无数据
Scan for full text
1.Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
2.State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
3.Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
纸质出版日期: 2024-04-15 ,
收稿日期: 2023-01-11 ,
修回日期: 2023-04-13 ,
闫志斌,史影,杨润玲等.ELABELA衍生肽ELA13通过抑制Smad和ERK信号通路减轻肾纤维化[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2024,25(04):341-353.
Zhibin YAN, Ying SHI, Runling YANG, et al. ELABELA-derived peptide ELA13 attenuates kidney fibrosis by inhibiting the Smad and ERK signaling pathways[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2024,25(4):341-353.
闫志斌,史影,杨润玲等.ELABELA衍生肽ELA13通过抑制Smad和ERK信号通路减轻肾纤维化[J].浙江大学学报(英文版)(B辑:生物医学和生物技术),2024,25(04):341-353. DOI: 10.1631/jzus.B2300033.
Zhibin YAN, Ying SHI, Runling YANG, et al. ELABELA-derived peptide ELA13 attenuates kidney fibrosis by inhibiting the Smad and ERK signaling pathways[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2024,25(4):341-353. DOI: 10.1631/jzus.B2300033.
肾脏纤维化是各种慢性肾脏疾病发展为终末期肾病的关键过程。目前尚无针对肾纤维化的特异性治疗方法。ELA13(氨基酸序列:RRCMPLHSRVPFP)是ELABELA在所有脊椎动物中的保守片段,目前对其生物学活性的研究却很少。本研究评估了ELA13对转化生长因子β1(TGF-β1)处理的NRK-52E细胞和单侧输尿管闭塞(UUO)小鼠的作用效果。首先,体外实验表明在TGF-β1诱导的NRK-52E细胞中,ELA13可以降低纤维化标志物I型胶原(Collagen I)、纤连蛋白(fibronectin)和α-平滑肌肌动蛋白(α-SMA)的表达水平。随后,在UUO诱导的小鼠肾纤维化模型中,我们发现ELA13可以通过降低血清中肌酐和尿素氮的含量来改善肾功能,并通过Masson染色、免疫组织化学、实时定量聚合酶链式反应(RT-PCR)和蛋白质印迹(western blot)的结果证实纤维化标志物和炎症标志物的表达降低了。进一步机制研究发现,ELA13处理可抑制Smad和细胞外调节蛋白激酶(ERK)信号通路。综上所述,ELA13通过抑制Smad和ERK信号通路发挥抗肾纤维化的作用,有望成为抗肾纤维化治疗的候选分子。
Kidney fibrosis is an inevitable result of various chronic kidney diseases (CKDs) and significantly contributes to end-stage renal failure. Currently
there is no specific treatment available for renal fibrosis. ELA13 (amino acid sequence: RRCMPLHSRVPFP) is a conserved region of ELABELA in all vertebrates; however
its biological activity has been very little studied. In the present study
we evaluated the therapeutic effect of ELA13 on transforming growth factor-β1 (TGF-β1)-treated NRK-52E cells and unilateral ureteral occlusion (UUO) mice. Our results demonstrated that ELA13 could improve renal function by reducing creatinine and urea nitrogen content in serum
and reduce the expression of fibrosis biomarkers confirmed by Masson staining
immunohistochemistry
real-time polymerase chain reaction (RT-PCR)
and western blot. Inflammation biomarkers were increased after UUO and decreased by administration of ELA13. Furthermore
we found that the levels of essential molecules in the mothers against decapentaplegic (Smad) and extracellular signal-regulated kinase (ERK) pathways were reduced by ELA13 treatment in vivo and in vitro. In conclusion
ELA13 protected against kidney fibrosis through inhibiting the Smad and ERK signaling pathways and could thus be a promising candidate for anti-renal fibrosis treatment.
