无数据
Scan for full text
1.Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
2.Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
FOXO1-miR-506 axis promotes chemosensitivity to temozolomide and suppresses invasiveness in glioblastoma through a feedback loop of FOXO1/miR-506/ETS1/FOXO1[J]. 浙江大学学报(英文版)(B辑:生物医学和生物技术), 2023,24(8):698-710.
Chao CHEN, Yu’e LIU, Hongxiang WANG, et al. FOXO1-miR-506 axis promotes chemosensitivity to temozolomide and suppresses invasiveness in glioblastoma through a feedback loop of FOXO1/miR-506/ETS1/FOXO1[J]. Journal of Zhejiang University-SCIENCE B(Biomedicine & Biotechnology), 2023,24(8):698-710.
FOXO1-miR-506 axis promotes chemosensitivity to temozolomide and suppresses invasiveness in glioblastoma through a feedback loop of FOXO1/miR-506/ETS1/FOXO1[J]. 浙江大学学报(英文版)(B辑:生物医学和生物技术), 2023,24(8):698-710. DOI: 10.1631/jzus.B2200503.
Chao CHEN, Yu’e LIU, Hongxiang WANG, et al. FOXO1-miR-506 axis promotes chemosensitivity to temozolomide and suppresses invasiveness in glioblastoma through a feedback loop of FOXO1/miR-506/ETS1/FOXO1[J]. Journal of Zhejiang University-SCIENCE B(Biomedicine & Biotechnology), 2023,24(8):698-710. DOI: 10.1631/jzus.B2200503.
为了探索FOXO1在胶质母细胞瘤(GBM)进展和化疗耐药中的作用和机制,本研究采用体外细胞学实验和动物实验分析FOXO1和miR-506对GBM细胞系U251增殖、凋亡、迁移、侵袭、自噬和替莫唑胺(TMZ)化疗敏感性的影响,并通过双荧光素酶报告实验分析FOXO1与miR-506相互作用的靶点。结果显示:FOXO1-miR-506轴可抑制GBM细胞侵袭和迁移能力,并促进其对TMZ的化疗敏感性,且自噬参与其中;FOXO1作为转录因子可与miR-506启动子区域相结合并上调其表达;此外,miR-506可结合在E26转录因子-1(ETS-1) 3'-UTR区并下调ETS1表达,而ETS1可促进FOXO1从细胞核向细胞浆转移进而抑制FOXO1-miR-506轴。裸鼠动物实验结果显示,过表达FOXO1可促进GBM对TMZ的化疗敏感性,但miR-506抑制剂和过表达ETS1均可逆转该现象。综上所述,FOXO1/miR-506/ETS1/FOXO1环路参与GBM侵袭性和化疗敏感性的调节,可作为GBM治疗的潜在靶点。
To explore the role of forkhead box protein O1 (FOXO1) in the progression of glioblastoma multiforme (GBM) and related drug resistance, we deciphered the roles of FOXO1 and miR-506 in proliferation, apoptosis, migration, invasion, autophagy, and temozolomide (TMZ) sensitivity in the U251 cell line using in vitro and in vivo experiments. Cell viability was tested by a cell counting kit-8 (CCK8) kit; migration and invasion were checked by the scratching assay; apoptosis was evaluated by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining and flow cytometry. The construction of plasmids and dual-luciferase reporter experiment were carried out to find the interaction site between FOXO1 and miR-506. Immunohistochemistry was done to check the protein level in tumors after the in vivo experiment. We found that the FOXO1-miR-506 axis suppresses GBM cell invasion and migration and promotes GBM chemosensitivity to TMZ, which was mediated by autophagy. FOXO1 upregulates miR-506 by binding to its promoter to enhance transcriptional activation. MiR-506 could downregulate E26 transformation-specific 1 (ETS1) expression by targeting its 3'-untranslated region (UTR). Interestingly, ETS1 promoted FOXO1 translocation from the nucleus to the cytosol and further suppressed the FOXO1-miR-506 axis in GBM cells. Consistently, both miR-506 inhibition and ETS1 overexpression could rescue FOXO1 overactivation-mediated TMZ chemosensitivity in mouse models. Our study demonstrated a negative feedback loop of FOXO1/miR-506/ETS1/FOXO1 in GBM in regulating invasiveness and chemosensitivity. Thus, the above axis might be a promising therapeutic target for GBM.
