无数据
Scan for full text
1.Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
2.Department of Gynecologic Oncology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
3.Cancer Center, Zhejiang University, Hangzhou 310058, China
4.Department of Obstetrics and Gynecology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
5.Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou 310006, China
纸质出版日期: 2024-07-15 ,
收稿日期: 2023-03-09 ,
修回日期: 2023-08-29 ,
韦欣仪, 王聪慧, 汤桑桑, 等. RAD51B-AS1通过上调RAD51B促进卵巢癌的恶性生物学行为[J]. 浙江大学学报(英文版)(B辑:生物医学和生物技术), 2024,25(7):581-593.
Xinyi WEI, Conghui WANG, Sangsang TANG, et al. RAD51B-AS1 promotes the malignant biological behavior of ovarian cancer through upregulation of RAD51B[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2024,25(7):581-593.
韦欣仪, 王聪慧, 汤桑桑, 等. RAD51B-AS1通过上调RAD51B促进卵巢癌的恶性生物学行为[J]. 浙江大学学报(英文版)(B辑:生物医学和生物技术), 2024,25(7):581-593. DOI: 10.1631/jzus.B2300154.
Xinyi WEI, Conghui WANG, Sangsang TANG, et al. RAD51B-AS1 promotes the malignant biological behavior of ovarian cancer through upregulation of RAD51B[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2024,25(7):581-593. DOI: 10.1631/jzus.B2300154.
长链非编码RNA(lncRNA)在卵巢癌的发生发展中起着不可或缺的作用,但它们在卵巢癌进展中的潜在作用在很大程度上仍是未知。为了研究新型lncRNA RAD51B-AS1在卵巢癌中的具体作用和机制,我们通过逆转录-定量聚合酶链反应实验验证了RAD51B-AS1的表达;使用CCK-8实验、集落形成实验、transwell实验和流式细胞术检测细胞的增殖、转移和凋亡水平;建立小鼠异种移植瘤模型检测肿瘤发生情况。结果显示:RAD51B-AS1在人高转移卵巢癌细胞系和卵巢癌组织中显著上调;同时,RAD51B-AS1显著增强卵巢癌细胞的增殖、转移和抵抗失巢凋亡的能力。生物遗传学预测分析显示,RAD51B-AS1的唯一靶基因为RAD51B。随后的基因功能实验表明,RAD51B与RAD51B-AS1具有相同的生物学效应。体外和体内实验均表明,过表达RAD51B-AS1促进的恶性生物学行为可以通过沉默RAD51B的表达部分或完全逆转。由此可见,RAD51B-AS1可促进卵巢癌的恶性生物学行为,并激活Akt/Bcl-2信号通路,这些作用可能与其正向调节RAD51B的表达有关。RAD51B-AS1有望作为一种新的分子生物标志物,用于卵巢癌不良预后的诊断和预测,并作为疾病管理的潜在治疗靶点。
Long non-coding RNAs (lncRNAs) play an indispensable role in the occurrence and development of ovarian cancer (OC). However
the potential involvement of lncRNAs in the progression of OC is largely unknown. To investigate the detailed roles and mechanisms of
RAD51 homolog B-antisense 1 (
RAD51B-AS1
)
a novel lncRNA in OC
reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed to verify the expression of
RAD51B-AS1
. Cellular proliferation
metastasis
and apoptosis were detected using the cell counting kit-8 (CCK-8)
colony-formation
transwell
and flow cytometry assays. Mouse xenograft models were established for the detection of tumorigenesis. The results revealed that
RAD51B-AS1
was significantly upregulated in a highly metastatic human OC cell line and OC tissues.
RAD51B-AS1
significantly increased the proliferation and metastasis of OC cells and enhanced their resistance to anoikis. Biogenetics prediction analysis revealed that the only target gene of
RAD51B-AS1
was
RAD51B
. Subsequent gene function experiments revealed that
RAD51B
exerts the same biological effects as
RAD51B-AS1
. Rescue experiments demonstrated that the malignant biological behaviors promoted by
RAD51B-AS1
overexp
ression were partially or completely reversed by
RAD51B
silencing in vitro and in vivo. Thus
RAD51B-AS1
promotes the malignant biological behaviors of OC and activates the protein kinase B (Akt)/B cell lymphoma protein-2 (Bcl-2) signaling pathway
and these effects may be associated with the positive regulation of
RAD51B
expression.
RAD51B-AS1
is expected to serve as a novel molecular biomarker for the diagnosis and prediction of poor prognosis in OC
and as a potential therapeutic target for disease management.