ELA13肾纤维化炎症反应Smad细胞外调节蛋白激酶(ERK)
ELA13Kidney fibrosisInflammationSmadExtracellular signal-regulated kinase (ERK)
Akter T, Rahman MA, Moni A, et al., 2021. Prospects for protective potential of Moringa oleifera against kidney diseases. Plants, 10(12):2818. https://doi.org/10.3390/plants10122818https://doi.org/10.3390/plants10122818
Boucher J, Masri B, Daviaud D, et al., 2005. Apelin, a newly identified adipokine up-regulated by insulin and obesity. Endocrinology, 146(4):1764-1771. https://doi.org/10.1210/en.2004-1427https://doi.org/10.1210/en.2004-1427
Chen H, Wang L, Wang WJ, et al., 2017. ELABELA and an ELABELA fragment protect against AKI. J Am Soc Nephrol, 28(9):2694-2707. https://doi.org/10.1681/ASN.2016111210https://doi.org/10.1681/ASN.2016111210
Chen W, Yuan H, Cao WM, et al., 2019. Blocking interleukin-6 trans-signaling protects against renal fibrosis by suppressing STAT3 activation. Theranostics, 9(14):3980-3991. https://doi.org/10.7150/thno.32352https://doi.org/10.7150/thno.32352
Cheng JF, Encarnacion MMD, Warner GM, et al., 2005. TGF-β1 stimulates monocyte chemoattractant protein-1 expression in mesangial cells through a phosphodiesterase isoenzyme 4-dependent process. Am J Physiol Cell Physiol, 289(4):C959-C970. https://doi.org/10.1152/ajpcell.00153.2005https://doi.org/10.1152/ajpcell.00153.2005
Crewe C, An YA, Scherer PE, 2017. The ominous triad of adipose tissue dysfunction: inflammation, fibrosis, and impaired angiogenesis. J Clin Invest, 127(1):74-82. https://doi.org/10.1172/JCI88883https://doi.org/10.1172/JCI88883
Deng C, Chen HD, Yang N, et al., 2015. Apela regulates fluid homeostasis by binding to the APJ receptor to activate Gi signaling. J Biol Chem, 290(30):18261-18268. https://doi.org/10.1074/jbc.M115.648238https://doi.org/10.1074/jbc.M115.648238
Ding Y, Kim SL, Lee SY, et al., 2014. Autophagy regulates TGF-β expression and suppresses kidney fibrosis induced by unilateral ureteral obstruction. J Am Soc Nephrol, 25(12):2835-2846. https://doi.org/10.1681/ASN.2013101068https://doi.org/10.1681/ASN.2013101068
el Agha E, Kramann R, Schneider RK, et al., 2017. Mesenchymal stem cells in fibrotic disease. Cell Stem Cell, 21(2):166-177. https://doi.org/10.1016/j.stem.2017.07.011https://doi.org/10.1016/j.stem.2017.07.011
El-Ghoul B, Elie C, Sqalli T, et al., 2009. Nonprogressive kidney dysfunction and outcomes in older adults with chronic kidney disease. J Am Geriatr Soc, 57(12):2217-2223. https://doi.org/10.1111/j.1532-5415.2009.02561.xhttps://doi.org/10.1111/j.1532-5415.2009.02561.x
Geng XQ, Ma A, He JZ, et al., 2020. Ganoderic acid hinders renal fibrosis via suppressing the TGF-β/Smad and MAPK signaling pathways. Acta Pharmacol Sin, 41(5):670-677. https://doi.org/10.1038/s41401-019-0324-7https://doi.org/10.1038/s41401-019-0324-7
Gilmore TD, 2006. Introduction to NF-κB: players, pathways, perspectives. Oncogene, 25(51):6680-6684. https://doi.org/10.1038/sj.onc.1209954https://doi.org/10.1038/sj.onc.1209954
Grande MT, Sánchez-Laorden B, López-Blau C, et al., 2015. Snail1-induced partial epithelial-to-mesenchymal transition drives renal fibrosis in mice and can be targeted to reverse established disease. Nat Med, 21(9):989-997. https://doi.org/10.1038/nm.3901https://doi.org/10.1038/nm.3901
Harris RC, Neilson EG, 2006. Toward a unified theory of renal progression. Annu Rev Med, 57(1):365-380. https://doi.org/10.1146/annurev.med.57.121304.131342https://doi.org/10.1146/annurev.med.57.121304.131342
Hartsough MT, Mulder KM, 1995. Transforming growth factor β activation of p44mapk in proliferating cultures of epithelial cells. J Biol Chem, 270(13):7117-7124. https://doi.org/10.1074/jbc.270.13.7117https://doi.org/10.1074/jbc.270.13.7117
