无数据
Scan for full text
1.Department of Gynecologic Oncology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
2.Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou 310006, China
纸质出版日期: 2024-08-15 ,
收稿日期: 2023-06-12 ,
修回日期: 2023-09-21 ,
许君芬,屠梦雁.单细胞转录组学揭示卵巢癌肉瘤的肿瘤特征[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2024,25(08):686-699.
Junfen XU, Mengyan TU. Single-cell transcriptomics reveals tumor landscape in ovarian carcinosarcoma[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2024,25(8):686-699.
许君芬,屠梦雁.单细胞转录组学揭示卵巢癌肉瘤的肿瘤特征[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2024,25(08):686-699. DOI: 10.1631/jzus.B2300407.
Junfen XU, Mengyan TU. Single-cell transcriptomics reveals tumor landscape in ovarian carcinosarcoma[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2024,25(8):686-699. DOI: 10.1631/jzus.B2300407.
本研究旨在通过使用单细胞RNA测序(scRNA-seq)来表征卵巢癌肉瘤的细胞组成并鉴定其分子特征。我们将scRNA-seq应用于手术切除的原发性卵巢癌肉瘤标本,对肿瘤细胞和肿瘤微环境进行分析,同时采用免疫组织化学染色进行验证,最后将卵巢癌肉瘤的scRNA-seq数据与高级别浆液性卵巢癌肿瘤及其他研究中的卵巢癌肉瘤数据进行比较。结果显示,在该卵巢癌肉瘤患者中可同时检测到恶性上皮细胞和恶性间充质细胞。我们鉴定了四个具有不同生物学作用的上皮细胞亚簇,其中上皮细胞亚簇4表现出高水平的乳腺癌1号基因(BRCA1)和DNA拓扑异构酶II α(TOP2A)表达
,这与耐药性和细胞周期有关。通过对上皮细胞和间充质细胞之间的相互作用分析,我们还发现成纤维细胞生长因子(FGF)和多功能生长因子(PTN)信号通路是促进这种细胞通讯的主要途径。此外,通过将这种卵巢癌肉瘤的恶性上皮和间充质细胞与课题组前期发表的高级别浆液性卵巢癌scRNA-seq数据及其他已发表的卵巢癌肉瘤数据进行对比,我们发现在高级别浆液性卵巢癌样本中存在该卵巢癌肉瘤中的所有上皮亚簇。值得注意的是,间充质亚簇C14在卵巢癌肉瘤中表现出特异性表达模式,其特征是肽基丙基异构酶24A1(
CYP24A1
)、胶原XXIII型α1链(
COL23A1
)、胆囊收缩素(
CCK
)、骨形态发生蛋白7(
BMP7
)、
PTN
、Wnt抑制因子1(
WIF1
)和胰岛素样生长因子2(
IGF2
)表达水平的升高;当与另一份已发表的卵巢癌肉瘤数据及正常卵巢组织相比,该亚簇则表现出截然不同的特征。综上,本研究提供了人类卵巢癌肉瘤的单细胞转录组特征,并为阐明卵巢癌肉瘤多样性提供了新的资源。
Objective
2
The present study used single-cell RNA sequencing (scRNA-seq) to characterize the cellular composition of ovarian carcinosarcoma (OCS) and identify its molecular characteristics.
Methods
2
scRNA-seq was performed in resected primary OCS for an in-depth analysis of tumor cells and the tumor microenvironment. Immunohistochemistry staining was used for validation. The scRNA-seq data of OCS were compared with those of high-grade serous ovarian carcinoma (HGSOC) tumors and other OCS tumors.
Results
2
Both malignant epithelial a
nd malignant mesenchymal cells were observed in the OCS patient of this study. We identified four epithelial cell subclusters with different biological roles. Among them
epithelial subcluster 4 presented high levels of breast cancer type 1 susceptibility protein homolog (
BRCA1
) and DNA topoisomerase 2-α (
TOP2A
) expression and was related to drug resistance and cell cycle. We analyzed the interaction between epithelial and mesenchymal cells and found that fibroblast growth factor (FGF) and pleiotrophin (PTN) signalings were the main pathways contributing to communication between these cells. Moreover
we compared the malignant epithelial and mesenchymal cells of this OCS tumor with our previous published HGSOC scRNA-seq data and OCS data. All the epithelial subclusters in the OCS tumor could be found in the HGSOC samples. Notably
the mesenchymal subcluster C14 exhibited specific expression patterns in the OCS tumor
characterized by elevated expression of cytochrome P450 family 24 subfamily A member 1 (
CYP24A1
)
collagen type XXIII α1 chain (
COL23A1
)
cholecystokinin (
CCK
)
bone morphogenetic protein 7 (
BMP7
)
PTN
Wnt inhibitory factor 1 (
WIF1
)
and insulin-like growth factor 2 (
IGF2
). Moreover
this subcluster showed distinct characteristics when compared with both another previously published OCS tumor and normal ovarian tissue.
