无数据
Scan for full text
1.National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
2.The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
3.Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan 430070, China
胡军, 侯奇良, 郑文涌, 等. 格氏乳酸杆菌LA39促进了肝脏初级胆汁酸的生物合成和肠道次级胆汁酸的生物转化[J]. 浙江大学学报(英文版)(B辑:生物医学和生物技术), 2023,24(8):734-748.
Jun HU, Qiliang HOU, Wenyong ZHENG, et al.
胡军, 侯奇良, 郑文涌, 等. 格氏乳酸杆菌LA39促进了肝脏初级胆汁酸的生物合成和肠道次级胆汁酸的生物转化[J]. 浙江大学学报(英文版)(B辑:生物医学和生物技术), 2023,24(8):734-748. DOI: 10.1631/jzus.B2200439.
Jun HU, Qiliang HOU, Wenyong ZHENG, et al.
越来越多的证据已将肠道微生物与肝脏代谢联系在一起。肠道菌群干预已被视为一条有望促进肝脏健康的途径。然而,格氏乳酸杆菌LA39(一种潜在的益生菌)对肝脏代谢的影响仍不明确。大量的研究已通过分析蛋白组图谱来挖掘受微生物影响的宿主生物学事件,并利用无菌小鼠模型来研究宿主与微生物的互作。在本研究中,我们探讨了格氏乳酸杆菌LA39灌服处理对无菌小鼠肝脏蛋白表达图谱的影响。结果表明,格氏乳酸杆菌LA39可导致128个肝脏蛋白质的表达上调,以及123个肝脏蛋白质的表达下调。进一步的生物信息学分析表明,格氏乳酸杆菌LA39可激活肝脏中初级胆汁酸的生物合成通路。蛋白免疫印迹实验进一步验证了参与初级胆汁酸生物合成通路的三个差异表达蛋白(CYP27A1、CYP7B1和CYP8B1)。此外,靶向代谢组学分析证明了格氏乳酸杆菌LA39可显著增加血清和粪便中的β-鼠胆酸(一种初级胆汁酸)、脱氢石胆酸(一种次级胆汁酸)和甘氨石胆酸-3-硫酸盐(一种次级胆汁酸)的含量。综上所述,格氏乳酸杆菌LA39可激活肝脏中初级胆汁酸的生物合成,并促进肠道中次级胆汁酸的生物转化。这些研究发现暗示了格氏乳酸杆菌LA39通过调控胆汁酸代谢在肠-肝轴中发挥了重要功能。
A growing body of evidence has linked the gut microbiota to liver metabolism. The manipulation of intestinal microflora has been considered as a promising avenue to promote liver health. However, the effects of ,Lactobacillus gasseri, LA39, a potential probiotic, on liver metabolism remain unclear. Accumulating studies have investigated the proteomic profile for mining the host biological events affected by microbes, and used the germ-free (GF) mouse model to evaluate host-microbe interaction. Here, we explored the effects of ,L. gasseri, LA39 gavage on the protein expression profiles of the liver of GF mice. Our results showed that a total of 128 proteins were upregulated, whereas a total of 123 proteins were downregulated by treatment with ,L. gasseri, LA39. Further bioinformatics analyses suggested that the primary bile acid (BA) biosynthesis pathway in the liver was activated by ,L. gasseri, LA39. Three differentially expressed proteins (cytochrome P450 family 27 subfamily A member 1 (CYP27A1), cytochrome P450 family 7 subfamily B member 1 (CYP7B1), and cytochrome P450 family 8 subfamily B member 1 (CYP8B1)) involved in the primary BA biosynthesis pathway were further validated by western blot assay. In addition, targeted metabolomic analyses demonstrated that serum and fecal β-muricholic acid (a primary BA), dehydrolithocholic acid (a secondary BA), and glycolithocholic acid-3-sulfate (a secondary BA) were significantly increased by ,L. gasseri, LA39. Thus, our data revealed that ,L. gasseri, LA39 activates the hepatic primary BA biosynthesis and promotes the intestinal secondary BA biotransformation. Based on these findings, we suggest that ,L. gasseri, LA39 confers an important function in the gut‒liver axis through regulating BA metabolism.