Huang XM, Jia ZQ, Li XY, et al., 2023. Asiaticoside hampers epithelial‒mesenchymal transition by promoting PPARG expression and suppressing P2RX7-mediated TGF-β/Smad signaling in triple-negative breast cancer. Phytother Res, 37(5):1771-1786. https://doi.org/10.1002/ptr.7692https://doi.org/10.1002/ptr.7692
Ji XL, Wang HL, Wu ZJ, et al., 2018. Specific Inhibitor of Smad3 (SIS3) attenuates fibrosis, apoptosis, and inflammation in unilateral ureteral obstruction kidneys by inhibition of transforming growth factor β (TGF-β)/Smad3 signaling. Med Sci Monit, 24:1633-1641. https://doi.org/10.12659/msm.909236https://doi.org/10.12659/msm.909236
Jiang S, Li T, Yang Z, et al., 2017. AMPK orchestrates an elaborate cascade protecting tissue from fibrosis and aging. Ageing Res Rev, 38:18-27. https://doi.org/10.1016/j.arr.2017.07.001https://doi.org/10.1016/j.arr.2017.07.001
Kanasaki K, Taduri G, Koya D, 2013. Diabetic nephropathy: the role of inflammation in fibroblast activation and kidney fibrosis. Front Endocrinol (Lausanne), 4:7. https://doi.org/10.3389/fendo.2013.00007https://doi.org/10.3389/fendo.2013.00007
Kanda H, Hirasaki Y, Iida T, et al., 2017. Perioperative management of patients with end-stage renal disease. J Cardiothorac Vasc Anesth, 31(6):2251-2267. https://doi.org/10.1053/j.jvca.2017.04.019https://doi.org/10.1053/j.jvca.2017.04.019
Korpal M, Kang Y, 2010. Targeting the transforming growth factor-β signalling pathway in metastatic cancer. Eur J Cancer, 46(7):1232-1240. https://doi.org/10.1016/j.ejca.2010.02.040https://doi.org/10.1016/j.ejca.2010.02.040
Kovacs RJ, Maldonado G, Azaro A, et al., 2015. Cardiac Safety of TGF-β receptor I kinase inhibitor LY2157299 monohydrate in cancer patients in a first-in-human dose study. Cardiovasc Toxicol, 15(4):309-323. https://doi.org/10.1007/s12012-014-9297-4https://doi.org/10.1007/s12012-014-9297-4
Lan HY, 2011. Diverse roles of TGF-β/Smads in renal fibrosis and inflammation. Int J Biol Sci, 7(7):1056-1067. https://doi.org/10.7150/ijbs.7.1056https://doi.org/10.7150/ijbs.7.1056
Lee DK, Cheng R, Nguyen T, et al., 2000. Characterization of apelin, the ligand for the APJ receptor. J Neurochem, 74(1):34-41. https://doi.org/10.1046/j.1471-4159.2000.0740034.xhttps://doi.org/10.1046/j.1471-4159.2000.0740034.x
Li Z, Zhou LL, Wang YP, et al., 2017. (Pro)renin receptor is an amplifier of Wnt/β-catenin signaling in kidney injury and fibrosis. J Am Soc Nephrol, 28(8):2393-2408. https://doi.org/10.1681/ASN.2016070811https://doi.org/10.1681/ASN.2016070811
López-Hernández FJ, López-Novoa JM, 2012. Role of TGF-β in chronic kidney disease: an integration of tubular, glomerular and vascular effects. Cell Tissue Res, 347(1):141-154. https://doi.org/10.1007/s00441-011-1275-6https://doi.org/10.1007/s00441-011-1275-6
Lu JH, Zhong YZ, Lin ZC, et al., 2017. Baicalin alleviates radiation-induced epithelial-mesenchymal transition of primary type II alveolar epithelial cells via TGF-β and ERK/GSK3β signaling pathways. Biomed Pharmacother, 95:1219-1224. https://doi.org/10.1016/j.biopha.2017.09.037https://doi.org/10.1016/j.biopha.2017.09.037
Maleszewska M, Moonen JRAJ, Huijkman N, et al., 2013. IL-1β and TGFβ2 synergistically induce endothelial to mesenchymal transition in an NFκB-dependent manner. Immunobiology, 218(4):443-454. https://doi.org/10.1016/j.imbio.2012.05.026https://doi.org/10.1016/j.imbio.2012.05.026
Marampon F, Bossi G, Ciccarelli C, et al., 2009. MEK/ERK inhibitor U0126 affects in vitro and in vivo growth of embryonal rhabdomyosarcoma. Mol Cancer Ther, 8(3):543-551. https://doi.org/10.1158/1535-7163.MCT-08-0570https://doi.org/10.1158/1535-7163.MCT-08-0570
Meng J, Li LM, Zhao Y, et al., 2016. MicroRNA-196a/b mitigate renal fibrosis by targeting TGF-β receptor 2. J Am Soc Nephrol, 27(10):3006-3021. https://doi.org/10.1681/ASN.2015040422https://doi.org/10.1681/ASN.2015040422