Conclusions
2
This study provides the single-cell transcriptomics signature of human OCS
which constitutes a new resource for elucidating OCS diversity.
卵巢癌肉瘤单细胞RNA测序肿瘤异质性
Ovarian carcinosarcomaSingle-cell RNA sequencing (scRNA-seq)Tumor heterogeneity
Ariyoshi K, Kawauchi S, Kaku T, et al., 2000. Prognostic factors in ovarian carcinosarcoma: a clinicopathological and immunohistochemical analysis of 23 cases. Histopathology, 37(5):427-436. https://doi.org/10.1046/j.1365-2559.2000.01015.xhttps://doi.org/10.1046/j.1365-2559.2000.01015.x
Boussios S, Karathanasi A, Zakynthinakis-Kyriakou N, et al., 2019. Ovarian carcinosarcoma: current developments and future perspectives. Crit Rev Oncol/Hematol, 134:46-55. https://doi.org/10.1016/j.critrevonc.2018.12.006https://doi.org/10.1016/j.critrevonc.2018.12.006
Cescon M, Gattazzo F, Chen PW, et al., 2015. Collagen VI at a glance. J Cell Sci, 128(19):3525-3531. https://doi.org/10.1242/jcs.169748https://doi.org/10.1242/jcs.169748
Chen PW, Cescon M, Bonaldo P, 2013. Collagen VI in cancer and its biological mechanisms. Trends Mol Med, 19(7):410-417. https://doi.org/10.1016/j.molmed.2013.04.001https://doi.org/10.1016/j.molmed.2013.04.001
Chen X, Chen SW, Yu DS, 2020. Metabolic reprogramming of chemoresistant cancer cells and the potential significance of metabolic regulation in the reversal of cancer chemoresistance. Metabolites, 10(7):289. https://doi.org/10.3390/metabo10070289https://doi.org/10.3390/metabo10070289
Cheung A, Shah S, Parker J, et al., 2022. Non-epithelial ovarian cancers: how much do we really know? Int J Environ Res Public Health, 19(3):1106. https://doi.org/10.3390/ijerph19031106https://doi.org/10.3390/ijerph19031106
del Carmen MG, Birrer M, Schorge JO, 2012. Carcinosarcoma of the ovary: a review of the literature. Gynecol Oncol, 125(1):271-277. https://doi.org/10.1016/j.ygyno.2011.12.418https://doi.org/10.1016/j.ygyno.2011.12.418
Ding SN, Chen XS, Shen KW, 2020. Single-cell RNA sequencing in breast cancer: understanding tumor heterogeneity and paving roads to individualized therapy. Cancer Commun, 40(8):329-344. https://doi.org/10.1002/cac2.12078https://doi.org/10.1002/cac2.12078
Gao CX, Shi JM, Zhang JX, et al., 2022. Chemerin promotes proliferation and migration of ovarian cancer cells by upregulating expression of PD-L1. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 23(2):164-170. https://doi.org/10.1631/jzus.B2100392https://doi.org/10.1631/jzus.B2100392
Geistlinger L, Oh S, Ramos M, et al., 2020. Multiomic analysis of subtype evolution and heterogeneity in high-grade serous ovarian carcinoma. Cancer Res, 80(20):4335-4345. https://doi.org/10.1158/0008-5472.CAN-20-0521https://doi.org/10.1158/0008-5472.CAN-20-0521
George EM, Herzog TJ, Neugut AI, et al., 2013. Carcinosarcoma of the ovary: natural history, patterns of treatment, and outcome. Gynecol Oncol, 131(1):42-45. https://doi.org/10.1016/j.ygyno.2013.06.034https://doi.org/10.1016/j.ygyno.2013.06.034
Ghose A, Gullapalli SVN, Chohan N, et al., 2022. Applications of proteomics in ovarian cancer: dawn of a new era. Proteomes, 10(2):16. https://doi.org/10.3390/proteomes10020016https://doi.org/10.3390/proteomes10020016
Gotoh O, Sugiyama Y, Takazawa Y, et al., 2019. Clinically relevant molecular subtypes and genomic alteration-independent differentiation in gynecologic carcinosarcoma. Nat Commun, 10:4965. https://doi.org/10.1038/s41467-019-12985-xhttps://doi.org/10.1038/s41467-019-12985-x
