi.org/10.1002/jbt.23432
Zhang H, Yan XL, Guo XX, et al., 2018. MiR-27a as a predictor for the activation of hepatic stellate cells and hepatitis B virus-induced liver cirrhosis. Oncotarget, 9:1075-1090. https://doi.org/10.18632/oncotarget.23262https://doi.org/10.18632/oncotarget.23262
Zhao YL, Zhang S, Zhou JY, et al., 2010. The development of a tissue-engineered artery using decellularized scaffold and autologous ovine mesenchymal stem cells. Biomaterials, 31(2):296-307. https://doi.org/10.1016/j.biomaterials.2009.09.049https://doi.org/10.1016/j.biomaterials.2009.09.049
Zhou X, Zhang YL, Wang HF, et al., 2018. The development of an extra-anatomic tissue-engineered artery with collateral arteries for therapeutic angiogenesis in ischemic hind limb. Sci Rep, 8:4627. https://doi.org/10.1038/s41598-018-22799-4https://doi.org/10.1038/s41598-018-22799-4
0
浏览量
17
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构