卵巢癌(OC)长链非编码RNA(LncRNA)转移失巢凋亡
Ovarian cancer (OC)Long non-coding RNA (LncRNA)MetastasisAnoikis
Bhan A, Soleimani M, Mandal SS, 2017. Long noncoding RNA and cancer: a new paradigm. Cancer Res, 77(15):3965-3981. https://doi.org/10.1158/0008-5472.Can-16-2634https://doi.org/10.1158/0008-5472.Can-16-2634
Chen FF, Zhang L, Wu JQ, et al., 2018. HCRP-1 regulates EGFR-AKT-BIM-mediated anoikis resistance and serves as a prognostic marker in human colon cancer. Cell Death Dis, 9(12):1176. https://doi.org/10.1038/s41419-018-1217-2https://doi.org/10.1038/s41419-018-1217-2
Chen LM, Yang PP, al Haq AT, et al., 2022. Oligo-Fucoidan supplementation enhances the effect of Olaparib on preventing metastasis and recurrence of triple-negative breast cancer in mice. J Biomed Sci, 29:70. https://doi.org/10.1186/s12929-022-00855-6https://doi.org/10.1186/s12929-022-00855-6
Chiu WC, Fang PT, Lee YC, et al., 2020. DNA repair protein Rad51 induces tumor growth and metastasis in esophageal squamous cell carcinoma via a p38/Akt-dependent pathway. Ann Surg Oncol, 27(6):2090-2101. https://doi.org/10.1245/s10434-019-08043-xhttps://doi.org/10.1245/s10434-019-08043-x
Cruz C, Castroviejo-Bermejo M, Gutiérrez-Enríquez S, et al., 2018. RAD51 foci as a functional biomarker of homologous recombination repair and PARP inhibitor resistance in germline BRCA-mutated breast cancer. Ann Oncol, 29(5):1203-1210. https://doi.org/10.1093/annonc/mdy099https://doi.org/10.1093/annonc/mdy099
Cui XY, Zhan JK, Liu YS, 2021. Roles and functions of antisense lncRNA in vascular aging. Ageing Res Rev, 72:101480. https://doi.org/10.1016/j.arr.2021.101480https://doi.org/10.1016/j.arr.2021.101480
Dang W, Cao PF, Yan QJ, et al., 2021. IGFBP7-AS1 is a p53-responsive long noncoding RNA downregulated by Epstein-Barr virus that contributes to viral tumorigenesis. Cancer Lett, 523:135-147. https://doi.org/10.1016/j.canlet.2021.10.006https://doi.org/10.1016/j.canlet.2021.10.006
Deng SJ, Chen HY, Zeng Z, et al., 2019. Nutrient stress-dysregulated antisense lncRNA GLS-AS impairs GLS-mediated metabolism and represses pancreatic cancer progression. Cancer Res, 79(7):1398-1412. https://doi.org/10.1158/0008-5472.Can-18-0419https://doi.org/10.1158/0008-5472.Can-18-0419
D'Ydewalle C, Ramos DM, Pyles NJ, et al., 2017. The antisense transcript SMN-AS1 regulates SMN expression and is a novel therapeutic target for spinal muscular atrophy. Neuron, 93(1):66-79. https://doi.org/10.1016/j.neuron.2016.11.033https://doi.org/10.1016/j.neuron.2016.11.033
Ediriweera MK, Tennekoon KH, Samarakoon SR, 2019. Role of the PI3K/AKT/mTOR signaling pathway in ovarian cancer: biological and therapeutic significance. Semin Cancer Biol, 59:147-160. https://doi.org/10.1016/j.semcancer.2019.05.012https://doi.org/10.1016/j.semcancer.2019.05.012
Faghihi MA, Wahlestedt C, 2009. Regulatory roles of natural antisense transcripts. Nat Rev Mol Cell Biol, 10(9):637-643. https://doi.org/10.1038/nrm2738https://doi.org/10.1038/nrm2738
Gibbons HR, Shaginurova G, Kim LC, et al., 2018. Divergent lncRNA GATA3-AS1 regulates GATA3 transcription in T-helper 2 cells. Front Immunol, 9:2512. https://doi.org/10.3389/fimmu.2018.02512https://doi.org/10.3389/fimmu.2018.02512
Huang J, Luo HL, Pan H, et al., 2018. Interaction between RAD51 and MCM complex is essential for RAD51 foci forming in colon cancer HCT116 cells. Biochemistry (Mosc), 83(1):69-75. https://doi.org/10.1134/s0006297918010091https://doi.org/10.1134/s0006297918010091
Jin LT, Chun J, Pan CY, et al., 2018. The PLAG1-GDH1 axis promotes anoikis resistance and tumor metastasis through CamKK2-AMPK signaling in LKB1-deficient lung cancer. Mol Cell, 69(1):87-99.e7. https://doi.org/10.1016/j.molcel.2017.11.025https://doi.org/10.1016/j.molcel.2017.11.025