Meng XM, Nikolic-Paterson DJ, Lan HY, 2014. Inflammatory processes in renal fibrosis. Nat Rev Nephrol, 10(9):493-503. https://doi.org/10.1038/nrneph.2014.114https://doi.org/10.1038/nrneph.2014.114
Meng XM, Tang PMK, Li J, et al., 2015. TGF-β/Smad signaling in renal fibrosis. Front Physiol, 6:82. https://doi.org/10.3389/fphys.2015.00082https://doi.org/10.3389/fphys.2015.00082
Noronha IL, Fujihara CK, Zatz R, 2002. The inflammatory component in progressive renal disease—are interventions possible? Nephrol Dial Transplant, 17(3):363-368. https://doi.org/10.1093/ndt/17.3.363https://doi.org/10.1093/ndt/17.3.363
Nutter FH, Haylor JL, Khwaja A, 2015. Inhibiting ERK activation with CI-1040 leads to compensatory upregulation of alternate MAPKs and plasminogen activator inhibitor-1 following subtotal nephrectomy with no impact on kidney fibrosis. PLoS ONE, 10(9):e0137321. https://doi.org/10.1371/journal.pone.0137321https://doi.org/10.1371/journal.pone.0137321
O'Dowd BF, Heiber M, Chan A, et al., 1993. A human gene that shows identity with the gene encoding the angiotensin receptor is located on chromosome 11. Gene, 136(1-2):355-360. https://doi.org/10.1016/0378-1119(93)90495-ohttps://doi.org/10.1016/0378-1119(93)90495-o
Rahman MH, Biswas P, Dey D, et al., 2022. An in-silico identification of potential flavonoids against kidney fibrosis targeting TGFβR-1. Life, 12(11):1764. https://doi.org/10.3390/life12111764https://doi.org/10.3390/life12111764
Rahman MA, Akter S, Dorotea D, et al., 2022. Renoprotective potentials of small molecule natural products targeting mitochondrial dysfunction. Front Pharmacol, 13:925993. https://doi.org/10.3389/fphar.2022.925993https://doi.org/10.3389/fphar.2022.925993
Reichman-Fried M, Raz E, 2014. Small proteins, big roles: the signaling protein Apela extends the complexity of developmental pathways in the early zebrafish embryo. Bioessays, 36(8):741-745. https://doi.org/10.1002/bies.201400048https://doi.org/10.1002/bies.201400048
Romagnani P, Kalluri R, 2009. Possible mechanisms of kidney repair. Fibrogenesis Tissue Repair, 2:3. https://doi.org/10.1186/1755-1536-2-3https://doi.org/10.1186/1755-1536-2-3
Schinner E, Wetzl V, Schramm A, et al., 2017. Inhibition of the TGFβ signalling pathway by cGMP and cGMP-dependent kinase I in renal fibrosis. FEBS Open Bio, 7(4):550-561. https://doi.org/10.1002/2211-5463.12202https://doi.org/10.1002/2211-5463.12202
Schreiber CA, Holditch S, Generous A, et al., 2016. Sustained ELABELA gene therapy in high-salt diet-induced hypertensive rats. Curr Gene Therapy, 16(5):349-360.
Seseke F, Thelen P, Ringert RH, 2004. Characterization of an animal model of spontaneous congenital unilateral obstructive uropathy by cDNA microarray analysis. Eur Urol, 45(3):374-381. https://doi.org/10.1016/j.eururo.2003.10.010https://doi.org/10.1016/j.eururo.2003.10.010
Shen WC, Liang CJ, Huang TM, et al., 2016. Indoxyl sulfate enhances IL-1β-induced E-selectin expression in endothelial cells in acute kidney injury by the ROS/MAPKs/NFκB/AP-1 pathway. Arch Toxicol, 90(11):2779-2792. https://doi.org/10.1007/s00204-015-1652-0https://doi.org/10.1007/s00204-015-1652-0
Sun SR, Ning XX, Zhai Y, et al., 2014. Egr-1 mediates chronic hypoxia-induced renal interstitial fibrosis via the PKC/ERK pathway. Am J Nephrol, 39(5):436-448. https://doi.org/10.1159/000362249https://doi.org/10.1159/000362249
Tampe D, Zeisberg M, 2014. Potential approaches to reverse or repair renal fibrosis. Nat Rev Nephrol, 10(4):226-237. https://doi.org/10.1038/nrneph.2014.14https://doi.org/10.1038/nrneph.2014.14
Tanaka S, Tanaka T, Nangaku M, 2015. Hypoxia and dysregulated angiogenesis in kidney disease. Kidney Dis, 1(1):80-89. https://doi.org/10.1159/000381515https://doi.org/10.1159/000381515