Gui YR, Aguilar-Mahecha A, Krzemien U, et al., 2019. Metastatic breast carcinoma-associated fibroblasts have enhanced protumorigenic properties related to increased IGF2 expression. Clin Cancer Res, 25(23):7229-7242. https://doi.org/10.1158/1078-0432.CCR-19-1268https://doi.org/10.1158/1078-0432.CCR-19-1268
Hollis RL, Croy I, Churchman M, et al., 2022. Ovarian carcinosarcoma is a distinct form of ovarian cancer with poorer survival compared to tubo-ovarian high-grade serous carcinoma. Br J Cancer, 127(6):1034-1042. https://doi.org/10.1038/s41416-022-01874-8https://doi.org/10.1038/s41416-022-01874-8
Kanis MJ, Kolev V, Getrajdman J, et al., 2016. Carcinosarcoma of the ovary: a single institution experience and review of the literature. Eur J Gynaecol Oncol, 37(1):75-79.
Kurman RJ, Shih IM, 2011. Molecular pathogenesis and extraovarian origin of epithelial ovarian cancer—shifting the paradigm. Hum Pathol, 42(7):918-931. https://doi.org/10.1016/j.humpath.2011.03.003https://doi.org/10.1016/j.humpath.2011.03.003
Lamb MR, Gertsen E, Middlemas E, 2012. Carcinosarcoma of the ovary: case report and literature review. Tenn Med, 105(3):41-42.
Lee HW, Chung W, Lee HO, et al., 2020. Single-cell RNA sequencing reveals the tumor microenvironment and facilitates strategic choices to circumvent treatment failure in a chemorefractory bladder cancer patient. Genome Med, 12:47. https://doi.org/10.1186/s13073-020-00741-6https://doi.org/10.1186/s13073-020-00741-6
Liang LL, Yu J, Li J, et al., 2021. Integration of scRNA-seq and bulk RNA-seq to analyse the heterogeneity of ovarian cancer immune cells and establish a molecular risk model. Front Oncol, 11:711020. https://doi.org/10.3389/fonc.2021.711020https://doi.org/10.3389/fonc.2021.711020
Liu C, Zhang Y, Li XH, et al., 2022. Ovarian cancer-specific dysregulated genes with prognostic significance: scRNA-seq with bulk RNA-seq data and experimental validation. Ann N Y Acad Sci, 1512(1):154-173. https://doi.org/10.1111/nyas.14748https://doi.org/10.1111/nyas.14748
Liu FS, Kohler MF, Marks JR, et al., 1994. Mutation and overexpression of the p53 tumor suppressor gene frequently occurs in uterine and ovarian sarcomas. Obstet Gynecol, 83(1):118-124.
Luo QK, Fu Q, Zhang X, et al., 2020. Application of single-cell RNA sequencing in pancreatic cancer and the endocrine pancreas. In: Yu BW, Zhang JQ, Zeng YM, et al. (Eds.), Single-cell Sequencing and Methylation. Springer, Singapore, p.143-152. https://doi.org/10.1007/978-981-15-4494-1_12https://doi.org/10.1007/978-981-15-4494-1_12
Ma XS, Guo JN, Liu KS, et al., 2020. Identification of a distinct luminal subgroup diagnosing and stratifying early stage prostate cancer by tissue-based single-cell RNA sequencing. Mol Cancer, 19:147. https://doi.org/10.1186/s12943-020-01264-9https://doi.org/10.1186/s12943-020-01264-9
Maynard A, McCoach CE, Rotow JK, et al., 2020. Therapy-induced evolution of human lung cancer revealed by single-cell RNA sequencing. Cell, 182(5):1232-1251.e22. https://doi.org/10.1016/j.cell.2020.07.017https://doi.org/10.1016/j.cell.2020.07.017
Menke A, Philippi C, Vogelmann R, et al., 2001. Down-regulation of E-cadherin gene expression by collagen type I and type III in pancreatic cancer cell lines. Cancer Res, 61(8):3508-3517.
