无数据
Scan for full text
1.Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China
2.Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
3.BestEnzymes Biotech Co., Ltd., Lianyungang 222005, China
吴芳, 卢辰, 胡文灏, 等. 结合LAMP-CRISPR/Cas12b与热敏感尿嘧啶DNA糖苷酶实现可消除残留污染的副溶血弧菌快速可视化检测[J]. 浙江大学学报(英文版)(B辑:生物医学和生物技术), 2023,24(8):749-754.
Fang WU, Chen LU, Wenhao HU, et al. Rapid visual detection of
吴芳, 卢辰, 胡文灏, 等. 结合LAMP-CRISPR/Cas12b与热敏感尿嘧啶DNA糖苷酶实现可消除残留污染的副溶血弧菌快速可视化检测[J]. 浙江大学学报(英文版)(B辑:生物医学和生物技术), 2023,24(8):749-754. DOI: 10.1631/jzus.B2200705.
Fang WU, Chen LU, Wenhao HU, et al. Rapid visual detection of
作为海产品中的主要致病菌,副溶血弧菌的快速准确检测对于海水健康养殖和避免副溶血弧菌相关食源性疾病的发生至关重要。本研究结合尿嘧啶DNA糖苷酶(UDG)、环介导等温扩增(LAMP)和CRISPR/Cas12b技术,建立了海产品中副溶血弧菌的一锅法检测技术。该检测系统实现了一管化检测,并可避免残留污染的风险。我们通过优化dNTP混合物中dTTP/dUTP比例,并筛选出最优sgRNA。该方法在最优条件下,对副溶血弧菌纯培养物的检出限低至1×10,2, CFU/mL,在虾肉样品的检出限低至1×10,2, CFU/g。该方法对其他微生物病原体无交叉反应,且与荧光定量PCR结果符合率为100%。
尿嘧啶糖苷酶环介导等温扩增CRISPR/Cas12b副溶血弧菌一锅法检测关
Gao H, Shang Z, Chan SY, et al., 2022. Recent advances in the use of the CRISPR-Cas system for the detection of infectious pathogens. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 23(11):881-898. https://doi.org/10.1631/jzus.B2200068https://doi.org/10.1631/jzus.B2200068
He Y, Wang H, Chen LM, 2015. Comparative secretomics reveals novel virulence-associated factors of Vibrio parahaemolyticus. Front Microbiol, 6:707. https://doi.org/10.3389/fmicb.2015.00707https://doi.org/10.3389/fmicb.2015.00707
Hsieh K, Mage PL, Csordas AT, et al., 2014. Simultaneous elimination of carryover contamination and detection of DNA with uracil-DNA-glycosylase-supplemented loop-mediated isothermal amplification (UDG-LAMP). Chem Commun (Camb), 50(28):3747-3749. https://doi.org/10.1039/c4cc00540fhttps://doi.org/10.1039/c4cc00540f
Lanes O, Leiros I, Smalås AO, et al., 2002. Identification, cloning, and expression of uracil-DNA glycosylase from Atlantic cod (Gadus morhua): characterization and homology modeling of the cold-active catalytic domain. Extremophiles, 6(1):73-86. https://doi.org/10.1007/s007920100225https://doi.org/10.1007/s007920100225
Li LX, Li SY, Wu N, et al., 2019. HOLMESv2: a CRISPR-Cas12b-assisted platform for nucleic acid detection and DNA methylation quantitation. ACS Synth Biol, 8(10):2228-2237. https://doi.org/10.1021/acssynbio.9b00209https://doi.org/10.1021/acssynbio.9b00209
Lu SH, Tong XH, Han Y, et al., 2022. Fast and sensitive detection of SARS-CoV-2 RNA using suboptimal protospacer adjacent motifs for Cas12a. Nat Biomed Eng, 6(3):286-297. https://doi.org/10.1038/s41551-022-00861-xhttps://doi.org/10.1038/s41551-022-00861-x
Lv XR, Cao WW, Zhang H, et al., 2022. CE-RAA-CRISPR assay: a rapid and sensitive method for detecting Vibrio parahaemolyticus in seafood. Foods, 11(12):1681. https://doi.org/10.3390/foods11121681https://doi.org/10.3390/foods11121681
Nemoto J, Ikedo M, Kojima T, et al., 2011. Development and evaluation of a loop-mediated isothermal amplification assay for rapid and sensitive detection of Vibrio parahaemolyticus. J Food Prot, 74(9):1462-1467. https://doi.org/10.4315/0362-028X.JFP-10-519https://doi.org/10.4315/0362-028X.JFP-10-519
Su YC, Liu CC, 2007. Vibrio parahaemolyticus: a concern of seafood safety. Food Microbiol, 24(6):549-558. https://doi.org/10.1016/j.fm.2007.01.005https://doi.org/10.1016/j.fm.2007.01.005
Tang Y, Chen H, Diao YX, 2016. Advanced uracil DNA glycosylase-supplemented real-time reverse transcription loop-mediated isothermal amplification (UDG-rRT-LAMP) method for universal and specific detection of Tembusu virus. Sci Rep, 6:27605. https://doi.org/10.1038/srep27605https://doi.org/10.1038/srep27605
Teng F, Guo L, Cui TT, et al., 2019. CDetection: CRISPR-Cas12b-based DNA detection with sub-attomolar sensitivity and single-base specificity. Genome Biol, 20:132. https://doi.org/10.1186/s13059-019-1742-zhttps://doi.org/10.1186/s13059-019-1742-z
Ward LN, Bej AK, 2006. Detection of Vibrio parahaemolyticus in shellfish by use of multiplexed real-time PCR with TaqMan fluorescent probes. Appl Environ Microbiol, 72(3):2031-2042. https://doi.org/10.1128/AEM.72.3.2031-2042.2006https://doi.org/10.1128/AEM.72.3.2031-2042.2006
Yang XH, Zhao PP, Dong Y, et al., 2020. An improved recombinase polymerase amplification assay for visual detection of Vibrio parahaemolyticus with lateral flow strips. J Food Sci, 85(6):1834-1844. https://doi.org/10.1111/1750-3841.15105https://doi.org/10.1111/1750-3841.15105
Zhang T, Zhao W, Zhao W, et al., 2021. Universally stable and precise CRISPR-LAMP detection platform for precise multiple respiratory tract virus diagnosis including mutant SARS-CoV-2 spike N501Y. Anal Chem, 93(48):16184-16193. https://doi.org/10.1021/acs.analchem.1c04065https://doi.org/10.1021/acs.analchem.1c04065
Zhang ZH, Lou Y, Du SP, et al., 2017. Prevalence of Vibrio parahaemolyticus in seafood products from hypermarkets in Shanghai. J Sci Food Agric, 97(2):705-710. https://doi.org/10.1002/jsfa.7715https://doi.org/10.1002/jsfa.7715
0
浏览量
2
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构