格氏乳酸杆菌LA39肝脏同位素标记相对和绝对定量(iTRAQ)胆汁酸无菌小鼠
Lactobacillus gasseri LA39LiverIsobaric tags for relative and absolute quantitation (iTRAQ)Bile acidGerm-free mice
Al-Asmakh M, Zadjali F, 2015. Use of germ-free animal models in microbiota-related research. J Microbiol Biotechnol, 25(10):1583-1588. https://doi.org/10.4014/jmb.1501.01039https://doi.org/10.4014/jmb.1501.01039
Bajaj JS, Ng SC, Schnabl B, 2022. Promises of microbiome-based therapies. J Hepatol, 76(6):1379-1391. https://doi.org/10.1016/j.jhep.2021.12.003https://doi.org/10.1016/j.jhep.2021.12.003
Bernardeau M, Guguen M, Vernoux JP, 2006. Beneficial lactobacilli in food and feed: long-term use, biodiversity and proposals for specific and realistic safety assessments. FEMS Microbiol Rev, 30(4):487-513. https://doi.org/10.1111/j.1574-6976.2006.00020.xhttps://doi.org/10.1111/j.1574-6976.2006.00020.x
Bhattarai Y, Kashyap PC, 2016. Germ-free mice model for studying host-microbial interactions. In: Proetzel G, Wiles M (Eds.), Mouse Models for Drug Discovery. Humana Press, New York, p.123-135. https://doi.org/10.1007/978-1-4939-3661-8_8https://doi.org/10.1007/978-1-4939-3661-8_8
Brandl K, Kumar V, Eckmann L, 2017. Gut-liver axis at the frontier of host-microbial interactions. Am J Physiol Gastrointest Liver Physiol, 312(5):G413-G419. https://doi.org/10.1152/ajpgi.00361.2016https://doi.org/10.1152/ajpgi.00361.2016
Buffie CG, Bucci V, Stein RR, et al., 2015. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature, 517(7533):205-208. https://doi.org/10.1038/nature13828https://doi.org/10.1038/nature13828
Cai J, Sun LL, Gonzalez FJ, 2022. Gut microbiota-derived bile acids in intestinal immunity, inflammation, and tumorigenesis. Cell Host Microbe, 30(3):289-300. https://doi.org/10.1016/j.chom.2022.02.004https://doi.org/10.1016/j.chom.2022.02.004
de Boever P, Wouters R, Verschaeve L, et al., 2000. Protective effect of the bile salt hydrolase-active Lactobacillus reuteri against bile salt cytotoxicity. Appl Microbiol Biotechnol, 53(6):709-714. https://doi.org/10.1007/s002530000330https://doi.org/10.1007/s002530000330
Degirolamo C, Rainaldi S, Bovenga F, et al., 2014. Microbiota modification with probiotics induces hepatic bile acid synthesis via downregulation of the Fxr-Fgf15 axis in mice. Cell Rep, 7(1):12-18. https://doi.org/10.1016/j.celrep.2014.02.032https://doi.org/10.1016/j.celrep.2014.02.032
DeSouza L, Diehl G, Rodrigues MJ, et al., 2005. Search for cancer markers from endometrial tissues using differentially labeled tags iTRAQ and cICAT with multidimensional liquid chromatography and tandem mass spectrometry. J Proteome Res, 4(2):377-386. https://doi.org/10.1021/pr049821jhttps://doi.org/10.1021/pr049821j
Foley MH, O'Flaherty S, Allen G, et al., 2021. Lactobacillus bile salt hydrolase substrate specificity governs bacterial fitness and host colonization. Proc Natl Acad Sci USA, 118(6):e2017709118. https://doi.org/10.1073/pnas.2017709118https://doi.org/10.1073/pnas.2017709118
Gadaleta RM, van Erpecum KJ, Oldenburg B, et al., 2011. Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease. Gut, 60(4):463-472. https://doi.org/10.1136/gut.2010.212159https://doi.org/10.1136/gut.2010.212159
Grover M, Kashyap PC, 2014. Germ-free mice as a model to study effect of gut microbiota on host physiology. Neurogastroenterol Motil, 26(6):745-748. https://doi.org/10.1111/nmo.12366https://doi.org/10.1111/nmo.12366
Guzior DV, Quinn RA, 2021. Review: microbial transformations of human bile acids. Microbiome, 9:140. https://doi.org/10.1186/s40168-021-01101-1https://doi.org/10.1186/s40168-021-01101-1