Näyhä V, Stenbäck F, 2008. Angiogenesis and expression of angiogenic agents in uterine and ovarian carcinosarcomas. APMIS, 116(2):107-117. https://doi.org/10.1111/j.1600-0463.2008.00757.xhttps://doi.org/10.1111/j.1600-0463.2008.00757.x
Rauh-Hain JA, Growdon WB, Rodriguez N, et al., 2011. Carcinosarcoma of the ovary: a case-control study. Gynecol Oncol, 121(3):477-481. https://doi.org/10.1016/j.ygyno.2011.02.023https://doi.org/10.1016/j.ygyno.2011.02.023
Rauh-Hain JA, Diver EJ, Clemmer JT, et al., 2013. Carcinosarcoma of the ovary compared to papillary serous ovarian carcinoma: a SEER analysis. Gynecol Oncol, 131(1):46-51. https://doi.org/10.1016/j.ygyno.2013.07.097https://doi.org/10.1016/j.ygyno.2013.07.097
Regner MJ, Wisniewska K, Garcia-Recio S, et al., 2021. A multi-omic single-cell landscape of human gynecologic malignancies. Mol Cell, 81(23):4924-4941.e10. https://doi.org/10.1016/j.molcel.2021.10.013https://doi.org/10.1016/j.molcel.2021.10.013
Siegel RL, Miller KD, Jemal A, 2020. Cancer statistics, 2020. CA Cancer J Clin, 70(1):7-30. https://doi.org/10.3322/caac.21590https://doi.org/10.3322/caac.21590
Thompson SL, Compton DA, 2011. Chromosomes and cancer cells. Chromosome Res, 19(3):433-444. https://doi.org/10.1007/s10577-010-9179-yhttps://doi.org/10.1007/s10577-010-9179-y
Tong DL, Boocock DJ, Dhondalay GKR, et al., 2014. Artificial neural network inference (ANNI): a study on gene-gene interaction for biomarkers in childhood sarcomas. PLoS ONE, 9(7):e102483. https://doi.org/10.1371/journal.pone.0102483https://doi.org/10.1371/journal.pone.0102483
Xu JF, Fang YF, Chen KL, et al., 2022. Single-cell RNA sequencing reveals the tissue architecture in human high-grade serous ovarian cancer. Clin Cancer Res, 28(16):3590-3602. https://doi.org/10.1158/1078-0432.CCR-22-0296https://doi.org/10.1158/1078-0432.CCR-22-0296
Yang SX, Pham LK, Liao CP, et al., 2008. A novel bone morphogenetic protein signaling in heterotypic cell interactions in prostate cancer. Cancer Res, 68(1):198-205. https://doi.org/10.1158/0008-5472.CAN-07-5074https://doi.org/10.1158/0008-5472.CAN-07-5074
Zhao S, Xiong W, Xu K, 2020. MiR-663a, regulated by lncRNA GAS5, contributes to osteosarcoma development through targeting MYL9. Hum Exp Toxicol, 39(12):1607-1618. https://doi.org/10.1177/0960327120937330https://doi.org/10.1177/0960327120937330
Zhu J, Wen H, Ju XZ, et al., 2017. Clinical significance of programmed death ligand-1 and intra-tumoral CD8+ T lymphocytes in ovarian carcinosarcoma. PLoS ONE, 12(1):e0170879. https://doi.org/10.1371/journal.pone.0170879https://doi.org/10.1371/journal.pone.0170879
Zibetti Dal Molin G, Abrahão CM, Coleman RL, et al., 2018. Response to pembrolizumab in a heavily treated patient with metastatic ovarian carcinosarcoma. Gynecol Oncol Res Pract, 5:6. https://doi.org/10.1186/s40661-018-0063-3https://doi.org/10.1186/s40661-018-0063-3
Zorzou MP, Markaki S, Rodolakis A, et al., 2005. Clinicopathological features of ovarian carcinosarcomas: a single institution experience. Gynecol Oncol, 96(1):136-142. https://doi.org/10.1016/j.ygyno.2004.09.051https://doi.org/10.1016/j.ygyno.2004.09.051
0
浏览量
28
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构