Katayama S, Tomaru Y, Kasukawa T, et al., 2005. Antisense transcription in the mammalian transcriptome. Science, 309(5740):1564-1566. https://doi.org/10.1126/science.1112009https://doi.org/10.1126/science.1112009
Lheureux S, Gourley C, Vergote I, et al., 2019. Epithelial ovarian cancer. Lancet, 393(10177):1240-1253. https://doi.org/10.1016/s0140-6736(18)32552-2https://doi.org/10.1016/s0140-6736(18)32552-2
Liang HH, Yu T, Han Y, et al., 2018. LncRNA PTAR promotes EMT and invasion-metastasis in serous ovarian cancer by competitively binding miR-101-3p to regulate ZEB1 expression. Mol Cancer, 17:119. https://doi.org/10.1186/s12943-018-0870-5https://doi.org/10.1186/s12943-018-0870-5
Liu YJ, Burness ML, Martin-Trevino R, et al., 2017. RAD51 mediates resistance of cancer stem cells to PARP inhibition in triple-negative breast cancer. Clin Cancer Res, 23(2):514-522. https://doi.org/10.1158/1078-0432.Ccr-15-1348https://doi.org/10.1158/1078-0432.Ccr-15-1348
Nirmala JG, Lopus M, 2020. Cell death mechanisms in eukaryotes. Cell Biol Toxicol, 36(2):145-164. https://doi.org/10.1007/s10565-019-09496-2https://doi.org/10.1007/s10565-019-09496-2
Oudenaarden CRL, van de Ven RAH, Derksen PWB, 2018. Re-inforcing the cell death army in the fight against breast cancer. J Cell Sci, 131(16):jcs212563. https://doi.org/10.1242/jcs.212563https://doi.org/10.1242/jcs.212563
Pan K, Xie Y, 2020. LncRNA FOXC2-AS1 enhances FOXC2 mRNA stability to promote colorectal cancer progression via activation of Ca2+-FAK signal pathway. Cell Death Dis, 11(6):434. https://doi.org/10.1038/s41419-020-2633-7https://doi.org/10.1038/s41419-020-2633-7
Paoli P, Giannoni E, Chiarugi P, 2013. Anoikis molecular pathways and its role in cancer progression. Biochim Biophys Acta, 1833(12):3481-3498. https://doi.org/10.1016/j.bbamcr.2013.06.026https://doi.org/10.1016/j.bbamcr.2013.06.026
Pei CL, Gong XJ, Zhang Y, 2020. LncRNA MALAT-1 promotes growth and metastasis of epithelial ovarian cancer via sponging microRNA-22. Am J Transl Res, 12(11):6977-6987.
Revathidevi S, Munirajan AK, 2019. Akt in cancer: mediator and more. Semin Cancer Biol, 59:80-91. https://doi.org/10.1016/j.semcancer.2019.06.002https://doi.org/10.1016/j.semcancer.2019.06.002
Shen XM, Wang CH, Zhu HH, et al., 2021. Exosome-mediated transfer of CD44 from high-metastatic ovarian cancer cells promotes migration and invasion of low-metastatic ovarian cancer cells. J Ovarian Res, 14:38. https://doi.org/10.1186/s13048-021-00776-2https://doi.org/10.1186/s13048-021-00776-2
Shen ZJ, Gu LK, Liu YW, et al., 2022. PLAA suppresses ovarian cancer metastasis via METTL3-mediated m6A modification of TRPC3 mRNA. Oncogene, 41(35):4145-4158. https://doi.org/10.1038/s41388-022-02411-whttps://doi.org/10.1038/s41388-022-02411-w
Statello L, Guo CJ, Chen LL, et al., 2021. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol, 22(2):96-118. https://doi.org/10.1038/s41580-020-00315-9https://doi.org/10.1038/s41580-020-00315-9
Su WJ, Xu M, Chen XQ, et al., 2017. Long noncoding RNA ZEB1-AS1 epigenetically regulates the expressions of ZEB1 and downstream molecules in prostate cancer. Mol Cancer, 16:142. https://doi.org/10.1186/s12943-017-0711-yhttps://doi.org/10.1186/s12943-017-0711-y
Sung H, Ferlay J, Siegel RL, et al., 2021. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 71(3):209-249. https://doi.org/10.3322/caac.21660https://doi.org/10.3322/caac.21660
Tafer H, Hofacker IL, 2008. RNAplex: a fast tool for RNA‒RNA interaction search. Bioinformatics, 24(22):2657-2663. https://doi.org/10.1093/bioinformatics/btn193https://doi.org/10.1093/bioinformatics/btn193