Hu J, Nie YF, Chen SF, et al., 2017. Leucine reduces reactive oxygen species levels via an energy metabolism switch by activation of the mTOR-HIF-1α pathway in porcine intestinal epithelial cells. Int J Biochem Cell Biol, 89:42-56. https://doi.org/10.1016/j.biocel.2017.05.026https://doi.org/10.1016/j.biocel.2017.05.026
Hu J, Ma LB, Zheng WY, et al., 2018a. Lactobacillus gasseri LA39 activates the oxidative phosphorylation pathway in porcine intestinal epithelial cells. Front Microbiol, 9:3025. https://doi.org/10.3389/fmicb.2018.03025https://doi.org/10.3389/fmicb.2018.03025
Hu J, Ma LB, Nie YF, et al., 2018b. A microbiota-derived bacteriocin targets the host to confer diarrhea resistance in early-weaned piglets. Cell Host Microbe, 24(6):817-832.e8. https://doi.org/10.1016/j.chom.2018.11.006https://doi.org/10.1016/j.chom.2018.11.006
Huang HY, Zhang WT, Jiang WY, et al., 2015. RhoGDIβ inhibits bone morphogenetic protein 4 (BMP4)-induced adipocyte lineage commitment and favors smooth muscle-like cell differentiation. J Biol Chem, 290(17):11119-11129. https://doi.org/10.1074/jbc.M114.608075https://doi.org/10.1074/jbc.M114.608075
Kawai Y, Saito T, Toba T, et al., 1994. Isolation and characterization of a highly hydrophobic new bacteriocin (gassericin A) from Lactobacillus gasseri LA39. Biosci Biotechnol Biochem, 58(7):1218-1221. https://doi.org/10.1271/bbb.58.1218https://doi.org/10.1271/bbb.58.1218
Kawai Y, Ishii Y, Uemura K, et al., 2001. Lactobacillus reuteri LA6 and Lactobacillus gasseri LA39 isolated from faeces of the same human infant produce identical cyclic bacteriocin. Food Microbiol, 18(4):407-415. https://doi.org/10.1006/fmic.2001.0412https://doi.org/10.1006/fmic.2001.0412
Kleerebezem M, Vaughan EE, 2009. Probiotic and gut lactobacilli and bifidobacteria: molecular approaches to study diversity and activity. Annu Rev Microbiol, 63:269-290. https://doi.org/10.1146/annurev.micro.091208.073341https://doi.org/10.1146/annurev.micro.091208.073341
Kusada H, Morinaga K, Tamaki H, 2021. Identification of bile salt hydrolase and bile salt resistance in a probiotic bacterium Lactobacillus gasseri JCM1131T. Microorganisms, 9(5):1011. https://doi.org/10.3390/microorganisms9051011https://doi.org/10.3390/microorganisms9051011
Lebeer S, Vanderleyden J, de Keersmaecker SCJ, 2008. Genes and molecules of lactobacilli supporting probiotic action. Microbiol Mol Biol Rev, 72(4):728-764. https://doi.org/10.1128/MMBR.00017-08https://doi.org/10.1128/MMBR.00017-08
Lemon KP, Armitage GC, Relman DA, et al., 2012. Microbiota-targeted therapies: an ecological perspective. Sci Transl Med, 4(137):137rv5. https://doi.org/10.1126/scitranslmed.3004183https://doi.org/10.1126/scitranslmed.3004183
Li F, Jiang CT, Krausz KW, et al., 2013. Microbiome remodelling leads to inhibition of intestinal farnesoid X receptor signalling and decreased obesity. Nat Commun, 4:2384. https://doi.org/10.1038/ncomms3384https://doi.org/10.1038/ncomms3384
Liu YH, Chen KF, Li FY, et al., 2020. Probiotic Lactobacillus rhamnosus GG prevents liver fibrosis through inhibiting hepatic bile acid synthesis and enhancing bile acid excretion in mice. Hepatology, 71(6):2050-2066. https://doi.org/10.1002/hep.30975https://doi.org/10.1002/hep.30975
Liu ZJ, Xu C, Tian R, et al., 2021. Screening beneficial bacteriostatic lactic acid bacteria in the intestine and studies of bacteriostatic substances. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 22(7):533-547. https://doi.org/10.1631/jzus.B2000602https://doi.org/10.1631/jzus.B2000602
Liu ZM, Zhang ZF, Huang M, et al., 2018. Taurocholic acid is an active promoting factor, not just a biomarker of progression of liver cirrhosis: evidence from a human metabolomic study and in vitro experiments. BMC Gastroenterol, 18:112. https://doi.org/10.1186/s12876-018-0842-7https://doi.org/10.1186/s12876-018-0842-7