胶质母细胞瘤FOXO1MiR-506E26转录因子-1(ETS-1)化疗敏感性
GlioblastomaForkhead box protein O1 (FOXO1)MiR-506E26 transformation specific-1 (ETS1)Chemosensitivity
Bhat KPL, Balasubramaniyan V, Vaillant B, et al., 2013. Mesenchymal differentiation mediated by NF-κB promotes radiation resistance in glioblastoma. Cancer Cell, 24(3):331-346. https://doi.org/10.1016/j.ccr.2013.08.001https://doi.org/10.1016/j.ccr.2013.08.001
Chen C, Xu T, Zhou JX, et al., 2013. High cytoplasmic FOXO1 and pFOXO1 expression in astrocytomas are associated with worse surgical outcome. PLoS ONE, 8(7):e69260. https://doi.org/10.1371/journal.pone.0069260https://doi.org/10.1371/journal.pone.0069260
Chen C, Han GS, Li YN, et al., 2019. FOXO1 associated with sensitivity to chemotherapy drugs and glial-mesenchymal transition in glioma. J Cell Biochem, 120(1):882-893. https://doi.org/10.1002/jcb.27450https://doi.org/10.1002/jcb.27450
Cheng YC, Tsao MJ, Chiu CY, et al., 2018. Magnolol inhibits human glioblastoma cell migration by regulating N-cadherin. J Neuropathol Exp Neurol, 77(6):426-436. https://doi.org/10.1093/jnen/nly021https://doi.org/10.1093/jnen/nly021
Chun Y, Kim J, 2018. Autophagy: an essential degradation program for cellular homeostasis and life. Cells, 7(12):278. https://doi.org/10.3390/cells7120278https://doi.org/10.3390/cells7120278
de la Rosa J, Urdiciain A, Zazpe I, et al., 2020. The synergistic effect of DZ‑NEP, panobinostat and temozolomide reduces clonogenicity and induces apoptosis in glioblastoma cells. Int J Oncol, 56(1):283-300. https://doi.org/10.3892/ijo.2019.4905https://doi.org/10.3892/ijo.2019.4905
Fan LX, Tao L, Lai YC, et al., 2022. Cx32 promotes autophagy and produces resistance to SN‑induced apoptosis via activation of AMPK signalling in cervical cancer. Int J Oncol, 60:10. https://doi.org/10.3892/ijo.2021.5300https://doi.org/10.3892/ijo.2021.5300
Gao XY, Xia X, Li FY, et al., 2021. Circular RNA-encoded oncogenic E-cadherin variant promotes glioblastoma tumorigenicity through activation of EGFR-STAT3 signalling. Nat Cell Biol, 23(3):278-291. https://doi.org/10.1038/s41556-021-00639-4https://doi.org/10.1038/s41556-021-00639-4
Jiang S, Li T, Yang Z, et al., 2018. Deciphering the roles of FOXO1 in human neoplasms. Int J Cancer, 143(7):1560-1568. https://doi.org/10.1002/ijc.31338https://doi.org/10.1002/ijc.31338
Lapointe S, Perry A, Butowski NA, 2018. Primary brain tumours in adults. Lancet, 392(10145):432-446. https://doi.org/10.1016/S0140-6736(18)30990-5https://doi.org/10.1016/S0140-6736(18)30990-5
Li Z, Liu ZM, Dong SW, et al., 2015. MiR-506 inhibits epithelial-to-mesenchymal transition and angiogenesis in gastric cancer. Am J Pathol, 185(9):2412-2420. https://doi.org/10.1016/j.ajpath.2015.05.017https://doi.org/10.1016/j.ajpath.2015.05.017
Lim EJ, Kim S, Oh Y, et al., 2020. Crosstalk between GBM cells and mesenchymal stemlike cells promotes the invasiveness of GBM through the C5a/p38/ZEB1 axis. Neuro Oncol, 22(10):1452-1462. https://doi.org/10.1093/neuonc/noaa064https://doi.org/10.1093/neuonc/noaa064
Louis DN, Perry A, Wesseling P, et al., 2021. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol, 23(8):1231-1251. https://doi.org/10.1093/neuonc/noab106https://doi.org/10.1093/neuonc/noab106
Lwin Z, MacFadden D, Al-Zahrani A, et al., 2013. Glioblastoma management in the temozolomide era: have we improved outcome? J Neurooncol, 115(2):303-310. https://doi.org/10.1007/s11060-013-1230-3https://doi.org/10.1007/s11060-013-1230-3
Mahabir R, Tanino M, Elmansuri A, et al., 2014. Sustained elevation of Snail promotes glial-mesenchymal transition after irradiation in malignant glioma. Neuro Oncol, 16(5):671-685. https://doi.org/10.1093/neuonc/not239https://doi.org/10.1093/neuonc/not239
Matias D, Balça-Silva J, Dubois LG, et al., 2017. Dual treatment with shikonin and temozolomide reduces glioblastoma tumor growth, migration and glial-to-mesenchymal transition. Cell Oncol (Dordr), 40(3):247-261. https://doi.org/10.1007/s13402-017-0320-1https://doi.org/10.1007/s13402-017-0320-1