Wada T, Furuichi K, Sakai N, et al., 2004. Gene therapy via blockade of monocyte chemoattractant protein-1 for renal fibrosis. J Am Soc Nephrol, 15(4):940-948. https://doi.org/10.1097/01.asn.0000120371.09769.80https://doi.org/10.1097/01.asn.0000120371.09769.80
Wang GY, Anini Y, Wei W, et al., 2004. Apelin, a new enteric peptide: localization in the gastrointestinal tract, ontogeny, and stimulation of gastric cell proliferation and of cholecystokinin secretion. Endocrinology, 145(3):1342-1348. https://doi.org/10.1210/en.2003-1116https://doi.org/10.1210/en.2003-1116
Wang LY, Diao ZL, Zhang DL, et al., 2014. The regulatory peptide apelin: a novel inhibitor of renal interstitial fibrosis. Amino Acids, 46(12):2693-2704. https://doi.org/10.1007/s00726-014-1826-8https://doi.org/10.1007/s00726-014-1826-8
Wang SN, LaPage J, Hirschberg R, 2000. Role of glomerular ultrafiltration of growth factors in progressive interstitial fibrosis in diabetic nephropathy. Kidney Int, 57(3):1002-1014. https://doi.org/10.1046/j.1523-1755.2000.00928.xhttps://doi.org/10.1046/j.1523-1755.2000.00928.x
Wang Z, Yu DZ, Wang MQ, et al., 2015. Elabela-apelin receptor signaling pathway is functional in mammalian systems. Sci Rep, 5:8170. https://doi.org/10.1038/srep08170https://doi.org/10.1038/srep08170
Wojciechowski MC, Shu DY, Lovicu FJ, 2018. ERK1/2-dependent gene expression contributing to TGFβ-induced lens EMT. Curr Eye Res, 43(8):986-997. https://doi.org/10.1080/02713683.2018.1464193https://doi.org/10.1080/02713683.2018.1464193
Xu T, Wang NS, Fu LL, et al., 2012. Celecoxib inhibits growth of human autosomal dominant polycystic kidney cyst-lining epithelial cells through the VEGF/Raf/MAPK/ERK signaling pathway. Mol Biol Rep, 39(7):7743-7753. https://doi.org/10.1007/s11033-012-1611-2https://doi.org/10.1007/s11033-012-1611-2
Xue HY, Yuan L, Cao YJ, et al., 2016. Resveratrol amelior
ates renal injury in spontaneously hypertensive rats by inhibiting renal micro-inflammation. Biosci Rep, 36(3):e00339. https://doi.org/10.1042/BSR20160035https://doi.org/10.1042/BSR20160035
Yan ZB, Cheng XR, Wang T, et al., 2022. Therapeutic potential for targeting Annexin A1 in fibrotic diseases. Genes Dis, 9(6):1493-1505. https://doi.org/10.1016/j.gendis.2022.05.038https://doi.org/10.1016/j.gendis.2022.05.038
Yang L, Guo J, Yu N, et al., 2020. Tocilizumab mimotope alleviates kidney injury and fibrosis by inhibiting IL-6 signaling and ferroptosis in UUO model. Life Sci, 261:118487. https://doi.org/10.1016/j.lfs.2020.118487https://doi.org/10.1016/j.lfs.2020.118487
Zeisberg M, Neilson EG, 2010. Mechanisms of tubulointerstitial fibrosis. J Am Soc Nephrol, 21(11):1819-1834. https://doi.org/10.1681/ASN.2010080793https://doi.org/10.1681/ASN.2010080793
Zhang DS, Sun L, Xian W, et al., 2010. Low-dose paclitaxel ameliorates renal fibrosis in rat UUO model by inhibition of TGF-β/Smad activity. Lab Invest, 90(3):436-447. https://doi.org/10.1038/labinvest.2009.149https://doi.org/10.1038/labinvest.2009.149
Zhang YH, Wang SY, Liu SM, et al., 2015. Role of Smad signaling in kidney disease. Int Urol Nephrol, 47(12):1965-1975. https://doi.org/10.1007/s11255-015-1115-9https://doi.org/10.1007/s11255-015-1115-9
Zhang YX, Wang YW, Luo MY, et al., 2019. Elabela protects against podocyte injury in mice with streptozocin-induced diabetes by associating with the PI3K/Akt/mTOR pathway. Peptides, 114:29-37. https://doi.org/10.1016/j.peptides.2019.04.005https://doi.org/10.1016/j.peptides.2019.04.005
Zhuang ZH, Tong MK, Clarke R, et al., 2022. Probability of chronic kidney disease and associated risk factors in Chinese adults: a cross-sectional study of 9 million Chinese adults in the Meinian Onehealth screening survey. Clin Kidney J, 15(12):2228-2236. https://doi.org/10.1093/ckj/sfac176https://doi.org/10.1093/ckj/sfac176
0
浏览量
6
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构