Marchesi JR, Adams DH, Fava F, et al., 2016. The gut microbiota and host health: a new clinical frontier. Gut, 65(2):330-339. https://doi.org/10.1136/gutjnl-2015-309990https://doi.org/10.1136/gutjnl-2015-309990
Maslennikov R, Ivashkin V, Efremova I, et al., 2021. Probiotics in hepatology: an update. World J Hepatol, 13(9):1154-1166. https://doi.org/10.4254/wjh.v13.i9.1154https://doi.org/10.4254/wjh.v13.i9.1154
Natividad JMM, Verdu EF, 2013. Modulation of intestinal barrier by intestinal microbiota: pathological and therapeutic implications. Pharmacol Res, 69(1):42-51. https://doi.org/10.1016/j.phrs.2012.10.007https://doi.org/10.1016/j.phrs.2012.10.007
Nie YF, Hu J, Yan XH, 2015. Cross-talk between bile acids and intestinal microbiota in host metabolism and health. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 16(6):436-446. https://doi.org/10.1631/jzus.B1400327https://doi.org/10.1631/jzus.B1400327
Nie YF, Hu J, Hou QL, et al., 2019. Lactobacillus frumenti improves antioxidant capacity via nitric oxide synthase 1 in intestinal epithelial cells. FASEB J, 33(10):10705-10716. https://doi.org/10.1096/fj.201900253RRhttps://doi.org/10.1096/fj.201900253RR
Ogilvie LA, Jones BV, 2012. Dysbiosis modulates capacity for bile acid modification in the gut microbiomes of patients with inflammatory bowel disease: a mechanism and marker of disease? Gut, 61(11):1642-1643. https://doi.org/10.1136/gutjnl-2012-302137https://doi.org/10.1136/gutjnl-2012-302137
Ramakrishna BS, 2013. Role of the gut microbiota in human nutrition and metabolism. J Gastroenterol Hepatol, 28(S4):9-17. https://doi.org/10.1111/jgh.12294https://doi.org/10.1111/jgh.12294
Ringseis R, Gessner DK, Eder K, 2020. The gut‒liver axis in the control of energy metabolism and food intake in animals. Annu Rev Anim Biosci, 8:295-319. https://doi.org/10.1146/annurev-animal-021419-083852https://doi.org/10.1146/annurev-animal-021419-083852
Rooks MG, Garrett WS, 2016. Gut microbiota, metabolites and host immunity. Nat Rev Immunol, 16(6):341-352. https://doi.org/10.1038/nri.2016.42https://doi.org/10.1038/nri.2016.42
Scott A, 2017. Gut‒liver axis: menace in the microbiota. Nature, 551(7681):S94-S95. https://doi.org/10.1038/d41586-017-06924-3https://doi.org/10.1038/d41586-017-06924-3
Selle K, Klaenhammer TR, 2013. Genomic and phenotypic evidence for probiotic influences of Lactobacillus gasseri on human health. FEMS Microbiol Rev, 37(6):915-935. https://doi.org/10.1111/1574-6976.12021https://doi.org/10.1111/1574-6976.12021
Silveira MAD, Bilodeau S, Greten TF, et al., 2022. The gut‒liver axis: host microbiota interactions shape hepatocarcinogenesis. Trends Cancer, 8(7):583-597. https://doi.org/10.1016/j.trecan.2022.02.009https://doi.org/10.1016/j.trecan.2022.02.009
Sommer F, Bäckhed F, 2013. The gut microbiota—masters of host development and physiology. Nat Rev Microbiol, 11(4):227-238. https://doi.org/10.1038/nrmicro2974https://doi.org/10.1038/nrmicro2974
Thomson AW, Knolle PA, 2010. Antigen-presenting cell function in the tolerogenic liver environment. Nat Rev Immunol, 10(11):753-766. https://doi.org/10.1038/nri2858https://doi.org/10.1038/nri2858
Tilg H, Adolph TE, Trauner M, 2022. Gut-liver axis: pathophysiological concepts and clinical implications. Cell Metab, 34(11):1700-1718. https://doi.org/10.1016/j.cmet.2022.09.017https://doi.org/10.1016/j.cmet.2022.09.017
Tremaroli V, Bäckhed F, 2012. Functional interactions between the gut microbiota and host metabolism. Nature, 489(7415):242-249. https://doi.org/10.1038/nature11552https://doi.org/10.1038/nature11552