Tian H, Lian R, Li Y, et al., 2020. AKT-induced lncRNA VAL promotes EMT-independent metastasis through diminishing Trim16-dependent vimentin degradation. Nat Commun, 11:5127. https://doi.org/10.1038/s41467-020-18929-0https://doi.org/10.1038/s41467-020-18929-0
Torre LA, Trabert B, Desantis CE, et al., 2018. Ovarian cancer statistics, 2018. CA Cancer J Clin, 68(4):284-296. https://doi.org/10.3322/caac.21456https://doi.org/10.3322/caac.21456
US Preventive Services Task Force, 2018. Screening for Ovarian Cancer: US Preventive Services Task Force Recommendation Statement. JAMA, 319(6):588-594. https://doi.org/10.1001/jama.2017.21926https://doi.org/10.1001/jama.2017.21926
Wang ZY, Jia RX, Wang LL, et al., 2022. The emerging roles of Rad51 in cancer and its potential as a therapeutic target. Front Oncol, 12:935593. https://doi.org/10.3389/fonc.2022.935593https://doi.org/10.3389/fonc.2022.935593
Woditschka S, Evans L, Duchnowska R, et al., 2014. DNA double-strand break repair genes and oxidative damage in brain metastasis of breast cancer. J Natl Cancer Inst, 106(7):dju145. https://doi.org/10.1093/jnci/dju145https://doi.org/10.1093/jnci/dju145
Wu DD, Chen X, Sun KX, et al., 2017. Role of the lncRNA ABHD11-AS1 in the tumorigenesis and progression of epithelial ovarian cancer through targeted regulation of RhoC. Mol Cancer, 164:138. https://doi.org/10.1186/s12943-017-0709-5https://doi.org/10.1186/s12943-017-0709-5
Wu WM, Gao H, Li XF, et al., 2019. LncRNA TPT1-AS1 promotes tumorigenesis and metastasis in epithelial ovarian cancer by inducing TPT1 expression. Cancer Sci, 110(5):1587-1598. https://doi.org/10.1111/cas.14009https://doi.org/10.1111/cas.14009
Wu YX, Gu WQ, Han X, et al., 2021. LncRNA PVT1 promotes the progression of ovarian cancer by activating TGF-β pathway via miR-148a-3p/AGO1 axis. J Cell Mol Med, 25(17):8229-8243. https://doi.org/10.1111/jcmm.16700https://doi.org/10.1111/jcmm.16700
Xie WW, Sun HZ, Li XD, et al., 2021. Ovarian cancer: epigenetics, drug resistance, and progression. Cancer Cell Int, 21:434. https://doi.org/10.1186/s12935-021-02136-yhttps://doi.org/10.1186/s12935-021-02136-y
Yang J, Peng SP, Zhang KQ, 2021. LncRNA RP11-499E18.1 inhibits proliferation, migration, and epithelial-mesenchymal transition process of ovarian cancer cells by dissociating PAK2-SOX2 interaction. Front Cell Dev Biol, 9:697831. https://doi.org/10.3389/fcell.2021.697831https://doi.org/10.3389/fcell.2021.697831
Zhang CL, Zhu KP, Ma XL, 2017. Antisense lncRNA FOXC2-AS1 promotes doxorubicin resistance in osteosarcoma by increasing the expression of FOXC2. Cancer Lett, 396:66-75. https://doi.org/10.1016/j.canlet.2017.03.018https://doi.org/10.1016/j.canlet.2017.03.018
Zhang XM, Ma NY, Yao WQ, et al., 2019. RAD51 is a potential marker for prognosis and regulates cell proliferation in pancreatic cancer. Cancer Cell Int, 19:356. https://doi.org/10.1186/s12935-019-1077-6https://doi.org/10.1186/s12935-019-1077-6
Zhao L, Jiang L, Zhang M, et al., 2021. NF-κB-activated SPRY4-IT1 promotes cancer cell metastasis by downregulating TCEB1 mRNA via Staufen1-mediated mRNA decay. Oncogene, 40(30):4919-4929. https://doi.org/10.1038/s41388-021-01900-8https://doi.org/10.1038/s41388-021-01900-8
Zhou ZZ, Deng H, Yan W, et al., 2014. AEG-1 promotes anoikis resistance and orientation chemotaxis in hepatocellular carcinoma cells. PLoS ONE, 9(6):e100372. https://doi.org/10.1371/journal.pone.0100372https://doi.org/10.1371/journal.pone.0100372
0
浏览量
30
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构