Osuka S, Zhu D, Zhang ZB, et al., 2021. N-cadherin upregulation mediates adaptive radioresistance in glioblastoma. J Clin Invest, 131(6):e136098. https://doi.org/10.1172/JCI136098https://doi.org/10.1172/JCI136098
Paw I, Carpenter RC, Watabe K, et al., 2015. Mechanisms regulating glioma invasion. Cancer Lett, 362(1):1-7. https://doi.org/10.1016/j.canlet.2015.03.015https://doi.org/10.1016/j.canlet.2015.03.015
Phillips HS, Kharbanda S, Chen RH, et al., 2006. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell, 9(3):157-173. https://doi.org/10.1016/j.ccr.2006.02.019https://doi.org/10.1016/j.ccr.2006.02.019
Schneider B, Lamp N, Zimpfer A, et al., 2023. Comparing tumor microRNA profiles of patients with long‑ and short‑term‑surviving glioblastoma. Mol Med Rep, 27:8. https://doi.org/10.3892/mmr.2022.12895https://doi.org/10.3892/mmr.2022.12895
Simpson JE, Gammoh N, 2020. The impact of autophagy during the development and survival of glioblastoma. Open Biol, 10(9):200184. https://doi.org/10.1098/rsob.200184https://doi.org/10.1098/rsob.200184
Singhal R, Bard JE, Nowak NJ, et al., 2013. FOXO1 regulates expression of a microRNA cluster on X chromosome. Aging (Albany NY), 5(5):347-356. https://doi.org/10.18632/aging.100558https://doi.org/10.18632/aging.100558
The Cancer Genome Atlas Research Network, 2008. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature, 455(7216):1061-1068. https://doi.org/10.1038/nature07385https://doi.org/10.1038/nature07385
Tomar MS, Kumar A, Srivastava C, et al., 2021. Elucidating the mechanisms of Temozolomide resistance in gliomas and the strategies to overcome the resistance. Biochim Biophys Acta Rev Cancer, 1876(2):188616. https://doi.org/10.1016/j.bbcan.2021.188616https://doi.org/10.1016/j.bbcan.2021.188616
Verhaak RGW, Hoadley KA, Purdom E, et al., 2010. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell, 17(1):98-110. https://doi.org/10.1016/j.ccr.2009.12.020https://doi.org/10.1016/j.ccr.2009.12.020
Vishnoi K, Viswakarma N, Rana A, et al., 2020. Transcription factors in cancer development and therapy. Cancers (Basel), 12(8):2296. https://doi.org/10.3390/cancers12082296https://doi.org/10.3390/cancers12082296
Vollmann-Zwerenz A, Leidgens V, Feliciello G, et al., 2020. Tumor cell invasion in glioblastoma. Int J Mol Sci, 21(6):1932. https://doi.org/10.3390/ijms21061932https://doi.org/10.3390/ijms21061932
Wang GJ, Jiao BP, Liu YJ, et al., 2019. Reactivation of microRNA-506 inhibits gastric carcinoma cell metastasis through ZEB2. Aging (Albany NY), 11(6):1821-1831. https://doi.org/10.18632/aging.101877https://doi.org/10.18632/aging.101877
Wei C, Yang CG, Wang SY, et al., 2019. Crosstalk between cancer cells and tumor associated macrophages is required for mesenchymal circulating tumor cell-mediated colorectal cancer metastasis. Mol Cancer, 18:64. https://doi.org/10.1186/s12943-019-0976-4https://doi.org/10.1186/s12943-019-0976-4
White E, DiPaola RS, 2009. The double-edged sword of autophagy modulation in cancer. Clin Cancer Res, 15(17):5308-5316. https://doi.org/10.1158/1078-0432.CCR-07-5023https://doi.org/10.1158/1078-0432.CCR-07-5023
Xu B, Ma R, Russell L, et al., 2019. An oncolytic herpesvirus expressing E-cadherin improves survival in mouse models of glioblastoma. Nat Biotechnol, 37(1):45-54. https://doi.org/10.1038/nbt.4302https://doi.org/10.1038/nbt.4302
Yachi K, Tsuda M, Kohsaka S, et al., 2018. miR-23a promotes invasion of glioblastoma via HOXD10-regulated glial-mesenchymal transition. Signal Transduct Target Ther, 3:33. https://doi.org/10.1038/s41392-018-0033-6https://doi.org/10.1038/s41392-018-0033-6
Zhao Z, Zhang KN, Wang QW, et al., 2021. Chinese Glioma Genome Atlas (CGGA): a comprehensive resource with functional genomic data from Chinese glioma patients. Genomics Proteomics Bioinformatics, 19(1):1-12. https://doi.org/10.1016/j.gpb.2020.10.005https://doi.org/10.1016/j.gpb.2020.10.005
0
浏览量
5
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构