Treumann A, Thiede B, 2010. Isobaric protein and peptide quantification: perspectives and issues. Expert Rev Proteomics, 7(5):647-653. https://doi.org/10.1586/epr.10.29https://doi.org/10.1586/epr.10.29
Tripathi A, Debelius J, Brenner DA, et al., 2018. The gut‒liver axis and the intersection with the microbiome. Nat Rev Gastroenterol Hepatol, 15(7):397-411. https://doi.org/10.1038/s41575-018-0011-zhttps://doi.org/10.1038/s41575-018-0011-z
Ubeda C, Pamer EG, 2012. Antibiotics, microbiota, and immune defense. Trends Immunol, 33(9):459-466. https://doi.org/10.1016/j.it.2012.05.003https://doi.org/10.1016/j.it.2012.05.003
van Baarlen P, Wells JM, Kleerebezem M, 2013. Regulation of intestinal homeostasis and immunity with probiotic lactobacilli. Trends Immunol, 34(5):208-215. https://doi.org/10.1016/j.it.2013.01.005https://doi.org/10.1016/j.it.2013.01.005
Wahlström A, Sayin SI, Marschall HU, et al., 2016. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab, 24(1):41-50. https://doi.org/10.1016/j.cmet.2016.05.005https://doi.org/10.1016/j.cmet.2016.05.005
Wong WY, Chan BD, Sham TT, et al., 2022. Lactobacillus casei strain Shirota ameliorates dextran sulfate sodium-induced colitis in mice by increasing taurine-conjugated bile acids and inhibiting NF-κB signaling via stabilization of IκBα. Front Nutr, 9:816836. https://doi.org/10.3389/fnut.2022.816836https://doi.org/10.3389/fnut.2022.816836
Wright MH, 2018. Chemical proteomics of host-microbe interactions. Proteomics, 18(18):1700333. https://doi.org/10.1002/pmic.201700333https://doi.org/10.1002/pmic.201700333
Xie ZY, Zhang LJ, Chen EM, et al., 2021. Targeted metabolomics analysis of bile acids in patients with idiosyncratic drug-induced liver injury. Metabolites, 11(12):852. https://doi.org/10.3390/metabo11120852https://doi.org/10.3390/metabo11120852
Yan ZZ, Chen BX, Yang YQ, et al., 2022. Multi-omics analyses of airway host-microbe interactions in chronic obstructive pulmonary disease identify potential therapeutic interventions. Nat Microbiol, 7(9):1361-1375. https://doi.org/10.1038/s41564-022-01196-8https://doi.org/10.1038/s41564-022-01196-8
Yi P, Li LJ, 2012. The germfree murine animal: an important animal model for research on the relationship between gut microbiota and the host. Vet Microbiol, 157(1-2):1-7. https://doi.org/10.1016/j.vetmic.2011.10.024https://doi.org/10.1016/j.vetmic.2011.10.024
Zhang QQ, Huang WQ, Gao YQ, et al., 2018. Metabolomics reveals the efficacy of caspase inhibition for saikosaponin D-induced hepatotoxicity. Front Pharmacol, 9:732. https://doi.org/10.3389/fphar.2018.00732https://doi.org/10.3389/fphar.2018.00732
Zhang YL, Li ZJ, Gou HZ, et al., 2022. The gut microbiota-bile acid axis: a potential therapeutic target for liver fibrosis. Front Cell Infect Microbiol, 12:945368. https://doi.org/10.3389/fcimb.2022.945368https://doi.org/10.3389/fcimb.2022.945368
Zhou WY, Sailani MR, Contrepois K, et al., 2019. Longitudinal multi-omics of host-microbe dynamics in prediabetes. Nature, 569(7758):663-671. https://doi.org/10.1038/s41586-019-1236-xhttps://doi.org/10.1038/s41586-019-1236-x
Zhu MM, Dai SJ, McClung S, et al., 2009. Functional differentiation of Brassica napus guard cells and mesophyll cells revealed by comparative proteomics. Mol Cell Proteomics, 8(4):752-766. https://doi.org/10.1074/mcp.M800343-MCP200https://doi.org/10.1074/mcp.M800343-MCP200
Zoued A, Zhang HL, Zhang T, et al., 2021. Proteomic analysis of the host-pathogen interface in experimental cholera. Nat Chem Biol, 17(11):1199-1208. https://doi.org/10.1038/s41589-021-00894-4https://doi.org/10.1038/s41589-021-00894-4
0
浏览量
1
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构